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Role of FK506-sensitive signals
in asthmatic lung inflammation
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Asthma is airway inflammatory diseases caused by the activation of group 2

innate lymphoid cells (ILC2s) and type 2 helper T (TH2) cells. Cysteine proteases

allergen cause tissue damage to airway epithelial cells and activate ILC2-

mediated type 2 airway inflammation. FK506 is an immunosuppressive agent

against calcium-dependent NFAT activation that is also effective against

asthmatic inflammation. However, the effects of FK506 on cysteine protease

allergen-mediated airway inflammation remain unclear. In this study, we

investigated the suppressive effects of FK506 on airway inflammation. FK506

had a partial inhibitory effect on ILC2-dependent eosinophil inflammation and

a robust inhibitory effect on T cell-dependent eosinophil inflammation in a

cysteine protease-induced mouse asthma model. The infiltration of T1/ST2+

CD4 T cells in the lungs contributed to the persistence of eosinophil infiltration

in the airway; FK506 completely inhibited the infiltration of T1/ST2+ CD4 T cells.

In the initial phase, FK506 treatment targeted lung ILC2 activation induced by

leukotriene B4 (LTB4)-mediated calcium signaling, but not IL-33 signaling.

FK506 also inhibited the IL-13-dependent accumulation of T1/ST2+ CD4 T

cells in the lungs of the later responses. These results indicated that FK506

potently suppressed airway inflammation by targeting ILC2 activation and T1/

ST2+ CD4 T cell accumulation.

KEYWORDS

asthma, innate lymphocyte cells (ILCs), Th2 airway inflammation, cytokines, IL-13
Introduction

Asthma is a lifelong disorder usually driven by type 2 immune-inflammatory

pathogenic mechanisms. The inflammatory responses observed in asthma are

complex, and airway epithelial cells (AECs) are critical for the initial development of

local inflammation (1). Several allergens, including house dust mites, food, and fungi,
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possess group 1 cysteine protease activity, which increases the

permeability of local epithelial cells. Tissue damage caused by

cysteine proteases allergen allows the release of epithelial-

derived cytokines, interleukin (IL)-33, IL-25, and thymic

stromal lymphopoietin (TSLP), which activate group 2 innate

lymphocytes (2). Damaged AECs release IL-33 and TSLP,

basophils produce IL-4, and TH2 cells produce type 2

cytokines, including IL-4, IL-5, and IL-13, which mainly

contribute to allergic airway inflammation, subsequently

leading to allergen-specific IgE-mediated mast cel l

degranulation and eosinophil recruitment (3–5). ILC2s secrete

relatively high amounts of IL-5 and IL-13 (6–8). These ILC2-

derived type 2 cytokines also play critical roles in hyperplasia,

mucin formation in bronchial epithelial cells, and eosinophil

accumulation (9, 10). ILC2-derived type 2 cytokines could also

contribute to the accumulation of TH2 cells in the local

inflammation site (10–12). Recently, inflammatory mediators

synthesized from arachnoid acids, such as prostaglandin D2

(PGD2) and leukotriene D4 (LTD4), have been reported to

activate ILC2s (13, 14). Therefore, cysteine proteases allergen

promote several aspects of asthmatic airway inflammation by

activating innate immune responses.

Several treatments are generally used to control and prevent

asthma attacks. Systemic treatment with steroids, such as

corticosteroids, is ineffective in some patients with severe

asthma (15). Moreover, the long-term use of steroids induces

side effects (16). Leukotriene modifiers are a promising treatment

to control asthma since they block the actions of leukotrienes,

which tighten the airway muscles (17). An immunosuppressive

agent, FK506, blocks calcium-dependent nuclear factor of

activated T cells (NFAT) activation, and T-cell activation (18–

20) is another promising treatment for asthma by targeting type 2

cytokine release from TH2 cells (21, 22). In a mouse model of

Aspergillus-induced asthma, FK506 targets chronic asthmatic

inflammation, improving eosinophil infiltration (23). However,

the effects of FK506 on ILC2 activation remain controversial. IL-

33-dependent ILC2 activation is expected to be resistant to FK506,

whereas lipid mediator-mediated activation via LTB4, LTD4, and

LTE4 is expected to be susceptible (24). Therefore, the precise

effect of FK506 on the cysteine protease allergen-mediated airway

inflammation remains unclear. In particular, it is unclear whether

innate or adaptive immune responses are the primary targets of

FK506 treatment.

