
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zizhang Sheng,
Columbia University Irving Medical
Center, United States

REVIEWED BY

Chaim A. Schramm,
National Institute of Allergy and
Infectious Diseases (NIH),
United States
Victor Greiff,
University of Oslo, Norway
Juliana Silva Bernardes,
Sorbonne Universités, France

*CORRESPONDENCE

Siavash Mirarab
smirarab@ucsd.edu

SPECIALTY SECTION

This article was submitted to
B Cell Biology,
a section of the journal
Frontiers in Immunology

RECEIVED 08 August 2022
ACCEPTED 26 October 2022

PUBLISHED 06 December 2022

CITATION

Zhang C, Bzikadze AV, Safonova Y and
Mirarab S (2022) A scalable model for
simulating multi-round antibody
evolution and benchmarking of clonal
tree reconstruction methods.
Front. Immunol. 13:1014439.
doi: 10.3389/fimmu.2022.1014439

COPYRIGHT

© 2022 Zhang, Bzikadze, Safonova and
Mirarab. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 06 December 2022

DOI 10.3389/fimmu.2022.1014439
A scalable model for simulating
multi-round antibody evolution
and benchmarking of clonal
tree reconstruction methods

Chao Zhang1, Andrey V. Bzikadze1, Yana Safonova2

and Siavash Mirarab3*

1Bioinformatics and Systems Biology, University of California, San Diego, San Diego,
CA, United States, 2Computer Science and Engineering Department, University of California,
San Diego, San Diego, CA, United States, 3Electrical and Computer Engineering Department,
University of California, San Diego, San Diego, CA, United States
Affinity maturation (AM) of B cells through somatic hypermutations (SHMs)

enables the immune system to evolve to recognize diverse pathogens. The

accumulation of SHMs leads to the formation of clonal lineages of antibody-

secreting b cells that have evolved from a common naïve B cell. Advances in

high-throughput sequencing have enabled deep scans of B cell receptor

repertoires, paving the way for reconstructing clonal trees. However, it is not

clear if clonal trees, which capture microevolutionary time scales, can be

reconstructed using traditional phylogenetic reconstruction methods with

adequate accuracy. In fact, several clonal tree reconstruction methods have

been developed to fix supposed shortcomings of phylogenetic methods.

Nevertheless, no consensus has been reached regarding the relative

accuracy of these methods, partially because evaluation is challenging.

Benchmarking the performance of existing methods and developing better

methods would both benefit from realistic models of clonal lineage evolution

specifically designed for emulating B cell evolution. In this paper, we propose a

model for modeling B cell clonal lineage evolution and use this model to

benchmark several existing clonal tree reconstruction methods. Our model,

designed to be extensible, has several features: by evolving the clonal tree and

sequences simultaneously, it allows modeling selective pressure due to

changes in affinity binding; it enables scalable simulations of large numbers

of cells; it enables several rounds of infection by an evolving pathogen; and, it

models building of memory. In addition, we also suggest a set of metrics for

comparing clonal trees and measuring their properties. Our results show that

while maximum likelihood phylogenetic reconstruction methods can fail to

capture key features of clonal tree expansion if applied naively, a simple post-

processing of their results, where short branches are contracted, leads to

inferences that are better than alternative methods.
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1 Introduction

Immune response to new pathogens relies heavily on the

Affinity maturation (AM) process. AM follows the binding of

immunoglobulin (IG) molecules to antigens and improves the

affinity (i.e., binding ability) of B cells to the antigen (1, 2). The

AM process involves many aspects, including the activation of

naive B cells that have not been exposed to an antigen, clonal

expansion of cells that increases the pool of antibodies, somatic

hypermutations (SHMs) (3) that alter the structure of antibodies

and their ability to bind, and a regulatory mechanism that plays

the role of natural selection. The AM process creates memory

and plasma B cells; memory B cells can be reactivated and can

undergo the AM process again (4), while plasma B cells can

secrete massive levels of neutralizing antibodies. Over time, the

AM process leads to the formation of clonal lineages within a

given antibody repertoire, where each clonal lineage is formed by

descendants of a single naive B cell. The evolutionary history of

each of these clonal lineages can be represented by a clonal tree,

where each vertex corresponds to a B cell, and a directed edge

connects each B cell to all its immediate descendants.

New sequencing technologies have enabled high-throughput

scanning of antibody repertoires (AIRR-seq) and have opened

up new avenues for studying adaptive immune systems (5–9).

AIRR-seq technologies enabled AM analysis of antibody

repertoires responding to antigens of various diseases, such as

flu (10, 11), HIV (12, 13), hepatitis (14, 15), multiple sclerosis

(16, 17), rheumatoid arthritis (18). Such analyses allow biologists

to identify broadly neutralizing antibodies and reveal antigen-

specific and general mutation patterns (11, 19).

Due to the short time frame of clonal expansion, inferred

clonal trees have unique properties (20). Some sequenced nodes

may belong to the internal nodes of the tree instead of the tips.

Also, inferred clonal trees are often not even close to bifurcating.

Thus, unlike traditional phylogenetics, perhaps Steiner trees

(which can put observations at some of the internal nodes) or

spanning trees (that put an observation at all internal nodes)

should be preferred for reconstructing antibody sequences

(Figure 1A). Various reconstruction methods have been

developed attempting to recover clonal trees from antibody

sequences [e.g., (13, 21–26)]. Some of these methods use

simple clustering methods [e.g., (21)], while others formulate

the problem as a Steiner tree problem (13, 22, 24, 26) or

maximum-likelihood (ML) phylogenetic tree reconstruction

under models of sequence evolution (23, 25).

In order to evaluate methods proposed for reconstructing

clonal trees, we need models for antibody sequence evolution

and clonal tree expansion that can be used for simulation. This

modeling step is challenging for several reasons. (i) Selection,

which is an integral part of AM, needs to be modeled directly;

otherwise, the shape of the resulting trees will not be realistic.

Traditional phylogenetics simulations first simulate a tree of
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sampled taxa and then evolve sequences down the tree. This

two-step approach simplifies simulations but misses the

dependency between the clonal tree shape and the antibody

sequences. A better approach is to co-evolve the tree and

sequences. The challenge in co-evolving is to design a

principled model for how sequences impact evolution and to

develop a scalable simulation algorithm that can generate large

numbers of cells. (ii) Literature suggests that there are hotspots

and cold spots of SHMs [e.g., (27, 28)]. However, traditional

models of sequence evolution assume each site evolves

independently and will miss the context dependence. (iii)

Different antibody cell types (e.g., activated and memory cells)

have very different mutational and selection behaviors, and these

distinctions need to be modeled.

There have been several attempts at designing statistical

models of AM clonal expansion [e.g., (20, 29–32)]. As the AM

process is complex, these models have taken different routes. For

example, determining affinities of sequences to hypothetical

antigens is difficult, as affinity binding is a complicated

chemical process, and each method models affinity differently.

Nevertheless, all these methods have limitations, which we will

return to in our discussion section. Two factors worth pointing

out are that they do not scale to very large numbers of cells, and

they allow for simulating one round of infection (as opposed to

an evolving pathogen and recurring infections); some also avoid

differentiating different types of B cells.

In this paper, we propose a scalable and flexible simulation

framework that can be instantiated in many ways. We introduce a

general birth, death, and transformation (BDT) model and describe

how BDT can be instantiated to create a model of AM that

simultaneously co-evolves the clonal tree and antibody sequences.

We then introduce a scalable sampling algorithm for ourmodel that

enables generating large trees. With the simulator (called DIMSIM)

at hand, we note that comparing clonal trees and characterizing

their properties require care. We refine existing metrics and define

new ones for characterizing properties (e.g., balance) of clonal trees

and for comparing them. Finally, we perform extensive simulation

studies (Figure 1B) under various parameters using DimSim. We

study how the parameters of the AM model impact properties of

clonal trees and benchmark the performance of several

reconstruction methods.
2 Methods

2.1 Statistical models

We first define a general Birth/Death/Transformation (BDT)

model and then present an efficient algorithm for sampling trees

from that model. We then instantiate the general model for

simulating AM processes and move on to describe specific

choices we made in our simulations.
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2.1.1 BDT model
Forward-time birth-death models are used extensively in

macro-evolutionary modeling (33), whereas microevolution

simulations often use coalescent models that are easier to

sample. We propose a general forward-time model that can

allow realistic microevolutionary simulations by ensuring that

birth and death rates are not constant and instead change with

the properties of evolving units (e.g., cells).

In the BDT model, a set of entities continuously undergo

birth (B), death (D), and transformation (T) events. Each entity i

has a list of properties xi ∈ RN
+ . At each point in time, the system

contains a set S of n active entities, and each active entity i ∈ S

undergoes birth, death, and transformation events according to

independent Poisson point processes. In the birth event, an

entity i is removed from S and new entities j and k, with

properties xj and xk, are added to S; properties xj and xk are

drawn from a distribution determined by xi and model

parameters. In the event of the death of an entity i, it is

removed from S. In the transformation event, an entity i is

removed from S and a new entity j with properties xj, drawn

from a distribution determined by xi, is added to S. Starting from
Frontiers in Immunology 03
a single node and continuously applied, this process defines a

rooted tree where nodes are all entities that ever existed

(including those that died); birth events create bifurcations,

transformation events create nodes with one child, and death

events create leaves. The tree can be subsampled subsequently.

