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Drug hypersensitivity reactions induced by small molecule drugs encompass a

broad spectrum of adverse drug reactions with heterogeneous clinical

presentations and mechanisms. These reactions are classified into allergic

drug hypersensitivity reactions and non-allergic drug hypersensitivity

reactions. At present, the hapten theory, pharmacological interaction with

immune receptors (p-i) concept, altered peptide repertoire model, and

altered T-cell receptor (TCR) repertoire model have been proposed to

explain how small molecule drugs or their metabolites induce allergic drug

hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking

the complement system, stimulating or inhibiting inflammatory reaction-

related enzymes, accumulating bradykinin, and/or triggering vascular

hyperpermeability are considered as the main factors causing non-allergic

drug hypersensitivity reactions. To date, many investigations have been

performed to explore the underlying mechanisms involved in drug

hypersensitivity reactions and to search for predictive and preventive

methods in both clinical and non-clinical trials. However, validated methods

for predicting and diagnosing hypersensitivity reactions to small molecule

drugs and deeper insight into the relevant underlying mechanisms are

still limited.
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Introduction

Drug hypersensitivity reactions (DHRs) encompass a broad

spectrum of adverse drug reactions (ADRs) with heterogeneous

clinical presentations and mechanisms (1). Acute/delayed

cutaneous responses, inflammation of the respiratory tract

and/or gastrointestinal system, cytokine release syndrome,

and/or anaphylaxis are commonly observed in DHRs (2).

Many investigations have been performed to explore the

underlying mechanisms involved in DHRs and to search for

predictive and preventive methods in both clinical and

nonclinical trials. A widely accepted dogma is that large

molecular weight (>1,000 Da) agents, such as polypeptides,

proteins, and polysaccharides, possess immunoreactivity,

which prompts them to elicit DHRs directly. Therefore,

methods for testing the allergenic potential of these drugs have

been relatively developed. In contrast, small molecule drugs

(≤1,000 Da) do not have the ability to stimulate immune

responses only by themselves . Thus , they tr igger

hypersensitivity reactions in other ways, which are more

complicated and difficult to evaluate accurately (3, 4). To date,

va l idated methods for predic t ing and diagnosing

hypersensitivity reactions to small molecule drugs and deeper

insight into the relevant underlying mechanisms are still limited.
Classification of drug
hypersensitivity reactions

ADRs are defined as unintended and noxious reactions to

drugs that occur at doses normally used for prophylaxis,

diagnosis, or treatment (5). According to the World Health

Organization consensus, ADRs are categorized into predictable

(type A) and unpredictable (type B) reactions. Predictable ADRs

are usually dose dependent and attributed to the known

pharmacological or toxic properties of the causative drugs,

which can occur in all individuals. The risks for predictable

ADRs are illustrated before the clinical application of the drugs

(6). Overdose, drug interactions, or off-target side effects of the

drugs themselves are the main causes of type A reactions (7). In

contrast, unpredictable ADRs generally occur only in

predisposed subjects and lack correlation with any

pharmacological property of the drugs (8); these unpredictable

ADRs make up approximately 10%–15% of all ADRs (9).

Inherent host characteristics, such as human leukocyte antigen

(HLA) alleles, genetic polymorphisms, metabolism, physical

state, illness, and viral infections, as well as factors of drugs

including structure, dose, route of treatment, and duration of

exposure, influence susceptibility to unpredictable ADRs (10–

13). Type B reactions are more difficult to recognize and perceive

through preclinical and clinical trials before drug application on

the market, and they usually incur large costs. DHRs are
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unpredictable ADRs that are attributed to off-target

stimulation of immune responses or other non-immune

pathophysiological processes. DHRs have been estimated to

affect more than 7% of the general population and have

become an important public health problem in daily clinical

practice (14, 15). According to the involved immune system and

contributed cells, DHRs are classified into allergic drug

hypersensitivity reactions (ADHRs) and non-allergic drug

hypersensitivity reactions (NADHRs).