In this study, we investigated the mechanism underlying the

inhibitory effect of FK506 on cysteine protease allergen-induced

airway inflammation in mice. We found that FK506 effectively

inhibited ILC2 activation and ST2+ CD4 T cells accumulation in

the lung. ILC2s are the initial target of FK506, inhibiting their

functions via calcium-dependent activation, including LTB4-
induced activation. These findings indicate that ILC2 and CD4

T cells are potential targets of FK506 and shed light on the
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mechanisms that inhibit airway inflammation induced by

protease allergens.
Results

FK506 inhibits protease allergen-induced
acute phase airway inflammation

We first investigated the effect of FK506 on T cell-

independent airway inflammation caused by protease allergens

in a papain-induced mouse model. Intranasal administration of

papain for three days generated goblet cell hyperplasia and

caused the infiltration of activated eosinophils in the lungs 24

h after the third injection. Papain treatment significantly

increased eosinophil infiltration compared to PBS-treatment

(p<0.01). In contrast, the intraperitoneal administration of

FK506 partially reduced the number of infiltrating lung

eosinophils (p<0.01) (Figure 1A) and significantly inhibited

goblet cell generation and lymphocyte accumulation

(Figure 1B). These inhibitory effects of FK506 were

comparable to or slightly lower than those of dexamethasone,

a corticosteroid (Figures 1A, B). These results indicate that

FK506 inhibits protease-induced airway inflammation.

The acute airway response is T cell-independent and largely

depends on innate immune cells, including basophils and ILC2s

(25). Interestingly, the infiltration of CD11c+ eosinophils in the

lungs was sustained seven days after the initial papain treatment

(Figure 2A). The persistence of eosinophil migration might

influence the migration of CD4 T cells expressing the IL-33

receptor T1/ST2, which was not observed on day

one (Figure 2A).

To further investigate the effect of FK506 on the day seven

response, we analyzed the inhibitory effect of FK506 on the

persistent activation of eosinophils on day 7. FK506 treatment

attenuated the papain-induced infiltration of activated CD11c+

eosinophils and accumulation of T1/ST2+ CD4 T cells into the

lungs (Figure 2A). Interestingly, the effect of dexamethasone on

T cell migration was more subtle than that of FK506 (Figure 2A).

Moreover, FK506 also inhibited papain-induced goblet cell

hyperplasia and lymphocyte accumulation (Figure 2B). These

results suggest that FK506 also inhibits the T cell-mediated

persistence of eosinophil attraction. Similar T1/ST2+ T cell

migration with eosinophil attraction was recapitulated in mice

nasally injected with IL-33 alone (Figure 2C), indicating that IL-

33 receptor-expressing CD4 T cells, contributed to the

persistence of eosinophil attraction.

Thus, we examined the role of T1/ST2+ T cell cells using T

cell-deficient mice (Cd3-/- mice). Cd3-/- mice showed papain-

induced eosinophil infiltration on day one but did not show

persistent infiltration of activated eosinophils on day seven
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FIGURE 1