For each entity i ∈ S, the birth, rate, and transformation

rates are thoroughly determined by its properties xi and the sum

of properties over all entities S = Sj∈S xj. We let LB(xi, S), LD(xi,

S), and LT(xi, S) denote the birth, death, and transformation

rates, respectively. In the time interval between two events for

any two entities in the system, we assume a memoryless process.

Thus, these rates remain constant between any two events but

can change when an event happens. The ratio between the birth

rate and the death rate, both of which are functions of the entity

properties, can be thought of as the factor controlling the

selective pressure, which can be time-variant.

Because of the memoryless property, the time until the next

BDT event always follows the exponential distribution with rates

LB(xi, S), LD(xi, S), and LT(xi, S) for each event type. The time

until any event for any entity follows an exponential distribution

with l = Si∈S (LB(xi, S) + LD(xi, S) + LT(xi, S)). The probability
B

A

FIGURE 1

(A) Examples of a phylogenetic tree, a Steiner tree, and a spanning tree. Letters indicate sequenced data. Phylogenetic trees put all data points
at leaves, and none at internal nodes, spanning trees put data at every node (whether internal or leaf), and Steiner trees are in between (some
but not all internal nodes correspond to data). (B) The evaluation framework. The BDT model, parameterized by several values (Table 1) is first
sampled using the fast algorithm implemented in DIMSIM to create the simulated (i.e., “true”) sequence data and clonal trees. These trees are
then reconstructed from the simulated sequence data using various methods. The reconstructed clonal tree is compared to the simulated tree
using several metrics adopted here to account for internal node sampling and multifurcation. Properties of true and inferred trees are measured
using metrics such as balance and resolution.
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of the next event being a specific event E ∈ {B, D, T} for a

particular entity i is LE(xi, S)/l. Specifying the rate functions and
the distribution of properties at the initial state fully specifies

the model.

The BDT model can be efficiently sampled if rate functions

have certain (very general) properties. We leave all the

mathematical details for Appendix 2.1. In short, the

memoryless property of the model makes it possible to

perform efficient sampling despite the fact that rates change

with the tree. The main innovations of the sampling algorithm

are 1) rewriting rate functions as polynomial functions of other

parameters, which enable finding the time to the next event in

constant time, and 2) using an interval tree data structure to

store partial sums needed for normalization. With our proposed

Algorithm S1 (in Appendix 4), a tree on k nodes drawn from the

distribution defined by the BDT process can be sampled in O(k

log(k)) time. Thus, the BDT model can be efficiently sampled to

create trees with millions of nodes.

2.1.2 Antibody affinity maturation model
We now define a specific instance of the BDT model

designed for AM. Simulations according to this AM model are

implemented in a C++ tool called Dynamic IMmuno-SIMulator
Frontiers in Immunology 04
(DIMSIM). The model has many parameters reflecting immune

system properties (Table 1), which we define throughout this

section (Appendix 1 defines our particular usage of terms

commonly used in immunology). The use of birth death

models for AM is not new [e.g., (32)] but particular choices of

our model are different from prior work.

2.1.2.1 Rounds and stages

We model the evolution of antibody-coding sequences in

response to r rounds of infections by an evolving antigen (e.g.,

SARS-Cov2 or flu). Each round consists of two stages, an infected

stage, where a set of new antigens initiate a response that activates

the B cells being modeled, and a dormant stage, where the B cells

being modeled are not actively involved in an immune response.

Both stages used the same BDT model but are parameterized

differently. The switch between the two stages happens through

user-defined rules (e.g., rules that reflect infection progression as

described below). During the infected stage of round i, we target

amino-acid sequence zi = (zi(1), …, zi(L)) of length L without any

stop codon, defined as the best possible antibody-coding sequence

that can bind to the present antigen. The target can change across

rounds, and we describe two specific ways of choosing targets in

Section 2.1.3.
TABLE 1 Parameters of the AM model.

Param. Default Parameter description

l
0
d

1/402 Rate (inverse life time) of cell death for memory cells (days−1)

lb 6 Rate of cell division for activated B cells (days−1)

ld 104 Rate of cell death during dormant stage (day−1).

lt 0.01 Rate of activation of a typical responsive memory cell

rp 1/100 Portion of activated B cells that turn into plasma cells per cell division

rm 1/4 Portion of activated B cells that turn into memory B cells per cell division

µ 5 × 10−4 Rate of SHMs per base pair per generation

K5 Appendix 2 Empirical 5-mer mutation frequencies per generation

L 125 Length of the amino acid antibody-coding sequence (assuming the length is fixed)

CDR 31–35,50–65, 98–114 Positions of the three CDR regions (amino acid coordinates)

d(i, j) Table S2 BLOSUM matrix defined on a pair of amino-acids i and j

D0 -120 BLOSUM score of a typical memory B cell antibody-coding sequence to target

D
0
0

-75 BLOSUM score of activated B cell antibody-coding sequences that leads to cure

wf 1/3 BLOSUM score multiplier of non-CDR positions (i.e., FRs)

k 2 BLOSUM score ratio of antibody-coding sequences to antigen sequences

A 0.1 Selective pressure: factor connecting sequence similarity and log binding affinity

ra 1/2 Factor connecting log affinity and B cell activation (sensitivity to affinity level A)

C 105 Carrying capacity limited by total resources (see text for meaning)

M CeAD
0
0 The threshold of the sum of affinity for a stage change

r Rounds of viral infections

Ŷ Appendix 2 Nucleotide sequence of the initial B cell

z1… zr Appendix 2 Target amino acid sequences for viral infections in each round

h1… hr Appendix 2 Flu sequences assumed as antigens in the simulation

t1… tr Appendix 2 Starting time of each infected stage (day)
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2.1.2.2 Cell properties

Since only memory B cells can be repeatedly activated by an

encounter with antigens, we only simulate memory B cells. Plasma

B cells do not undergo SHMs and represent terminal states of the

clonal lineage development and thus can be sampled from the

leaves of the simulated tree. We will refer to a B cell that has just

encountered an antigen and moved to a germinal center (GC) as an

activated B cell (or “activated cell” for short) (Figure 2A).

In the AM model, each entity i represents a B cell with the

property vector xi = (gi, si, ti, gi/ai, giai) with five values, among

which the last three are derived from two other quantities: gi and

ai (only saved in the derived form). We keep derived properties

as part of xi because they allow us to define LE(xi, S) as

polynomials of saved properties; this, in turn, enables the use

of our fast sampling algorithm. To follow the BDT model, we

assume the properties of each cell are fixed in between B/D/T

events, ignoring possible short-term temporal changes (34). We

next define gi, si, ti, and ai.
Fron
• The binary property gi indicates whether a cell i is an

activated B cell (1) or is a memory B cell outside lymph

nodes, which we call a “memory cell” for simplicity (0).

• The si property stores the DNA sequence of B cell i

coding for the variable region of the heavy chain with a

fixed length 3L. We focus on simulating the heavy chain

sequences only because most existing AIRR-seq studies

focus on sequencing heavy chains only [e.g., (11, 16, 35,

36)]. For the sake of simplicity, we assume the fate of the

cell depends only on the variable region of the heavy

chain. Each cell has a fixed sequence, and mutations

occur at the time of a cell birth, which happens only for

activated cells in the infected stage. After a birth event

for cell i, sequences sj and sk of child cells j and k are
tiers in Immunology 05
chosen independently and identically at random

[ignoring the G1 origin of mutations (37)]. While any

sequence evolution model could be incorporated in the

DIMSIM framework, in Section 2.1.3, we describe a 5-

mer-based model used in our analyses.

• Property ti denotes the rate of transformation, which

means the activation of a memory cell (gi: 1 ! 0) in

response to an antigen, or the maturation of an activated

cell into a memory cell (gi: 0 ! 1). Transformations,

which only happen during the infected stage, flip g but

keep the sequence s intact.