Currently, ADHRs are categorized primarily based on Gell

and Coombs’ classification system into type I reactions (also

known as immediate-type allergic reactions) mediated by

immunoglobulin E (IgE) antibodies, type II reactions (also

known as cytotoxic al lergic react ions) e l ic i ted by

immunoglobulin G (IgG) or M (IgM) antibodies, type III

reactions triggered by immune-complex deposition, and type

IV reactions (also known as delayed-type reactions) induced by

cellular immune mechanisms (16) (Figure 1). The ADHR

classification is listed in Table 1. In type I ADHRs, drug-

specific IgE antibodies are produced by drug-activated B-

lymphocytes after sensitization. Existing IgE antibodies can

bind to high-affinity FcRI present on the surface of mast cells

and basophils to form IgE–effector cell complexes (sensitized,

asymptomatic state). When drugs with the same or similar

molecular structures are re-exposed to immunized individuals,

they can immediately bind to the cross-linking specific IgE and,

within minutes, stimulate the release of inflammatory mediators

such as histamine and tryptase, and elicit the subsequent rapid

generation of prostaglandins and cytokines, which cause a

systemic inflammatory reaction (mainly in the skin and

airways) such as urticaria, anaphylaxis, and asthma (3, 14, 17).

The most famous small molecule drug that causes type I ADHRs

is penicillin. In type II ADHRs, specific IgG or IgM antibodies

are produced in response to drugs on the surface of erythrocytes,

leukocytes, and/or platelets that induce complement-dependent

cellular cytotoxicity reactions or macrophage-related cell

clearance. According to the target cells, hemolytic anemia,

cytopenia, granulocytopenia, and thrombocytopenia are the

most commonly observed reactions. To date, antibiotics,

anticonvulsants, sulfonamides, and heparin have been reported

to cause type II reactions (3, 9). In type III ADHRs, specific IgG

or IgM antibodies bind to the drugs and form immune

complexes. The immune complexes load onto host tissues,

causing complement fixation to generate C3a and C5a, or bind

to other immune cells to release inflammatory mediators and

cytokines and increase vascular permeability (19). Vasculitis,

arthralgia, serum sickness, and drug fever are associated with

type III reactions. Penicillin, sulfonamides, thiouracils, and

phenytoin may induce these reactions (11). Different from

type I–III reactions that are mediated by antibodies secreted

from B cells, type IV ADHRs are induced by activated T cells,

which are further sub-categorized into types IVa–IVd according

to the dominant cytokines and preferential activation of different
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1016730
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2022.1016730
immunocytes. Both CD4+ and CD8+ T cells participate in type

IV ADHRs, of which CD8+ T cells are considered to play a major

role (20). In type IVa ADHRs, Th1 T cells secrete large amounts

of interferon (IFN)-g to activate macrophages/monocytes, which

promote the production of complement-fixing antibodies and
Frontiers in Immunology 03
co-stimulate proinflammatory reactions and CD8+ T-cell

responses. Therefore, the IVa reactions are commonly

combined with the IVc reactions. In type IVb ADHRs, Th2 T

cells mainly secrete cytokines IL-4 and IL-5 to induce B cells to

produce IgE and IgG4 and trigger eosinophil responses. In type
TABLE 1 Classification of ADHRs (3, 6, 14, 16–18).

Type Cell
type

Mechanism Typical clinical
symptoms

General
onset
time

ADHRs I B
cells

Drugs stimulate generation of drug-specific IgE, which binds to high-affinity IgE receptors on the
surface of mast cells and basophils. The drugs then react to specific IgE–effector cell complexes
(predominantly through the cross-linking between IgE and its high-affinity receptor FcRI on the
mast cells and basophils) and induce the release of histamine and other inflammatory mediators

Anaphylaxis, urticaria,
angioedema, bronchospasm

within 1–
6 h, mostly
< 1 h

II B
cells

Specific IgG or IgM antibody-coated cells (predominantly erythrocytes, leukocytes, and platelets)
encounter complement-dependent cytotoxicity to induce cell lysis or macrophage clearance

Granulocytopenia,
hemolytic anemia,

cytopenia,
thrombocytopenia

1–14 days

III B
cells

Deposition of drug–antibody complexes activate the complement system or other immune cells
to induce inflammation and injury

Vasculitis, arthralgia, serum
sickness, drug fever

2–21 days

IV IVa T
cells

Th1 cells mediate macrophage/monocyte activation eczema 1–28 days

IVb T
cells

Th2 cells mediate eosinophil activation Eosinophil-rich
maculopapular exanthema,

bullous

IVc T
cells

Cytotoxic T- cell activation to produce cytotoxic mediators and kill tissue cells Bullous, maculopapular
exanthema (MPE),