(A) The papain and FK506 or Dexamethasone (Dex) treatment protocol is presented by the schematic diagram (top). The mice were
administrated with (black bars, n=5) or without (white bars, n=5) papain. Papain-administrated mice were further treated with FK506 (red bars,
n=8) or Dex (blue bars, n=5). Lung cells were prepared from the lung homogenate on day one after the final papain injection (see Materials and
Methods). Flow cytometry analysis assessed the percentage (left flow profiles) and cell numbers (right graphs) of Siglec-F+ and CD11c+
eosinophils (Eos). (B) PAS (top: low magnification; middle: high magnification) and HE (bottom) staining of lung sections from FK506- or Dex-
treated mice. Red arrow heads indicate mucus glycans positive goblet cells. Goblet cells and lymphocytes were counted in 200 µm × 200 µm
regions in each lung section (bar graphs, n=10). Bars represent the means; not significant (ns), *p–0.05, **p–0.01 using unpaired Mann-Whitney
U-tests. All error bars represent SEM. Scale bars, 100 µm. FACS and section dates are representative of three experiments.
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FIGURE 2

FK506 inhibited protease allergen-induced T cell-mediated airway inflammation. (A) The papain and FK506 or Dex treatment protocol is
presented by the schematic diagram (top). Lung cells from papain-administrated mice (black bars, n=5) treated with FK506 (red bars, n=5) or
Dex (blue bars, n=5) were harvested on day seven. (B) PAS+ Goblet cells (top: low magnification; second from top: high magnification) and Eos
(HE, second from bottom), and CD4+ T cells (bottom, right blue) were stained in lung sections at day seven, and were analyzed by fluorescence
microscopy (low magnification, x20; high magnification, x100; Scale bars, 100 µm). Goblet cells and lymphocytes were counted in 200 µm ×
200 µm regions in each lung section (bar graphs, n=10). Red arrow heads indicate mucus glycans positive goblet cells. (C) The mice were
administrated with mrIL-33 (1 µg/head/day). Lung cells were harvested on day four, and the proportions (left flow profiles) and cell numbers
(right graph) of Siglec-F+ and CD11c+ Eos and ST-2+CD4+ T cells were assessed. Bars represent means; **p<0.01 using unpaired Mann-Whitney
U-tests. All error bars represent SEM. FACS and section data are representative of three experiments.
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FIGURE 3

(A) Cd3-sufficient (WT, n=3) or -deficient (n=3) mice were administrated with papain. Lung cells were harvested on day one or seven after the
final papain injection, and the proportions and cell numbers of Eos and T cells were assessed. (B, C) Il13-sufficient (WT, n=5) or -deficient (n=5)
mice were administrated with papain. The proportions (left flow profiles) and numbers (right graphs) of Eos (B) and ST-2+CD4+ T cells (C) were
assessed at seven days. Bars represent the means; not significant (ns), *p–0.05, **p–0.01 using unpaired Mann-Whitney U-tests. All error bars
represent the SEM. Data are representative of three (A, B) or two (C) experiments.
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(Figures 3A). These results indicate that T cells play a critical role

in the continuous activation of eosinophils, supporting our

hypothesis that the infiltration of T1/ST2+ CD4 T cells

contr ibutes to the pers i s tence of papain- induced

airway inflammation.

IL-13 secreted by ILC2s is thought to be necessary for the

development of TH2 cells by modifying DC2 function (6). We

next tested whether IL-13 plays a role in T1/ST2+ CD4 T cell-

dependent eosinophil attraction in IL-13-deficient mice

(Il13Tomato/Tomato). IL-13-deficient mice exhibited a marked

reduction in papain-induced T1/ST2+ CD4 T cell attraction

along with a decrease in the persistent infiltration of

eosinophils (Figure 3B). T cells that emerged in the lung after

papain treatment expressed the transcription factor GATA3,

which is predominantly expressed by TH2 cells (Figure 3C).