• Property ai denotes the strength of affinity binding of the

Ig receptor of the cell i to the antigen.
We let s denote the total affinity of activated cells and note s
denote the total affinity of activated cells and note s = Si∈S giai is the
last element of the vector S. Then, ai/s is the fraction of total affinity

assigned to a cell. Both ti and ai are derived and are set based on the

sequence of i and the target.
2.1.2.3 Sequence affinity and birth, death, and
transformation rates

Affinity ai is only defined and used during the infected stage

where the target is available and is function of the cell sequence si
and the target sequence z. The closer the sequence to the target,

the higher its affinity should be, a fact that other simulators have

also incorporated (30, 32). The exact relationships between the

sequences and affinity are not known. For the purpose

of benchmarking methods, we propose a simple formula. Let

fz(si) be a measure of the closeness of the sequence to the target

in the affinity space, we set

ai ≐ eAfς(si) (1)
B C DA

FIGURE 2

(A) States of cells and transitions during infected stage. Only states colored black are modeled. Transitions to states colored gray are treated as
death events. (B-D) Consider a population of activated B cells where all cells have one of two sequences: L (low) or H (high). Let r be the ratio
of affinity of H-type cells to L-type cells, and let the affinity proportion be the total affinity of a cell type over the total affinity (i.e., r/1 + r for H
and 1/1 + r for L). (B) The affinity proportion as a function of the selective pressure A when the sequence closeness to the target fz (.) is kept
fixed for L and varies for (H). (C) the ratio of death rate to birth rate as a function of affinity proportion of H cells, fixing the population size to
the carrying capacity. (D) Ratio of death rate to birth rate as a function of the population size normalized by the carrying capacity, fixing r = 2.
All other parameters set to defaults (Table 1). The selective pressure A and the level of binding control the portion of affinity taken up by better
sequences (B), which controls the growth of the cell type (C), which is also a function of the total population size (D).
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where A is a constant factor used to calibrate the selective

pressure. As sequences get closer to the target, the affinity

grows gradually with a speed controlled by A (Figure 2B). We

will describe our particular choice of function fz(si) using

BLOSUM similarity in Section 2.1.3.

The event rates are functions of cell properties and the stage

(Table 2). During the dormant stage, there are no births or

transformations; cells only die with a very high uniform rate ld
for activated cells and a low uniform rate l

0
d for memory cells.

During the infected stage, we adjust the death rates of cells

based on their affinities but keep the birth rates constant; this

interplay is used to simulate the selective pressure. Note that we do

not claim that a fixed birth rate and changing death rate is

biologically realistic [e.g., see (38)]. However, in terms of the

dynamics of our model, what matters is the ratio of the birth and

death rates, which enable us to make this simplifying choice. In our

model, an activated cell can undergo cell division at a uniform rate

lb, differentiate into a memory cell at a uniform rate ti = rmlb or a
plasma-like cell at a uniform rate rplb, and undergo apoptosis (i.e.,

die). We do not model plasma-like cells; instead, both

differentiation into plasma-like cells and apoptosis are treated as

death events (Figure 2A). The rate of apoptosis of an activated cell i

is modeled as inversely proportional to the amount of resources

(antigens and FDCs) to which the cell i has access when competing

against other activated cells. Thus, the proportion of resources

available to the cell i is modeled by the affinity proportion ai/s (i.e.,

the affinity of the cell to the antigen normalized by the current sum

of the affinity of all activated cells). This affinity proportion is

impacted by the parameter A. The lower the A, the more uniform

these proportions become, modeling low selective pressure;

conversely, as A increases, ai/s values further diverge between

low affinity and high-affinity cells (Figure 2B). Thus, A can be

used to control the strength of the selective pressure.

The memory cells undergo apoptosis at a uniform rate l
0
d .

They can also be activated by helper T cells to enter the germinal

center with the transformation rate

ti ≐ lte
raA(fς(si)−D0) = lte

−raAD0arai (2)

Note that the activation rate of memory cells increases

monotonically with their affinity to the target, according to arai
where ra, set by default to 1/2, is the sensitivity of B cell activation to

affinity. This dependency on affinity models the increased

propensity of the memory cells to activate when presented by
Frontiers in Immunology 06
helper T cells with familiar antigens. The default choice ra = 1/2 is

motivated by the fact that although memory cells with higher

binding strengths to the antigen are more likely to be activated, the

interaction between a helper T cell and a memory B cell is a one-

time event and thus less sensitive to binding strength.

As an example, consider a system with two cell types: L and H,

each type with its own unique sequence (Figures 2B-D). Assume all

cells are activated cells, the number of L and H are the same at one

point in time, and H cells have a higher affinity than L cells by a

factor of r. For ease of exposition, here, we include the mutation

rate as part of the death rate because mutation events also decrease

cell count. Let’s assume the total number of cells equals the carrying

capacity C. If L and H have the same affinity (i.e., r = 1), then the

birth and death rates are identical for all cells. As the affinity of H

cells is increased (i.e., r > 1), the death rate of L cells increases

linearly, whereas the death rate of H cells decreases (Figure 2B).

Thus, H cells will have higher birth rates than death, will be selected

for, and will expand. If we fix r = 2 and increase the population size,

the death rates of both L and H cells increase, but at different rates

(Figure 2D).When the population size is small compared to C, both

types of cells have more birth than death. After a threshold (C/3 in

this example), the death rate of L type surpasses its birth rate (thus,

its population starts to shrink) while the population of H cells

continues to grow. However, as the population size increases (2C/3

here), both sets of cells start to shrink (i.e., higher death rates than

birth), because the population size is by definition bounded by C.
2.1.3 Specific modeling choices
Several steps of our simulations are flexible and can be

changed by the user. We next describe the set of choices we

have implemented and used in the experiments below. We have

performed two sets of experiments with different settings; where

the two simulations differ, we explain both choices.

Switching between stages. The system enters dormant stage

when antigens are neutralized by the antibodies. We have

implemented two options for defining neutralization. i) Switch

to the dormant stage after a certain duration from the beginning

of the infected stage. ii) Switch to the dormant stage when the

total affinity of antibodies produced by plasma-like cells reaches

a certain threshold; here, we switch when the sum of affinities of

activated cells (s) reaches a predefined constant M.

Sequence evolution. In our experiments, we use an empirical 5-

mer-based model inspired by the Yaari et al. (39) model. Let s(p) be
TABLE 2 Birth, death, and transformation rates.

Rate functions Infected stage Dormant stage

LB(xi, S) gilb + (1 − gi) × 0 0

LD(xi, S)
gi(

lb(1 − rp − rm)
C

s
ai

+ rplb) + (1 − gi)l
0
d

gild + (1 − gi)l
0
d

LT(xi, S) ti = girmlb + e−raAD0arai (1 − gi) 0
See Table S1 for polynomial forms.
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the nucleotide on the p-th position of the nucleotide sequence of the

cell i. Each s(p)j or s(p)k is independently set to s ∈ {A, C, G, T} with

probability: Pr(s(p)j = s) = Pr(s(p)k = s) = f (s, s(p−2)i , s(p−1)i , s(p)i , s(p+1)i ,

s(p+2)i ) where f: {A, C, G, T}6! [0, 1] denotes an empirically

determined 5-mer frequency model based on the Yaari et al. (39)

model and recomputed based on newer datasets including non-

synonymous mutations (Appendix 2). Note that the rate of the

mutation of each position changes as the sequence around it

changes (e.g., from a low rate 5-mer to a high rate 5-mer).

Sequence affinity function. While various methods can be

imagined for measuring the closeness of the sequence to the

target, we used a simple approach: measuring sequence similarity

according to the BLOSUM matrix and appropriate scaling of

numbers. We assume each amino-acid position contributes to the

binding strength to the target and the stability of the structure of

the Ig-receptor independently. We model affinity proportionally to

the product of the effect of each amino-acid position. This simple

model ignores the 3D structure of proteins for the most part but

should be sufficient for creating benchmarking datasets as none of

the reconstruction methods consider 3D structure either. However,

because complementarity-determining regions (CDRs), which

include the binding sites, tend to accumulate more SHMs

compared to framework regions (FRs) (19, 40), we do

differentiate those. When si includes a stop codon, we simply set

ai = 0. Otherwise, we define the BLOSUM score of an amino acid

sequence x = (x(1),…., x(L)) with respect to target z as

\

Dς(x) = o
p∈CDR

(d (x(p), ς(p)) − d (ς(p), ς(p)))

+ wf o
p∈ 1:::Lf gn CDR

(d (x(p), ς(p)) − d (ς(p), ς(p))) (3)

where d(.,.) gives the BLOSUM score between two amino acids

(Table S2), and wf is a constant used to calibrate the importance

of CDRs versus FRs in the affinity and transformation processes.

We then simply set fz (si) = Dz (x(si)) where x(.) translates from
DNA to AA.

Choosing targets. One target sequence per round needs to be

selected. The extent of the change in targets across rounds

impacts the patterns of the immune response and hence the

shape of the resulting clonal trees. To define targets across

rounds in our experiments, we explore two options. i) We

simply use the antibodies known to neutralize a specific

disease as the target. Existing databases such as CoV-AbDab

(41) provide excellent sources of such candidates. ii)

Evolutionary approach: We seek a set of sequences with an

evolutionary trajectory that reflects the evolutionary history of a

set of real antigens (e.g., influenza virus). Let the known amino-

acid sequences of an antigen (e.g., flu) sampled through time be

denoted by h1,…, hr, and let each sequence have the fixed length

Lh. To choose the targets, we first select an arbitrary naive B cell,

here chosen from datasets of Ellebedy et al. (35), and set Ŷ to the

nucleotide sequence of the variable region of its heavy chain.
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Then, we simply set z1 to the amino-acid translation of Ŷ . In

other words, in the first round, we use the naive cell as the target,

and therefore, the first couple of rounds of the simulation should

be treated as dummy rounds and should be discarded. Let k be a

positive constant that controls the rate of change in the target

relative to the rate of change in the antigen sequences. To define

the remaining targets, we seek to find the set of r − 1 sequences

that minimize:

o
i,j∈½r�

jk o
p∈CDR

d (ς(p)i , ς(p)i ) − d (ς(p)i , ς(p)j )

−o
Lh

q=1
(d (h(q)

i ,h(q)
i ) − d (h(q)

i ,h(q)
j ))j: (4)

Thus, a set of target sequences across r rounds are preferred

if their pairwise distance matrix maximally matches the pairwise

distance matrix of all antigen sequences over the same rounds

(with a scaling). To account for conserved regions, we arbitrarily

chose to keep all the non-CDR regions invariable in all target

sequences (this choice can be easily changed). Thus, we seek to

make the distance between two target sequences from two

rounds similar to the distances of antigen sequences, scaled by

a factor of k. We approach this NP-hard problem using a greedy

search heuristic (Algorithm S3). The heuristic starts with

arbitrary z2,…, zr and replaces one symbol of one sequence at

a time to reduce the objective function; it repeats until reaching a

local minimum where no such replacement is possible.
2.2 Benchmarking setup

We use two sets of experiments, one focused on SARS-CoV2

and one focused on influenza. The two sets of simulations use

different settings to demonstrate the flexibility of the tool. In

both experiments, unless otherwise specified, we used the default

settings for the various parameters of Table 1.