Stevens–Johnson syndrome
(SJS), toxic epidermal
necrolysis (TEN)

IVd T
cells

T cells mediate neutrophil activation Pustular exanthema
fron
B C

D E F G

A

FIGURE 1

Classification of ADHRs. (A) Type I ADHRs. Drugs stimulate the generation of drug-specific IgE, which binds to high-affinity IgE receptors on the
surface of mast cells and basophils. The drugs then react with specific IgE–effector cell complexes and induce the release of histamine and
other inflammatory mediators. (B) Type II ADHRs. Specific IgG or IgM antibody-coated cells encounter complement-dependent cytotoxicity to
induce cell lysis. (C) Type III ADHRs. Deposition of drug–antibody complexes activates the complement system or other immune cells to induce
inflammation and injury. (D) Type IVa ADHRs. Th1 cells mediate macrophage/monocyte activation. (E) Type IVb ADHRs. Th2 cells mediate
eosinophil activation. (F) Type IVc ADHRs. Cytotoxic T cells act as effector cells to produce cytotoxic mediators and kill tissue cells. (G) Type IVd
ADHRs. T cells mediate neutrophil activation. MC, mast cells; RBC, erythrocytes; WBC, leukocytes; PLT, platelets; ENDO, endothelial cells;
MONO, monocytes; MAC, macrophages; EO, eosinophils; KC, keratinocytes; NEUT, neutrophils; APCs, antigen-presenting cells.
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IVc ADHRs, CD4+ and CD8+ T cells act as effector cells to

produce cytotoxic mediators and kill tissue cells (keratinocytes)

in a perforin/granzyme B and/or FasL-dependent manner. These

reactions, including Stevens–Johnson syndrome (SJS) and toxic

epidermal necrolysis (TEN), are the most common severe ADRs

in clinical practice. In type IVd ADHRs, T cells activate and

recruit neutrophils via the secretion of chemokines, such as C-X-

C motif chemokine ligand 8 (CXCL8) and granulocyte-

macrophage colony-stimulating factor (GM-CSF), to induce

sterile neutrophilic inflammation (18, 21, 22). In fact, ADHR

categories may overlap in clinical practice. Patients can

simultaneously exhibit comprehensive symptoms from

multiple types of reactions (4).

DHRs are also classified into immediate and non-

immediate/delayed reactions, according to their onset time.

Immediate DHRs commonly occur 1–6 h after drug

administration, whereas non-immediate DHRs usually occur

from more than 1 h to several weeks after eliciting medication

(14). Immediate ADHRs are conventionally referred to as type I

reactions, which mostly occur within the first hour following the

first administration of a new course of drug treatment.

Meanwhile, type IV ADHRs, which are mainly caused by T

cells and typically occur 48–72 h or even days to weeks after drug

exposure, are considered delayed reactions.

NADHRs are also known as pseudo-al lergic or

anaphylactoid reactions. Typical clinical symptoms observed in

NADHRs , inc lud ing rash , ur t i ca r i a , ang ioedema ,

bronchoconstriction, gastrointestinal signs, and anaphylaxis,

are practically identical to those resulting from type I ADHRs,

but no immune mechanism has been proven to participate in the

reactions (23). Indeed, effector cells correlated with ADHRs,

such as mast cells and basophils, usually contribute to NADHRs.

In clinical practice, NADHRs may occur in each treatment

without prior drug-specific sensitization. These reactions

usually arise immediately during or after the first

administration of drugs, which is quite distinct from IgE-

induced allergic reactions (6, 24). It has been estimated that

NADHRs make up two-thirds of immediate DHRs (25, 26).
Mechanisms of allergic
hypersensitivity reactions from small
molecule drugs

As exogenous substances, small molecule drugs can be

hydrolyzed and metabolized to generate an array of relevant

products (metabolites) after they enter an organism. Prototype

drugs or metabolites can irreversibly bind to biological

molecules to form drug/metabolite–biomolecule conjugates

and be present in specific immune cells (27). They can also

directly interact with major histocompatibility complex (MHC)

molecules and T-cell receptors (TCRs) via non-covalent
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interactions to develop unorthodox immune responses.