These results suggested that the T1/ST2+ CD4 T cells constitute

a subset of TH2 cells. Therefore, we speculate that T1/ST2
+ TH2

attraction into the lung controls the persistence of papain-

induced airway inflammation and that FK506 inhibits TH2 cell

attraction by impairing ILC2 activation.
Inhibitory effect of FK506 on
ILC2 activation

To examine the effect of FK506 on ILC2 activation, we

performed RNA-seq analysis of lung ILC2 cells from mice

nasally administered papain with or without FK506. Although

FK506 treatment had no effect on the total number of ILC2s in

the lungs (Figure 4A), FK506 treatment inhibited 1,300 genes

whose expression increased >2-fold in response to papain. These

FK506-sensitive genes included several ILC2 signature genes,

such as arginase 1 (Arg1), Gata3, Tox, Il13, Klrg1, and Il1r1

(Figures 4B–D; Supplementary Figure 1). These results suggest

that the inhibitory effect of FK506 on TH2 cell attraction is due to

the inhibition of IL-13 and ILC2 activation in the papain-

induced asthmatic responses. To investigate the effect of

FK506-mediated suppression on papain-induced ILC2

activation, we measured the protein expression of ILC2-

derived cytokines. Papain administration enhanced the

production of GM-CSF and several type 2 cytokines

(Figures 5A, B). Interestingly, papain, but not IL-33, induced

detectable levels of IL-4 in activated ILC2 cells (Figure 5B).

FK506 markedly inhibited the production of GM-CSF, IL-5, and

IL-13 in papain-activated ILC2 cells (Figure 5A). These results

suggested that the FK506-mediated inhibition of TH2 infiltration

could be due to the suppression of IL-13, and that FK506

possibly inhibited eosinophil activation by suppressing GM-

CSF and IL-5 expression.

The next question concerns the role of FK506-sensitive

calcium signals in ILC2 activation, which lead to eosinophil

accumulation in the lungs. It has been reported that AEC-

derived IL-33 activates ILC2s, IL-25, TSLP, basophil-derived
Frontiers in Immunology 06
IL-4, neuropeptides, and lipid mediators, including leukotrienes

(LTs) (24–27), and that LTs provide calcium signals to induce

IL-4 production (28). Figure 5A indicates that papain treatment

triggered detectable levels of IL-4 in ILC2 cells. Therefore, we

examined LT synthesis as a stimulus for ILC2 activation in this

study. Naïve ILC2 cells were stimulated with cysteinyl

leukotriene B4 (LTB4), C4 (LTC4), D4 (LTD4), or E4 (LTE4) in

the presence or absence of FK506. ILC2 cells were also

stimulated with IL-33 or PMA + ionomycin as prototypic

calcium-independent or -dependent stimuli. LTB4 provides an

activation signal to induce GM-CSF, IL-5, and IL-13 production

in ILC2 cells. FK506 markedly inhibited cytokine production

caused by PMA+ionomycin and LTB4 (Figure 5B), suggesting

that FK506-sensitive calcium signals largely contributed to the

production of GM-CSF and type 2 cytokines during papain-

induced ILC2 activation.

We further examined transcriptomic changes in the LTB4
pathway in basophils and type I and II alveolar epithelial cells

(AEC1 and 2) (Supplementary Figure 2). RNA-seq analysis

indicated that 5-LOX was constantly expressed in basophils

but not in AECs. Moreover, LTB4-synthesizing enzymes and

leukotriene A4 (LTA4) hydrolase were consistently expressed in

AEC1, AEC2, and basophils. FK506 inhibited the papain-

induced LTA4 hydrolase expression in AEC1, whereas their

expressions in AEC2 and basophils were resistant to FK506

(Figure 5C). Moreover, FK506 seemed to be sensitive in the

expression of receptors against LTB4 in ILC2 cells, suggesting

that LTB4 signaling is a target of the FK506-mediated inhibition

of ILC2 activation. In addition, we performed IPA pathway

analysis of the AEC1, AEC2, and basophil transcriptome data

but were unable to uncover other pathways involved in ILC2

activation (Supplementary Figure 2). Thus, we conclude that the

LTB4 pathway might be important for ILC2 activation pathway

in papain-induced allergic responses and that it constitutes a

putative target of the FK506-mediated inhibition of these

responses. However, more studies should be conducted in

order to fully validate this hypothesis.
FK506 did not inhibit IL-33-induced
eosinophil attraction