2.2.1 SARS-CoV2 simulations
We performed 3–5 rounds of infections by SARS-CoV2. For

SARS-CoV2, the potential antibodies neutralizing the virus are

available, providing us with a natural way to choose the targets. We

selected all heavy chain sequences of human antibodies with

IGHV1-58 and IGHJ3 from the Coronavirus Antibody Database

(41) that neutralize some variants of SARS-CoV2 and have 16

amino acids in their CDR3. We kept only one sequence per upload

date by choosing the antibody that neutralizes the most variants of

SARS-CoV2 and obtained 14 sequences (Table S3). We then

simulated 3–5 (randomly selected) infections with targets

randomly selected from the sequences in Table S3 and the

infection start date set to be the upload date. We ensured that

gaps between the start dates of any two infections were more than

50 days. Each round of infections is set to last 50 days. We repeat

this process for 50 replicate individuals.
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For each individual, at the end of simulations, we sample ς =

50, 100, 200, 500 antibody-coding nucleotide sequences from

cells in the system (i.e., from the last round of infection) and

built their clonal tree. We also examine scaling of a subset of

methods by testing ς ∈ {50, 100, 200, 500}.

2.2.2 Flu simulations
We performed several simulations of a series of r = 56 rounds of

flu, using sequences of hemagglutinin (HA) protein. HA found on

the surface of the influenza viruses is the primary target of

neutralizing antibodies. High mutation rates of influenza genome

change the sequence of HA and allow the virus to escape from the

immune pressure, thus making flu a recurring seasonal infection.

The NCBI Influenza Virus Resource (42) contains 961 HA

sequences from influenza B virus collected around the world.

Each HA sequence is labeled with a year and a location. For

simulation purposes, we extracted 59 HA sequences

corresponding to flu infections in Hong Kong and selected 56 out

of 59 HA sequences with the same length (584 aa). The selected HA

sequences were detected in Hong Kong from 1999 to 2010. Notice

that HA sequences could be replaced with other widely available

antigen sequences (e.g., Coronavirus).

We used the evolutionary approach described earlier to

choose the target amino-acid sequences. Each round

corresponds to one season, starts at the infected stage with a

given target sequence zl, and ends when s =M. At that point, we

assume the infection is overcome, and the system switches to

dormant, where we stay until the next round starts (times of flu

outbreaks are known in our dataset). When the r = 56 rounds of

infections end, we sample ς = 200 antibody-coding nucleotide

sequences Y1,…, Yς from cells in the system (i.e., from the

round r) and built their clonal tree. While it is unrealistic for a

person to get infected with flu these many times, this procedure

allows us to test the impacts of a large number of infections.

Here, we set up four experiments, varying one or two

parameters in each experiment (Table 3) and setting the

remaining ones to default values (Table 1). The central

experiment contains 19 conditions, changing the selective

pressure (A) and the rate of hypermutation (µ). We vary A

from 1/8× of default value (0.1) to 2× and vary µ s from 1.25 ×

10−4 to 2 × 10−3 per base-pair per generation. In six combinations,
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the selective pressure is not high enough to overcome random

mutations; in these cases, the affinity values do not increase, and as

a result, the carrying capacity is never reached. Thus, we exclude

these conditions. We also study three other parameters. We vary

the weight multiplier of FRs (wf) from 1/5 to 2. We vary the

carrying capacity (C), which is the germinal center size or the

amount of antigens FDCs hold in the context of B cell maturation,

from 12500 to 400000. The value of this parameter can impact the

speed of novel mutations arising and may change the properties of

simulated trees. We also vary the mean lifetime of memory cells

from 0.5 year to 16 years to study the impact of the extent of

memory cell activation during recurrent infections.

2.2.3 Compared methods of clonal
lineage reconstruction

We compare eight tools: minimum spanning tree, BRILIA

(22), IgPhyML (23), RAxML (43), Immunitree (13), Dnapars

(44), BEAST (45), and GCtree (26). We also include an

alternative “contracted” version for four methods (IgPhyML*,

RAxML*, BEAST*, Dnapars*). We note this is not an exhaustive

list, as many other tools also exist [e.g., SAMM (32) and IgTree

(46)] that we did not include. For all methods, we ran

reconstructions using one CPU core and set a 24-hour wall

time for each replicate.

MST(-like) methods: We implemented a simple minimum

spanning tree method containing Y1,…, Yς as well as Ŷ which

is forced to be the root. We compute the nucleotide Hamming

distance between all pairs of sequences and construct the

minimum spanning tree (MST) using those distances. Besides

the simple MST, we also test Immunitree (13), a tool that clusters

antibody-coding sequences into lineages and builds clonal trees

at the same time by optimizing a minimum spanning tree and

Steiner tree-like problem. We took as input Y1,…, Yς and used

Immunitree to build a set of clonal trees. We then added vertex

Ŷ as the root and let the roots of the clonal trees to be

immediate children of Ŷ .

Brilia clusters antibody-coding sequences into lineages and

builds clonal trees at the same time. We took as input Y1,…, Yς

and used Brilia v3.5.4 to build a set of clonal trees. We then

added vertex Ŷ as the root and added roots of the clonal trees as

children of Ŷ .
TABLE 3 Experiment setup.

Experiment Parameters Parameter values Parameter units

Selective pressure vs. rate of hypermutation A × µ (2, 2), (2, 1), (2, 1/2), (2, 1/4), (2, 1/8), (1, 2), A: 10−1

(1, 1), (1, 1/2), (1, 1/4), (1, 1/8), (1/2, 1), (1/2, 1/2), µ: 10−3

(1/2, 1/4), (1/2, 1/8), (1/4, 1), (1/4, 1/2),

(1/4, 1/4), (1/4, 1/8), (1/8, 1/4), (1/8, 1/8)

Framework weight wf 2, 1, 1/2, 1/3, 1/5 1

Germinal center size C 4, 2, 1, 1/2, 1/4, 1/8 105

Memory cell life 1/ l
0
D

16, 8, 4, 2, 1, 1/2 year (365 days)
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Phylogenetic methods: We tested ML phylogenetic

reconstruction tool RAxML v8.2.12 under the GTR+GAMMA

model and IgPhyML v1.1.5, an ML method tuned specifically for

immune cells. We also tested maximum parsimony (MP) trees

using Dnapars from the PHYLIP package v3.697 (44) and

Bayesian MCMC using BEAST v1.10.4 (45). We ran BEAST

under the GTR+GAMMAmodel and uncorrelated relaxed clock

with log-normal distribution; we set the tree prior model to

Bayesian Skyline, the length of MCMC chain to be 108, and the

burn-in rate to 10%. For RAxML, Dnapars, and BEAST, we took

as input Y1,…, Yς and Ŷ to obtain an unrooted phylogenetic

tree and rerooted at Ŷ . For Dnapars, we reported the greedy

consensus tree when Dnapars outputted multiple trees. We also

report the majority consensus tree and refer to it as Dnapars*.

For IgPhyML, we took as input Y1,…, Yς and provided Ŷ as

root to obtain a rooted phylogenetic tree. RAxML, IgPhyML,

and BEAST produce fully binary trees, while Dnapars can

produce non-binary trees.

Contracted phylogenetic methods: As previously suggested

(26, 32), contracting short or low support branches is one way of

addressing the limitations of methods that output fully binary

trees. Since the length of each antibody-coding nucleotide

sequence < 400, we can assume that both ends of any branch

with length less than 10−4 would correspond to the same

sequence (if it was sampled). Therefore, we contracted

branches of length less than 10−4 for RAxML and IgPhyML,

and call the resulting methods RAxML* and IgPhyML*. While

the same logic does not hold for the Bayesian methods (because

of the prior on branch lengths), for consistency, we applied the

same procedure to BEAST to obtain BEAST*.

GCtree is an approach that integrates sequence abundance

information to break ties in an MP analysis (26). It allows

sequences to be placed on internal nodes. We took Y1,…, Yς

as input to GCtree v4.04 and provided Ŷ as root to obtain a

rooted phylogenetic tree. As Y1,…, Yς often contain repetitive

sequences, GCtree can utilize the sequence frequencies for

lineage reconstruction.