Accordingly, three pharmacological interaction with immune

receptor (p-i) hypotheses, including altered peptide model of p-i

HLA, allo-immune model of p-i HLA, and altered TCR

repertoire model, have been proposed to explain how small

molecule drugs or their metabolites induce immune reactions.

However, not all reactions can be easily classified into these

categories. In recent years, fake antigen model and drug-induced

immune thrombocytopenia have been proposed to explain the

role of non-covalent drug–protein interactions in DHRs on the

other side (13, 28–30) (Figure 2). MHC molecules (termed HLA

in humans) and TCR are essential for eliciting allergic

hypersensitivity reactions from small molecule drugs.
Hapten theory

The hapten theory is a classical explanation employed to

explain the occurrence of small molecule drug ADHRs. This

hypothesis states that small molecule drugs or their metabolites

are too small to elicit an immune response. Instead, some of

them are capable of covalently conjugating to endogenous

proteins or peptides and generating antigenic drug protein

adducts, which can act as antigens to evoke immune

responses. These drugs or metabolites are termed as “haptens”

in immunology. A distinctive characteristic of these drugs is

their ability to recruit and activate B and/or T cells and induce

immune responses (24). The formation of a stable covalent bond

between haptens and amino acid residues in proteins is an

essential step in initiating allergenicity (31). The hapten-

biomolecule conjugates (drug–protein adducts or drug–peptide

adducts) are introduced into antigen-presenting cells (APCs)

and broken down by intracellular proteases to derive hapten–

peptide fragments, which can fit the anchor position in MHC

molecules and be presented to specific T cells to subsequently

provoke cellular and/or humoral immune reactions (21, 27, 32).

During these processes, the covalent links of the hapten–

biomolecule conjugates must be stable and remain unbroken

during the presentation by APCs and recognition by B- and/or

T- cell receptors. The hapten theory has been widely accepted in

studies on b- lactam antibiot ics (31) and react ive

sulfamethoxazole metabolites (33). DHRs to b-lactam
antibiotics involve both immediate and non-immediate

reactions, in which hapten–biomolecule conjugates are formed

through nucleophilic attacks from the b-lactam antibiotics ring

to the amino acid groups of the protein (34). For

sulfamethoxazole, it has been proven in in vitro experiments

that the reactive metabolite of sulfamethoxazole nitroso can

perform protein conjugation and trigger DHRs (35). This type of

ADHR belongs to idiosyncratic reactions that are generally

independent of dosage and may occur after repeated

drug administration.
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Pharmacological interaction with
immune receptor theory

The p-i theory considers that small molecule drugs or their

metabolites can exert their effects via non-covalent interactions

(electrostatic interactions, hydrogen bonds, and van der Waals

forces) with immune receptors (HLA or TCR) directly,

triggering reversible reactions. This type of ADHR is an off-

target cytotoxic reaction, which is implicated in HLA on APCs,

TCR on T cells, and in the structural characteristics of drugs.

These p-i responses are only restricted to unorthodox T- cell
Frontiers in Immunology 05
stimulation, and antibodies produced by B cells do not

participate in the process (36). To date, three patterns of p-i-

related hypersensitivity reactions have been proposed: the

altered peptide model of p-i HLA, the allo-immune model of

p-i HLA, and the p-i TCR model (24, 30). Both genetic

predisposing factors and exposure to drugs affect these p-

i reactions.

The altered peptide model of p-i HLA and the allo-immune

model of p-i HLA were both developed because some ADRs

generated by small molecule drugs are limited exclusively to the

HLA allele (24, 36). Drugs themselves and specific HLA risk
B C

D E

A

FIGURE 2

The mechanisms involved in allergic hypersensitivity reactions to small molecule drugs. (A) Hapten theory. (B) Altered peptide model of p-i HLA
and allo-immune model of p-i HLA. (C) p-i TCR model. (D) Fake antigen model. (E) Drug-induced immune thrombocytopenia. APCs, antigen-
presenting cells; HLA, human leukocyte antigen; TCR, T-cell receptor; MC, mast cells; PLT, platelets; GP, glycoprotein; CDR, complementary-
determining region.
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alleles, rather than hapten–biomolecule conjugates, may be