Tissue damage to the airway epithelium caused by papain-

mediated protease activity allows the release of IL-33, which

promotes ILC2 activation. Interestingly, epithelial-derived IL-33,

which is expressed explicitly in AEC2 cells, was constantly

expressed at high levels irrespective of FK506 treatment

(Supplementary Figure 1). However, the levels of the IL-33

receptor (Il1rl1) in ILC2 cells were reduced by FK506

(Figure 4C). Therefore, we assumed that the pathways

downstream of IL-33 signaling are possible targets of FK506.

To evaluate this, we investigated the effects of FK506 on IL-33-

induced airway inflammation. The intranasal administration of
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FIGURE 4

FK506 inhibits the papain-induced activation signal of ILC2 cells. Total RNA was isolated from lung ILC2 cells on day one after papain
administration. We compared the results with and without FK506 treatment, as shown in Figure 1. RNAseq libraries were sequenced using the
HiSeq platform. (A) Gating strategy and the number of lung ILC2 cells (untreated, n=3; papain-administered with or without FK506 treatment,
n=3 each). CD45+ lineage marker (Lin)-Ty1+ ILC2 cell populations are marked with a red square. (B) Venn diagram of genes whose expressions
were increased by papain (>2-fold) and decreased by FK506 (<2-fold). (C) Heat maps representing the FPKM values of ILC2 signature genes in
lung ILC2 cells. The data indicate untreated (control) and papain-administered mice with (Papain + FK506) or without (Papain) FK506. (D)
Volcano plots represent the fold-change expression (horizontal axis) and p-values (vertical axis) in the papain versus papain + FK506
comparison. ILC2 signature genes are shown in gray (n=3). ILC2 activation marker genes (Arg1, Gata3, Il13, Tox, Klrg1, and Il1rl1) are highlighted
in red. Data are representative of four mice. Bars represent the means; not significant (ns) using unpaired Mann-Whitney U-tests.
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FIGURE 5

(A) Lung ILC2 cells were isolated from papain-administrated mice treated with (n=5) or without (n=5) FK506 and were cultured in the presence
of rIL-7 for 12 h. Cytokine and chemokine levels in the cell supernatants were measured using MAGPIX System. (B) Pooled ILC2 cells were
isolated from the lung of 20 unstimulated mice. Ten thousand cells were cultured on a 96-well plate in the presence of rIL-7 for 40 h. The cells
were activated with LTs, IL-33, or PMA + ionomycin treated with (n=5) or without FK506 (n=5). Levels of type 2 cytokines were assessed as
described above. (C) The left panel indicates the expression of lipid mediator genes in AEC1 cells (n=3), AEC2 cells (n=3), and basophils (n=3).
The right-top panel indicates the expression of the LTB4 receptor in lung ILC2 cells as described in Figure 4. The right-bottom panel represents
the biosynthetic pathway of LTB4. Bars represent the means; not significant (ns), *p–0.05, **p–0.01 using unpaired Mann-Whitney U-tests. All
error bars represent the SEM.
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FIGURE 6

(A) The IL-33 and FK506 or Dex treatment protocol is presented by the schematic diagram (top). IL-33-administered mice (black bars, n=5)
were treated with FK506 (red bars, n=5) or Dex (blue bars, n=5). Lung cells were harvested on day one after the final papain administration. The
data indicated the percentages (left flow data) and the numbers (right graphs) of Eos. (B) PAS (top: low magnification; second from top: high
magnification), HE (second from bottom) and CD4 (bottom, right blue) staining of the lung sections, and were analyzed by fluorescence
microscopy (low magnification, x20; high magnification, x100; Scale bars, 100 µm). Goblet cells and lymphocytes were counted in 200 µm ×
200 µm regions in each lung section (bar graphs, n=10). Red arrow heads indicate mucus glycans positive goblet cells. Bars represent the
means; not significant (ns), **p–0.01 using unpaired Mann-Whitney U-tests. All error bars represent the SEM. Data are representative of three
experiments.
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IL-33 resulted in the marked accumulation of activated