2.2.4 Evaluation metrics
The simulated and reconstructed histories of samples Y1,…,

Yς are represented as trees, where samples are uniquely labeled

on some nodes, and the remaining nodes are left unlabeled.

Labeled nodes represent sequences in the samples, and unlabeled

nodes denote the ancestral sequences not present in the samples.

We evaluate results in two ways, described in detail in Appendix

2.4. We use a set of metrics for characterizing properties of

simulated trees in terms of their topology, branch length, and

distribution of labeled nodes. We also compare the simulated

trees to those inferred using each method (Table 4).

While metrics for comparing phylogenies exist, these metrics

need to be amended for clonal trees that can have sampled ancestral

nodes (32, 47). Many of the existing metrics can be generalized to
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compare a simulated tree R and a reconstructed tree E (Table 4),

both induced down to include all labeled nodes (i.e., removing

unlabeled nodes if less than two of their children have any labeled

descendants). Unlike traditional phylogenies, here, internal nodes

can be labeled, and we define metrics based on rooted trees instead

of unrooted trees. We refer to the set of labeled nodes under a node

as a cluster. Note that singleton clusters (i.e., those with one labeled

node) are trivial when all labeled nodes are placed at leaves;

however, when labeled nodes can be placed at internal nodes,

including or excluding singleton clusters can change the metrics.

Thus, we also define many of the distances with and without

singleton clusters. Some distances (i.e., FNR and FDR metrics) are

already normalized. To normalize other distances, for each

experimental condition, we create a control tree by randomly

permuting labels of the true tree. We then normalize the errors of

a reconstruction method by dividing it by the average score of

replicates of the control method.
3 Results

3.1 Demonstration

Visualizing one replicate under default conditions for

both SARS-Cov2 and flu simulations, we see similarities

and differences between the two scenarios (Figures 3A, B

versus Figures 3C–E). In both cases, during each round of

infection, the affinity first decreases and then increases as

long as the duration of the infection is long enough

(Figures 3A, C). Thus, when the number of activated cells is

low, and the selective pressure is low, a mutation is likely to

lead to reduced affinity, whereas when the number of

activated cells increases, the selective pressure begins to

increase and select for higher affinity; these patterns are in

concordance with the literature (48). In the SARS-Cov2

simulations with a fixed duration, the total number of

activated cells converges to similar values across infections,

but the final affinity changes (Figure 3A). In the case of flu, the

duration of infections, the mean affinity at the end, and the

total number of cells vary widely across different rounds

(Figure 3C). When the affinity at the start of a round is low,

the duration of infection is longer, and more activated cells

and memory cells are generated (Figures 3C, S1A). This

pattern can be justified: when the immune system already

has a high affinity to the antigen, it can eradicate the antigen

quickly and without much need for further evolution. To

further quantify the pattern, we define the novelty of each

target zi as the negation of the maximum BLOSUM score

between that target and any previous target: −maxj<i{Dzi (zj)}.
We observe that as novelty of the target increases, the average

affinity of activated cells at the end of the infection tends to

decrease (R2 = 0.242, p = 2.5 × 10−4), whereas the number of
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activated cells at the end of the infection (R2 = 0.248, p = 2.0 ×

10−4) and the duration of infection (R2 = 0.288, p = 4.8 × 10−5)

both tend to increase (Figure 3D).

Memory cell counts fluctuate during each infection and across

infections. In the SARS-Cov2 simulations, because the duration of

the infection is fixed, after 15–30 days, the accumulation of memory

cells stops; in fact, the buildup of memory cells starts to fade due to

cell deaths, as one would expect. In the flu simulations, which have a

much shorter duration, each round leads to a buildup in memory

cells from the start to the end of the infection, and the amount of

buildup depends on the duration and correlates with novelty (R2 =

0.264, p = 1.2 × 10−4). However, the total number of memory cells

reduces between rounds due to cell deaths (Figure S1C) and

changes across rounds. In particular, a string of short-lived

infections and large time spans between the flu seasons between

2002 and 2008 gradually lead to a depletion of the memory cells,

which are then built up again in the subsequent rounds (Figure

S1C). Finally, sequences from each round are not monophyletic in

either simulation, as expected due to the use of memory of cells

(Figures 3B, E). In both cases (especially SARS-Cov2), the

antibodies evolved in later infections have more representations

in the sample and are further away from the root.
3.2 Benchmarking methods

3.2.1 SARS-Cov2 simulations
3.2.1.1 Default parameters

Under default parameters, GCtree failed to run on 2 out of

50 replicates, and we excluded those replicates from our
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analyses. The relative accuracy of methods depends partially

on the metric of choice (Figure 4). Using metrics that rely on

cluster recovery (i.e., RF, FDR vs. FNR, and MD), the contracted

phylogenetic ML methods (IgPhyML* and RAxML*) have the

best accuracy. Judged by triplet-based metrics TED and TD,

GCtree has the best accuracy (mean: 11% for TED and 12.4% for

TD) followed closely by RAxML* (mean: 11.2% for TED and

14.1% for TD). While RAxML* is among the most accurate

methods with all metrics, GCTree is very accurate according to

triplet-based metrics but not with cluster-based methods. This

discrepancy reflects different emphases of the metrics: TED and

TD focus more on deeper branches in the tree that produce more

triplets and are less sensitive to local branch contractions and

resolutions. By contrast, cluster-based metrics treat every part of

the tree equally and can be highly sensitive to local changes. The

other methods have no obvious advantage to ML or GCtree. The

MST-like methods have high precision, coming close to

contracted ML methods, but also have much lower recall

(FNR > 25%). Immunitree (which uses Steiner trees) is

substantially better than a simple MST in terms of recall but

not in terms of many metrics, including triplet-based measures

(TED and TD). The MP method, Dnapars, was not more

accurate than ML, and neither were BEAST or BEAST*.

Branch contraction improves the accuracy of all

phylogenetic methods under all metrics (Figure 4B). Normal

phylogenetic ML methods (IgPhyML and RAxML), which

produce fully binary trees with all samples at leaves, have the

lowest FNR (highest recall), retrieving approximately 90% of the

correct clusters. However, their FDR is predictably high (low

precision): more than 30% of their clusters are incorrect. Luckily,
TABLE 4 Clonal tree properties and metrics for comparing the reference tree R to estimated tree E.

Property/Metric Definition

Internal sample (%) The percentage of labeled nodes that are internal nodes.

Bifurcation index Ratio of the number of internal nodes to one less than labeled nodes; equals to 1 for bifurcating trees and ≈ 0 for a star tree.

Sample depth The average depth of labeled nodes.

Balance (cherry) Half the sum over all leaves of the fraction of their siblings that are also leaves.

Single mutation branches (%) The percentage of branches with length one.

Accumulated mutations (avg) The average depth (path length to the root) of all labeled nodes.

Accumulated mutations (sum) The summation of branch lengths of all branches.

Mutations per branch The average branch length.

False Discovery Rate (FDR) the percentage of clusters in E that are not in R False

Negative Rate (FNR) the percentage of clusters in R that are not in E RF

cluster distance (RF) the number of clusters in either but not both trees

FDR*, FNR*, and RF∗ *: similar to the previous metrics but with singletons excluded

Triplet discordance (TD) the number of trees induced by triples of labeled nodes (leaf or internal) where the topology in the simulated tree and the reconstructed
tree differ

Triplet edit distance (TED) the sum of the RF cluster distance induced to each triplet of labeled nodes

MRCA Discordance (MD) the summation of MRCA discordance† over all ordered pairs of labeled nodes.

Patristic Distance (PD) the summation of the patristic discordance‡ over all pairs of labeled nodes.
†MRCA discordance of two labeled nodes is the difference between the number of branches in the path between each of them and their MRCA.
‡Patristic discordance for a pair of labeled nodes is the difference between the number of branches in the path between the two nodes on the two trees R and E. See also Table S6.
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contracted ML methods have only a slight increase in FN rate (<

2% on average) but enjoy a dramatic improvement in precision.

By simply contracting super-short branches, the FDR error

reduces to less than 20% for IgPhyML* and RAxML*, which is

better than all other methods. Similarly, normal phylogenetic

methods perform poorly according to RF and MD metrics,

which emphasize precision. Among the two phylogenetic ML

methods, RAxML is slightly more accurate than IgPhyML in

terms of RF, FNR, and FPR, while IgPhyML has slightly lower

MD. The accuracy of MP and Bayesian methods also improve
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with branch contraction, but the improvements are less dramatic

than ML. Dnapars* improves the precision of Dnapars by

approximately 4% at the cost of only 0.4% decrease in recall.

While BEAST has similar accuracy to RAxML before

contraction, BEAST* is far inferior to RAxML* because it

improves the precision over BEAST far less than RAxML*

versus RAxML.