eosinophils, even in the absence of papain (Figure 6A). In

addition, IL-33 promoted the hyperplasia of goblet cells and

the attraction of T1/ST2+ TH2 cells (Figure 6B). Dexamethasone

attenuated IL-33-induced airway inflammation; however, FK506

failed to inhibit IL-33 function (Figures 6A, B). These results

suggest that FK506 mainly targets type 2 inflammation, which is

controlled by the IL-33-independent activation of ILC2 cells.
Discussion

FK506, which targets calcium signaling, is a promising

therapeutic agent for airway inflammatory diseases (21, 29,

30). Here, we demonstrated that FK506 dampened the

induction of an asthmatic inflammatory response by inhibiting

two pathways: the activation of lung ILC2 cells and the

accumulation of T1/ST2+ TH2 cells. In the T cell-independent

induction phase, the calcium signal of ILC2 cells was a primary

target of FK506. In contrast, the induction of TH2 cells was the

second target at later responses, which migrate into the lung and

persist during airway inflammation. Our analyses of a cysteine

protease allergen-induced mouse model of airway inflammation

demonstrated that FK506 is a potent regulator of the induction

and persistence of the asthmatic inflammatory response.

FK506 inhibits T cell activation by targeting NFAT

activation via calcium signaling and is widely used as an

immunosuppressive agent (31). In this study, we showed that

FK506 targets T cell migration into the lungs. TH2 cells are

essential for the persistence of airway inflammation induced by

administration with cysteine protease allergen, and IL-13 is a

crucial cytokine in controlling the recruitment of T1/ST2+ and

GATA3+ TH2 cells to the inflammatory site. The induction of

TH2 cells is critical for the persistence and exacerbation of airway

inflammation (11, 12). Thus, FK506 is a potent inhibitor of the

IL-13-dependent TH2 cell recruitment induced by the nasal

administration of a protease allergen.

On the other hand, FK506 was also effective in inhibiting

eosinophilia during the induction phase, which is mainly

controlled by ILC2 cells. Recently, Kandikattu K et al. reported

that FK506 can reduce eosinophil infiltration by downregulation

of calcineurin activity in the lung tissue from Aspergillus

fumigatus challenged mice (23). However, eosinophil was not

a direct target of FK506 in their model. Our data indicated that

ILC2s were a target of FK506 in the papain induced asthmatic

responses. It has been reported that FK506-sensitive calcium

signaling is dispensable for IL-33-dependent ILC2 activation

(32). Indeed, our data indicated that IL-33-induced airway

inflammation was FK506-resistant (Figure 6). Previous

evidence indicated that other calcium-dependent signaling

molecules, lipid mediators, and NMU can also control ILC2

cell activation (24, 32). Our data suggest that the LTB4 signal

could be a possible target of FK506 in the ILC2 activation
Frontiers in Immunology 10
process. Locksley et al. reported that cyclosporine A, another

calcineurin inhibitor, reduced IL-13 production in cultured ILC2

cells stimulated with LTB4 (24). Therefore, FK506-sensitive

calcineurin-mediated ILC2 activation is critical for protease-

mediated airway inflammation.

Eosinophils are the primary effector cells involved in

asthmatic airway inflammation (10, 33). Several previous

reports have indicated that blocking GM-CSF signaling

promotes the inhibition of type 2 inflammatory responses (34–

38). Here, we found that FK506 suppressed GM-CSF production

in ILC2 cells. Thus, the inhibition of ILC2-derived GM-CSF may

be a possible mechanism of the FK506-mediated suppression in

the protease-mediated airway inflammation during the

induction phase.

In conclusion, we demonstrated that TH2 and ILC2 cells

could be therapeutic targets for FK506 in type 2 airway

inflammation. FK506 inhibits the differentiation of TH2 cells,

which causes chronic inflammation by attenuating ILC2

function. Since ILC2 and TH2 cells are involved in allergic

airway inflammation, such as asthma, our results strongly

support the potential clinical value of FK506 for these type 2

inflammatory diseases. The inhibitory mechanism of FK506 in a

cysteine protease allergen-induced allergic mouse model sheds

new light on future therapeutic strategies for asthma.
Methods

Mice

C57BL/6Jjcl mice were purchased from CLEA (Meguro,

Tokyo, Japan). Six- to ten-week-old female mice were used in

the experiments. Cd3e-/- and Il13tomato mice were kindly

provided by Dr. Bernard Malissen (Aix Marseille Université,

Marseille, France) and Dr. Andrew NJ McKenzie (MRC

Laboratory of Molecular Biology, Cambridge, UK) (39, 40).

All transgenic mice were obtained from a C57BL/6

background. All mice were maintained under specific

pathogen-free conditions, and animal care was performed

according to the guidelines of the RIKEN Yokohama Institute.
Cysteine protease allergen-induced and
IL-33-induced allergic mouse model

Mice were intranasally administered with papain (50 µg/

head/day; Sigma-Aldrich, St. Louis, MO, USA) or IL-33 (1 µg/

head/day; Biolegend, San Diego, CA, USA) for three days. The

lungs and bronchoalveolar lavage (BAL)s of the treated mice

were harvested on days 1 and 7. The harvested lung tissues were

roughly chopped with a Gentle MACS Dissociator (Miltenyi

Biotec) and digested with 5 mL of HBSS (Thermo Fisher,

Waltham, MA, USA) containing DNase I (75 µg/mL) and
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collagenase D (400 U/mL) for 30 min at 37°C. The lung

homogenate was ground with a Gentle MACS Dissociator,

passed through a 100-µm cell strainer (BD Biosciences,

Franklin Lakes, NJ, USA), and fractionated with 30% Percoll

(GE Healthcare, Uppsala, Sweden). The cell pellet was then

treated with an RBC lysis buffer (Biolegend, San Diego, CA,

USA) and suspended in MojoSort buffer (Biolegend). After the

combining of BAL and lung isolated cells, eosinophils were

analyzed using anti-Siglec-F, anti-Gr-1, and anti-CD11c

antibodies after eliminating alveolar macrophages with anti-

F4/80 antibodies (Figure 1).

For chemical treatment, the mice were intraperitoneally

treated with FK506 (0.2 mg/head/day; Cayman Chemical, Ann

Arbor, MI, USA) or Dexamethasone (0.1 mg/head/day; Sigma-

Aldrich, St. Louis, MO, USA) for six days. These mice were then

administered with papain intranasally in the last three days.
Histology

The lungs were fixed with paraformaldehyde (4%) and frozen

in OCT compound (Sakura Finetek, Tokyo, Japan). Sections (5

mm) were stained with an HE or PAS Staining Kit (Muto Pure

Chemicals, Tokyo, Japan), or anti-CD4 antibody (clone: RM4-5;

1:50, Biolegend, 100506). Images were acquired using a BZ-X700

microscope (Keyence). Two regions of interest (ROIs) were set on

each section, and the numbers of acidic mucus-positive goblet

cells and infiltrating lymphocytes were counted.
Flow cytometry

Cell staining was performed using antibodies against B220

(clone: RA3-6B2; used at 1:500, Biolegend, 103227), CD3e

(clone:145-2C11; 1:500, Biolegend, 100304), CD4 (clone:

GK1.5; 1:500, Biolegend, 100423), CD5 (clone:53-7.3; 1:200,

Biolegend, 100604), CD8a (clone:53-6.7; 1:500, Biolegend,

100704), CD11b (clone: M1/70; 1:200, Biolegend, 101204),

CD11c (clone: N418; 1:200, Biolegend, 117304), CD45.2

(clone:104; 1:500, eBioscience, 11-0454-85), CD49b (clone:

DX5; 1:200, Biolegend, 108904), F4/80 (clone: BM8; 1:200,

Biolegend, 123106), FceR1 (clone: Mar1; 1:200, Biolegend,

134318), Gr-1 (clone: RB6-8C5; 1:500, BD Biosciences,

553124), NK1.1 (clone: PK136; 1:300, Biolegend, 108704),

Siglec-F (clone: E50-2440; 1:400, BD Biosciences, 552126),

Thy1.2 (clone:30-H12; 1:500, BD Biosciences, 105324),

Podoplanin (clone:8.1.1; 1:100, Biolegend, 127410), and Ter119

(1:200, eBioscience, 13-5921-82). Flow cytometric analysis and

cell sorting were performed using FACSCalibur and FACSAria

III systems (BD Biosciences), and data were analyzed using

FlowJo software (BD Biosciences). Doublet cells were excluded

by FL-2A/FL-2H plots, then FSC/SSC plots were used to narrow

down eosinophil or T cell populations followed by further gating
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with Siglec-F/Gr-1 or Siglec-F/CD11c (for eosinophils), or CD4/

ST-2 (for TH2 cells) plots (Supplementary Figure 3).
RNA-seq analysis

Total RNA was isolated from freshly sorted lung epithelial

cells, basophils, and ILC2 using the TRIzol reagent. The 3’

mRNA-seq Library Prep Kit (Lexogen, Vienna, Austria) was

used for constructing sequencing libraries. RNA libraries were

prepared for sequencing using the standard Lexogen 3’

QuantSeq protocols. After sequencing using the HiSeq 1500

platform (Illumina, San Diego, CA, USA), sequenced reads were

trimmed for adaptor sequences, masked for low-complexity or

low-quality sequences, and mapped to the whole mouse genome

(mm10) using STAR 2.7.0 c (41).
Cytokine analysis in ILC2 cells

Lineage-positive lung CD45+ cells were eliminated using

lineage markers (CD3e, CD4, CD5, CD8a, CD11c, CD19, F4/80,

Ly-6G, and NK1.1), and Thy1.2+ cells were isolated as ILC2 cells.

To assess the levels oILC2-derived cytokines in papain-treatedmice,

isolated ILC2 cells were cultured in RPMI medium containing 10

ng/mL of recombinant murine IL-7 (rIL-7) (Peprotech, Cranbury,

NJ, USA) for 12 h, and cytokine and chemokine levels in the

supernatant were measured using a MAGPIX Multiplexing System

(Luminex, Austin, TX, USA) and a MLLIPLEX Mouse High

Sensitivity T Cell Panel (Merck, Darmstadt, Germany).

To investigate the role of calcium signaling in ILC2 cells,

isolated ILC2 cells were stimulated with 10 ng/mL of

recombinant murine IL-33 (Biolegend), 30 ng/mL of PMA

(Sigma-Aldrich), 500 ng/mL of ionomycin (Sigma-Aldrich), or

10 nM of LTB4, LTC4, LTD4, or LTE4 (Cayman Chemical) in the

presence of 10 ng/mL of rIL-7 (Peprotech) for 40 h. Stimulation

was performed with or without FK506 (1000 nM). Cytokine

levels were determined as previously described (25).
Statistical analyses and reproducibility

Statistical comparisons between groups were performed

using Prism software version 8.0.2 (Graph Pad Software, San

Diego, CA, USA). Data are presented as the mean ± SEM.

Statistical analyses were performed using the Mann-Whitney U

test (*p<0.05, **p<0.01).
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