We next compare the properties of the inferred trees and

true trees (Figures 4C, S2). MST puts far too many labels at

internal nodes (≈40% instead of ≈5%), while Immunitree and
B

C D

E

A

FIGURE 3

(A, C) Average affinity of activated cells to current infection target (log scale), the number of activated cells, and the number of memory cells by
total time in infected stage across stages of infection (colors) for (A) SARS-Cov2 (discarding dormant stages) and (C) Flu (discarding the first 5
rounds and dormant stages). (B, E) Clonal tree of memory cells sampled from one simulation under default condition after all rounds for
(B) SARS-Cov2 and (E) Flu. Nodes are colored by rounds when the memory cells emerge (A, C) (in Flu tree, gray color is used for rounds 1
through 46). Here, 11 internal nodes in SARS-CoV2 tree and 17 internal nodes in Flu tree are sampled and are indicated as circles. Edge weights
denote the number of mutations of sequences denoted by adjacent nodes. (D) Impact of the novelty of the antigen on the outcome of the
infection across the 56 rounds of influenza simulations. The novelty of rounds is measured by −maxj<i{Dzi (zj)} and is ranked from less novel to
more novel on the x axis. The y-axis shows ranking (from low to high) of average affinity of activated cells to the current infection target (R2 =
0.242, p = 2.5 × 10−4) at the end of the infection, the number of activated cells (R2 = 0.248, p = 2.0 × 10−4) at the end of the infection, the
duration of infection (R2 = 0.288, p = 4.8 × 10−5), and the change in memory cell count (R2 = 0.264, p = 1.2 x 10−4) from the start to the end of
the infection. See Figure S1 for more details.
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contracted ML trees are very close to the true tree in terms of

percent internal samples. Immunitree overestimates the tree

balance, while other methods underestimate balance, especially

before contracting short branches. Conversely, MST and

Immunitree underestimate and other methods overestimate

the depth of samples; note that contraction also reduced error

in sample depth. Phylogenetic methods, by definition,

overestimate the bifurcation index as 1; this overestimation is

dramatically reduced but not fully eliminated by contracted

phylogenetic methods and Immunitree. MST, on the other

hand, underestimates bifurcation index.
3.2.1.2 Varying sample size

As the number of sequences sampled changes from 50 to 500,

the accuracy and running time both change (Figures 5, S3). The

impact of sample size on the accuracy of IgPhyML* and Dnapars*

measured according to TED is insignificant (p = 0.62, 0.18,

respectively, according to an ANOVA test). Increasing sample

size does significantly reduce the accuracy of Immunitree and

BEAST* (p = 5 × 10−6 and p = 0.0001, respectively) and

significantly improves the accuracy of RAxML*and MST (p =

0.006 and p< 10−15, respectively). The main impact of the sample

size is on the running time. MST runs in seconds, and RAxML

takes minutes to finish for all dataset sizes. All other methods were

much slower. While Dnapars is the third fast method with 50-

sequence input, its running time increases rapidly, and it fails to

finish with ≥ 200 sample cases within 24 hours. In fact, Dnapars
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had the worst running time scaling. We empirically estimate that

the running time of other methods increases with sample size no

worse than quadratically (proportionally to ς1.5, ς1.7, ς0.07, ς1.3, and

ς0.9 for IgPhyML, RAxML, Immunitree, MST, and BEAST

respectively) while Dnapars increases with ς7.4 for the two data

points where it did finish. Although we didn’t directly include

GCtree, we can approximate the running time of GCtree by

Dnapars, as invoking Dnapars is the most time-consuming step

of GCtree. While BEAST scaled well, it had the highest running

time and failed to finish 500 sample cases within the allotted

24 hours.

3.2.2 Flu simulations
Because Dnapars, GCtree, and BEAST are much slower (and

in the case of GCtree, occasionally fail to run properly), we do

not include them for the flu analyses (where ς = 200).

3.2.2.1 Default parameters

Under default parameters, Flu simulations exhibit very

similar patterns to SARS-CoV2 simulations. Over all

evaluation metrics, contracted ML methods (IgPhyML* and

RAxML*) clearly have the best accuracy (Figure 6). By simply

contracting super-short branches, the FDRs of IgPhyML and

RAxML reduce to less than 15% from close to 35%. The MST-

like methods still have low FDR and very high FNR. BRILIA

consistently has a high error in our analyses. These patterns

remain largely similar (but are magnified) when singletons are
B

C

A

FIGURE 4

SARS-Cov2 simulations with default parameters. (A) False discovery rate (FDR) and false negative rate (FNR), (B) normalized Robinson-Foulds
cluster distance (RF), MRCA discordance (MD), triplet edit distance (TED), and triplet discordance (TD) of various reconstruction methods all
restricted to 48 replicates where all methods ran. The “control” trees are generated by randomly permuting labels of the true tree.
Benchmarking results in (B) are normalized by the control trees. (C) Properties of the estimated and true trees. *: contracted trees.
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removed from consideration (Figure S4). The main exception is

that when singletons are excluded, Immunitree is no longer the

second-best method according to the RF distance. When

comparing the properties of the inferred trees and true trees

(Figure 6C), BRILIA puts far too many labels at internal nodes

(≈35% instead of ≈8%), overestimates the tree balance,

underestimates the depth, and slightly underestimates the

bifurcation index. On this dataset, MST is quite close to the

correct levels of bifurcation.

3.2.2.2 Varying selective pressure

The reconstruction methods are all impacted as selective

pressure (A) changes, but some methods are more sensitive than

others, and they are affected differently (Figures 7A, B). Contracted

phylogenetic methods have the best accuracy across values of A. The

ranking among other methods depends on the selective pressure,

such that phylogenetic methods become the worst when A is high

and become the best whenA is low. AsA increases, the error tends to

increase for phylogenetic methods under all evaluation metrics

except for the FNR; for example, the FDR of RAxML increases

from 27% at the 1/4x selective pressure to 42% at the 2x level. In

contrast, the error of Immunitree, MST, and BRILIA reduces with

increased A according to FNR and RF. Contracted phylogenetic

methods are relatively robust to the A and their error rates change

only slightly across conditions. When singletons are removed from

the metrics of comparison, patterns remain similar, though the

impact of selective pressure becomes less pronounced (Figure S5A).

The reason behind these patterns becomes more apparent

once we consider changes in tree properties (Figure 7C). As A

increases, the fraction of internal samples tends to increase. This

pattern can be explained: when selective pressure is high, cells

with low affinity die off quickly, which results in shorter branch

lengths. Since phylogenetic methods put all sequences at leaves,
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they have reduced accuracy. In contrast, IgPhyML*, RAxML*,

and Immunitree successfully assign sequences to internal

branches; as a result, their percentages of internal samples

match those of the true trees. Similarly, with increased A, the

bifurcation index of the simulated tree tends to decrease, a

pattern that is observed also in reconstructed trees from

IgPhyML*, RAxML*, Immunitree, MST, and BRILIA. Again,

phylogenetic trees, which produce binary trees, are unable to

capture these patterns. As A increases, the depth of sampled

nodes of the simulated tree tends to decrease, a pattern matched

by IgPhyML* and RAxML* but not other methods. Finally,

when A is high, trees are shorter (i.e., accumulate fewer

mutations) and more branches are single mutation (Figure

S6), both of which make phylogenetic inference more difficult.

The reduced levels of depth, total change, and bifurcation make

sense: higher pressure should result in fewer mutations needed

to reach M because cells with unfavorable mutations are less

likely to survive; this would produce shorter trees.

3.2.2.3 Varying rate of hypermutation

As the hypermutation rate (µ) increases, error decreases for

normal phylogenetic methods (Ig- PhyML and RAxML)

according to most metrics but stays relatively stable for

contracted methods (Figures 7D, E). Increasing µ results in

simulated trees that are marginally less balanced, are more

bifurcating, have fewer internal node samples, and have a

higher depth for sampled nodes (Figure 7F). Thus, increasing

µ generates trees more similar to what traditional phylogenetic

methods assume. Contracted phylogenetic methods and

Immunitree designate the right percentage of nodes as

internal, but both are slightly more bifurcating than true trees

(Figure 7F). Overall, contracted phylogenetic methods are the

most accurate across all values of µ.
FIGURE 5

Running time and triplet edit distance (TED) of various reconstruction methods on SARS-CoV2 simulations under different sample sizes (50
replicates). Note that contracted methods have the same running time as non-contracted versions are hence are not shown. Also note that
GCTree is not included but its running time increases similarly to Dnapare, which it runs internally.
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3.2.2.4 Interplay between selective pressure and
mutation rate

When we vary both A and µ, we observe that increasing the

mutation rate has similar effects on the error and tree properties

as decreasing the selective pressure (Figure 8). Reassuringly,

error patterns observed when fixing one variable and changing

the other are consistent with patterns when both variables are

changed (Figures 8, S7). The most difficult condition for

phylogenetic methods is low mutation rates and high selective

pressure, where close to 70% of the branches include only a

single mutation, and the bifurcation index is only 43%. However,

the contracted methods are impacted less in these conditions

and are, in fact, improved according to the RF metric (Figure

S7). In addition, we observe that antibody clonal trees become

more phylogenetic-like – that is, more bifurcating (max: 0.74)

and fewer internal samples (min: 20%) – with µ = 10−3 and A =

1/4x. Increasing the mutation rate or decreasing the selective

pressure beyond these values leads to combinations where the

infection could not be overcome.

3.2.2.5 Other parameters

Beyond the main two parameters, we also studied changing

six secondary parameters, most of which had relatively little

impact on the results (Figure 9). As the weight of FRs regions in

computing affinity (wf) increases, the error tends to increase

slightly for all methods under many evaluation metrics (Figure

S8). This pattern can be related to the slight increase in the

number of single branch mutations and the reduction in the total

number of substitutions across the tree. As germinal center
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capacity (C) increases, error increases or decreases slightly,

depending on what measure is examined (Figure S9).

Increasing C tends to reduce the number of internal samples

and single mutation branches in the simulated tree, and tends to

increase mutations per branch. As memory cell life-time (1/l
0
d)

increases, the error tends to increase for phylogenetic methods

(Figure S10), including IgPhyML* and RAxML*, which

nevertheless continue to be the best methods. Plasma cells

conversion rate (rp) (Figure S11), rate of change in antibody

target compared to antigen change (k) (Figure S12), and the

threshold of total affinity for neutralization and stage change (M)

(Figure S13) have small and inconsistent impacts on tree

inference error. In all conditions examined, IgPhyML* and

RAxML* have the best accuracy (Figure 9).
4 Discussion

We introduced a general model of antibody evolution and

instantiated it in two different ways to simulate antibody

response to flu and SARS-Cov2. The two simulations were

substantially different in their choice of models and model

parameters and produced quite distinct scenarios (Figure 3).

Nevertheless, they showed similar results in terms of

benchmarking of methods. Below, we further comment on the

implications of these results for reconstruction methods,

evaluation metrics, and simulation procedures. We end by

pointing out the limitations of the current work and directions

for future work.
B

C

A

FIGURE 6

(A) False discovery rate (FDR) and false negative rate (FNR), (B) normalized Robinson- Foulds cluster distance (RF), MRCA discordance (MD),
triplet edit distance (TED), and triplet discordance (TD) of various reconstruction methods on Flu simulations under default conditions (30
replicates). The “control” trees are generated by randomly permuting labels of the true tree. Benchmarking results in (B) are normalized by
the control trees. (C) Properties of the estimated and true trees. For results excluding singletons and the PD metric, see Figure S4.
*: contracted trees.
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4.1 Implications for reconstructing
antibody evolution

Consistent with the literature, we found that ML methods

need subsequent processing for inferring antibody clonal trees

with high accuracy. Depending on the simulation condition, 1%

to 20% of sampled sequences belonged to internal nodes, and the

true trees are only 60% to 70% bifurcating. We observed that

results of phylogenetic inference using ML, taken at face value,

can have low accuracy. However, ML phylogenetic methods with

the simple adjustment of contracting short branches can

outperform the alternative methods. Despite the higher
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accuracy of contracted phylogenetic methods compared to the

available alternatives, we note that there is still substantial error.

Under the default condition, while 90% of clusters of the true

tree were recovered, about 15% of the recovered clusters were

incorrect. In particular, the discrepancy between FNR and FDR

was due to the fact that the inferred trees are somewhat more

bifurcating than true trees (e.g., ≈70% versus 60% in the default

condition). Thus, while contracting super-short branches

increases accuracy, these trees are still biased towards too

much resolution.

Previous benchmarking of reconstruction methods has

shown somewhat contradictory results in terms of the choice
B

C

D

E

F

A

FIGURE 7

(A-C) Impact of selective pressure A and (D-F) mutation rate µ on (A, B, D, E) tree inference error and (C, F) tree properties. We measure tree
error by (A, D) FDR, FNR, (B, E) Robinson-Foulds cluster distance (RF), MRCA discordance (MD), triplet edit distance (TED), and triplet
discordance (TD). Tree errors and tree properties are averaged over 30 replicates. (C, F) We show properties of true (black) and reconstructed
trees. µ = 5 × 10−5 in (A-C) and A = 0.1 in (D-F), which are all default values. *: contracted trees.
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of the best methods. Davidsen and Matsen (32) found

parsimony-based methods GCTree and another post-

processing method they introduced called SAMM to be

superior to ML methods (they did not test Bayesian methods).

In contrast, Yermanos et al. (49) concluded the Bayesian method

BEAST is the best method overall, followed by ML and MP

methods. The two studies used very different simulation

approaches. In addition, Davidsen and Matsen (32) used the

genotype-collapsing approach adopted from DeWitt et al. (26)

to create contracted trees, while Yermanos et al. (49) did not.

Our study, which has more similarities to Davidsen and Matsen

(32) than Yermanos et al. (49), only partially confirms

observations from these previous studies.

Just like Davidsen and Matsen (32), we observed that

subsequent processing improves MP methods, as GCTree was

better than Dnapars in our tests. Similar to them, we also ranked
Frontiers in Immunology 16
GCTree highly when judged by triplet-based distances. However,

Davidsen and Matsen (32), who used dnaml and IQ-TREE, found

that ML methods are inferior to MP methods. Our results ranked

RAxML* (RAxML plus contraction) as the best or close to the best

method in all simulations with all metrics. The exact causes of these

disparities are not obvious. They could stem from differences in

simulation procedures, evaluation metrics used (recall that with

triplet metrics, GCtree is slightly better than RAxML*), or even the

choice of the ML inference method (dnaml and IQ-TREE versus

RAxML). More consequentially, we used the G model of rate-

across-sites heterogeneity, but it appears that Davidsen and Matsen

(32) ran IQ-TREE with no model of rate heterogeneity, which may

be problematic given that antibody sequences include hotspots and

coldspots. A final interesting difference is the contraction strategy.

In contrast to Davidsen and Matsen (32) who used ancestral

reconstruction for contracting branches, we used a fixed branch
FIGURE 9

Triplet edit distances and RF cluster distances by selective pressure on framework region, carrying capacity, mean-life of memory cells, plasma
cell conversion rate, antibody-flu BLOSUM ratio (MARatio), stage change threshold (M).
BA

FIGURE 8

For varying levels of selective pressure (A), rate of hypermutation (µ), and all reconstruction methods except BRILIA, we show (A) tree error
measured by the triplet edit distance TED and (B) properties of the true tree. When the mutation rate is too high and the selective pressure is
too low, the simulation never ends, meaning that the total affinity needed to overcome the antigen is never reached; these conditions are
missing from the figure. For other evaluation criteria see Figure S7. *: contracted trees.
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length threshold that we selected based on the sequence length. It

could be that difficulties in ancestral state reconstruction render the

genotype-collapsing approach of DeWitt et al. (26) less effective

than our simple rule of thumb. Note that statistical tests of whether

a zero branch length null hypothesis can be rejected also exist (50–

52) and are fast (53) and could be used in lieu of our simple

heuristic, an option that should be tested in the future. Our results

imply that phylogenetic methods that naturally model zero branch

length [e.g., (54)] are also promising. In particular, the adaptive

LASSO method of Zhang et al. (55) seems suitable for inferring

antibody evolution and can be tested in the future.

It is harder to reconcile our results with Yermanos et al. (49).

Unlike their study, our results did not find BEAST to be better (or

much worse) than ML method RAxML. The main limitation of

BEAST in our analyses was that it did not benefit from branch

contraction nearly as much as ML methods do. This difference is

likely because the prior distributions on branch length render our

simple rule-of-thumb ineffective. For ML methods, branches with

lengths much smaller than the inverse of the sequence length can be

expected to correspond to no changes. This simple rule fails when

the branch lengths is governed by priors as well as the likelihood. It

is possible that Bayesian polytomy tests (54) could overcome this

issue and produce accurate results. It is also likely that with different

priors on branch length, our simple heuristic could become more

effective. More broadly, the topological accuracy of BEAST may be

impacted by priors (we attempted to use settings similar to

Yermanos et al. (49), but other priors may increase accuracy).

These uncertainties are not limited to our study and point to a

practical difficulty with using Bayesian MCMC methods: given the

limited signal in antibody sequences, the prior choice is

consequential and needs more research.

Beyond accuracy, methods had substantially different running

times in ways that may seem surprising. As expected, BEAST was

slower than other methods, though its running time rose only

linearly as the datasets became larger. However, RAxML was

dramatically faster than the MP method Dnapars. While MP is a

somewhat simpler problem than ML, the available tools for MP

inference are not as advanced as ML methods. As a result, we did

not see a trade-off between running time and accuracy; except for

MST, which was extremely fast but inaccurate, RAxML* had the

best running time and the best accuracy according to most criteria.

Larger samples can give amore complete picture of the evolutionary

changes. Nevertheless, accuracy was not impacted dramatically by

sampling (except for MST), and only 50 samples were enough to

obtain reasonable accuracy, indicating that high sampling may not

be always essential.
4.2 Implications for evaluation criteria

The ranking of reconstruction methods can change based on

which of the ten evaluation criteria we choose, and these rankings

only partially correlate (Figure S14). FDR and FNR are weakly anti-
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correlated only when including singletons (mean Spearman’s rank

correlation coefficient across all tests r = −0.12). RF distance, which

combines both aspects, correlates moderately with both FDR (r =

0.5) and FNR (r = 0.57). The triplet-based metrics strongly agree

with each other (r = 0.97) and are mostly compatible with the RF

distance (r ≈ 0.75), but are less similar to MD and PDmetrics (r≤
0.52). Consistent with the observation that triplet metrics penalize

false negatives more than false positives, they agree more strongly

with FNR than FDR (r = 0.65 vs 0.26). MD and PD are very similar

to each other (r = 0.96), have no correlation to FNR (r ≤ 0.05), but

have moderately high correlation to FDR (r = 0.71). Finally, we

notice that singletons can matter: while FNR and FNR* are highly

correlated (r = 0.94), RF correlates with RF* less strongly (r = 0.71),

and FDR correlates with FDR* only moderately l (r = 0.61).

The choice of the metric should depend on the downstream

application of the clonal tree. While contracted phylogenetic

methods are dramatically better than base methods based on

most criteria, they are only slightly better according to the

triplet-based criteria. The triplet metrics do not penalize trees

heavily if they are more resolved than the true tree or if they

move internal nodes to leaves. Thus, when downstream usage is

robust to extra resolution and extra terminal edges, triplet

metrics offer a good way to measure topological accuracy. On

the other extreme, PD and MD are very sensitive to the tree

resolution and internal placement, so much so that they often

evaluate inferred phylogenetic trees to be much worse than

random trees (Figure S7) because these trees generate fully

resolved trees and put samples at leaves. Thus, we don’t find

PD and MD to be reliable metrics of topological accuracy. RF

distance is in between: it penalizes extra resolution more than

triplet metrics but less than path-based metrics. It does

distinguish contracted and phylogenetic methods but rarely

evaluates any methods to be worse than random (Figure S7).

Overall, dividing the observed error along two (potentially

contradictory) axes, such as FNR and FDR is recommended

because this evaluation provides more insight into the reasons

behind errors.
4.3 Comparison to other
simulation models

Several simulation tools capable of benchmarking

reconstruction methods have been developed. Some of these

tools are not comparable to our effort because of various

limitations. ImmuneSIM (56) generates mutations but does

not model the clonal tree or the selection process. Methods of

Amitai et al. (30) and Reshetova et al. (31) are based on the two-

step simulation paradigm and only generate clonal trees under

selection, leaving sequence generation to other methods. AbSim

(49) models VDJ recombination and does not model memory

cells; moreover, it appears that the tree shape evolves

independently from sequences. The most relevant method to
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ours are bcr-phylo (32) and gcdynamics (29), which simulate

clonal trees of antibody-coding sequences under AM. Both bcr-

phylo and gcdynamics have similarities and differences to our

method (Table 5). For example, they both support multiple

targets but only one round of simulations. Although our model

is capable of multiple targets, for simplicity, DIMSIM uses one

target per round of infection. However, unlike the two other

methods that only simulate activated cells, DIMSIM also

simulates memory cells; as a result, it can simulate multiple

rounds of infection by an evolving pathogen with changing

targets while considering memory built from previous infections.

Moreover, DIMSIM simulates in continuous time, whereas the

other tools simulate under discrete generations. All three

methods use sequences to define affinity, albeit differently:

DIMSIM using BLOSUM distance, brc-phylo using hamming

distance, and gcdynamics using random energy landscape. A

main feature of DIMSIM is that its rates are polynomial fractions

of individual and total affinity; this choice enables it to speed up

the simulation, allowing it to scale up to large numbers of cells.
4.4 Limitations of the study

Our study has limitations that should be kept in mind. While

many of these limitations may impact the realism of the model,

most will likely not impact the relative accuracy of

reconstruction methods.

In our simulations, we did not add errors to sequence data

used as input to clonal tree reconstruction methods. Real AIRR-

seq samples undergo extensive PCR and thus might contain both

sequencing and amplification errors. We assumed that error

elimination is already performed (to perfection) prior to

reconstruction using existing methods [e.g., (57–60)]. The

efficacy of methods that simultaneously filter errors and build

clonal trees [e.g., (22, 61)] should be the subject of future

research. We also simulated only substitution SHMs but no

insertions and deletions, leaving the latter to future work.
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In our AM model, we made several simplifying assumptions.

For example, we assumed the affinity grows gradually as the AA

sequence becomes more similar to the target sequence. The idea

that AM occurs by mutational diffusion along one or more

preferred paths in the genotype space has been supported by

Kepler et al. (62). Nevertheless, our i.i.d model is certainly a

simplification without clear empirical support. More complex

models of receptor binding exist and can be integrated in the

future: Ymir (63) is a 3D structural affinity model which takes into

account affinity jumps, cross-reactivity, and differential epitope

accessibility. There are also machine learning attempts (64) to

build predictive models of affinity, which can be incorporated.

However, including such sophisticated models could drastically

slow down simulations.

We also assumed the existence of a target antibody sequence.

The literature has increasingly documented highly convergent

immune responses to the same epitope across individuals and

conditions (65, 66). This observation gives us reason to think the

existence of target sequences is not a bad assumption; nevertheless,

the choice of a single target may not be realistic. To model the

change in the target as the viruses evolve, we used two approaches:

in one, we used real antibody sequences, which seems like a reliable

approach. In our second experiment, we chose targets with

evolutionary divergence levels that mimic the divergence levels of

the antigen, albeit with some scaling factor. In the latter case, it is

conceivable that two antigens with high evolutionary distance are

neutralized by similar antibodies or that antigens that are very

similar require very distant antibodies. We modeled SHMs as

affecting daughter cells independently, but it is arguably more

realistic to make both daughter cells carry the same mutation due

to the G1 origin of SHMs (37) (a simple change to the model).

Finally, our 5-mer mutation model, while based on the empirical

model of Yaari et al. (39), still fails to capture some complexities of

the real antibody evolution. For example, we concentrated

substitutions on the CDR region, but other regions are known to

also accumulate mutations (61, 67, 68). Other B cell specific models

[e.g., (69)] including those that seek to tease out the effects of
frontiersin.
TABLE 5 A comparison of Most relevant tools for AM simulation.

DIMSIM paper bcr-phylo (32) gcdynamics this (29)

Targets Single-target (per round) Multi-target (1 round) Multi-target (1 round)

Rounds Yes No No

Affinity BLOSUM distance Hamming distance Random energy landscape

Mutation Updated (39) (39) i.i.d

Scalability Up to millions of cells Thousands of cells Thousands of cells

Cell type Activated and Memory Activated Activated

Germinal Centers Combined (single) Combined (single) Multiple (in competition)

Time Continuous Discrete generations Discrete generations

Isotype No Yes No

Birth/Death rate Polynomial fraction of individual and total affinity Neutral: independent of total affinity Kinetic: function of affinities A function of affinity
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selection from background mutations [e.g., (70)] and per-position

mutability models (62) can be incorporated in the future.

For all these shortcomings, we offer several responses. Due to

challenges in modeling antibody repertoire [e.g., (71)], the

framework is designed to be flexible and can easily incorporate

more complex models. Thus, our work should be considered a first

step that will enable better modeling in the future. Also, our objective

in simulations was to benchmark reconstruction tools; as long as our

modeling choices did not distort the comparison of methods, some

model misspecification can be tolerated.We observed that the choice

of the best method was not sensitive to many parameter choices, and

in fact, the two simulations resulted in similar conclusions.

Beyond model simplifications, we also chose to simulate

parts of the complex immune system response but not others.

For example, we simulated one clonal lineage involved in an

immune response. As such, we ignored the important V(D)J

recombination of IG loci (72) and sought to simply simulate a

VDJ recombinant that is effective in fighting a specific antigen.

Even then, we simulated only one clonal lineage at a time, a

limitation that can be easily lifted in the future by starting from

multiple root sequences with different VDJ settings and

assigning to each a different target sequence. Note that our

tool can be easily combined with methods of simulating VDJ

recombination, such as IGoR (73). Neither did we simulate light

chains, which are often not captured in AIRR-seq sequencing

data. Finally, we did not simulate processes such as epitope

focusing that produce broadly neutralizing antibodies (74).
4.5 Applications of the framework

Our framework for simulating clonal trees can be extended to

other forms of microevolutionary scenarios. While the current

implementation is geared towards AM simulations, our proposed

algorithm enables forward-time simulation of very large numbers of

entities under models that allow dependence between sequences

and rates of birth, death, or transformation. The ability to simulate a

very large number of entities combined with rates that change with

properties of entities gives us the necessary ingredients to simulate

under complex models of evolution that consider selective pressure.

Thus, our framework can be adopted for other forms of

microevolutionary simulation, such as the evolution of a virus

within a host and accumulation of SHMs in tumor evolution.

Such a possibility would becomemost intriguing if it can also model

the co-evolution of different types of entities (e.g., antibodies and

viruses). While we did not simulate co-evolution here, we believe

the framework is capable of performing such simulations by simply

creating entity types (just like we had cell types) and making the

BDT rates a function of properties across different cell types.

Another promising direction for extensions of this work is to

integrate the sequence evolutionary models with network-based

disease transmission models [e.g., (75, 76)] to enable more accurate

simulations of disease spread and evolution.
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