related to adverse reactions. Common drugs and their highly

restricted HLA alleles are listed in Table 2. The altered peptide

theory speculates that when some small molecule drugs

encounter APCs, they may be taken up into the endoplasmic

reticulum and accidentally bind to the empty pocket on specific

HLA molecules via non-covalent bonds. This abnormal process

can change the peptide-binding ability of the involved HLA,

cause alterations in the preferred peptides for binding sites on

HLA, and further influence the disposal of captured peptides. As

a result, when normal endogenous peptides combine with these

altered HLA molecules, they can be processed into novel peptide

fragments and be recognized as foreign substances by T cells,

thereby leading to autoimmune reactions. Unlike the altered

peptide theory, the allo-immune theory states that the whole

configuration of a particular HLA complex may be changed by

small molecule drugs, triggering immediate DHRs. Anchored

peptides may have flexibility and are not always firmly fixed on

the HLA binding groove. When these peptides move out, their

interaction with HLA may be weakened, and some drug-binding

sites can be partially exposed. In this instance, some small

molecule drugs directly attach to the binding sites in the

peptide-binding groove of HLA and form peptide–drug–HLA

complexes. These complexes are immunogenic because they are

similar to allo-HLA, which can cause allorecognition by T cells

and trigger immunogenic responses (36, 56). The interaction

between the HLA-B*5701 allele and abacavir has been

confirmed, which indicates that the DHRs of abacavir may be

induced by changes in the peptide repertoire of the HLA
Frontiers in Immunology 06
molecule (57). In addition, T- cell reactions caused by

allopurinol and oxypurinol have been proven to restrict HLA-

B*5801, which correlates with in silico docking data showing that

oxypurinol binds with high affinity to the peptide-binding

groove of HLA-B*5801 (44).

The p-i TCR model indicates that ADHRs induced by small

molecule drugs are only attributed to certain limitative TCR

structures. Exchangeable HLA molecules may or may not

participate in these reactions. The p-i TCR theory states that in

some ADHRs, small molecule drugs can interact with TCRs at

some positions outside the peptide-binding sites, resulting in

alterations in the configuration of TCRs. This can enhance the

reactivity of T cells to peptides presented by HLA or even normal

endogenous peptides. In addition, some data also show that small

molecule drugs with specific structures (e.g., sulfamethoxazole

with NH2) can directly bind to the loops of TCRs and make

particular groups point to the peptide-binding groove, which

directly causes T- cell activation and triggers hypersensitivity

reactions. These reactions are often dose related and can be

blocked by other compounds with similar chemical structures.

So far, the relationship between p-i responses and cytokines

and/or costimulatory molecules that are crucial in hapten-

induced allergic reactions has not been clearly expounded (24).

It has been speculated that patients suffering from p-i ADRs may

already undergo massive immune stimulation of T cells by other

influencing factors, such as virus infection, and that they possess

high level of cytokines and augmented expression of

costimulatory molecules. These factors make them more likely

to react to minor signals like p-i reactions (21).
TABLE 2 Typical drug hypersensitivity reaction-related HLA alleles (37–39).

Drug HLA
allele

ADHRs

Abacavir (40, 41) HLA-
B*5701

Rash, gastrointestinal tract and respiratory symptoms

Allopurinol (42, 43)/Oxypurinol (metabolite of
allopurinol) (44, 45)

HLA-
B*5801

Maculopapular eruption, severe cutaneous adverse reactions, SJS, TEN, drug reaction with eosinophilia
and systemic symptoms (DRESS)

Carbamazepine (46, 47) HLA-
B*1502
HLA-
A*1301

MPE, DRESS, SJS, TEN

Methazolamide (48, 49) HLA-
B*5901
HLA-
B*5502

SJS, TEN

Dapsone (50, 51) HLA-
A*1301

Eosinophilia and systemic symptoms

Oxcarbazepine (52, 53) HLA-
B*1502

SJS, TEN

Penicillin (54, 55) HLA-
B*5501
HLA-DR

DRESS, MPE, SJS, TEN
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Fake antigen model

The fake antigen model proposes that after patients are

sensitized by covalent drug–biomolecule conjugates, the

specific IgE antibodies will bind to high-affinity FcRI on mast

cells and basophils. Then, when the same drug in high

concentration is re-exposed to the individuals, they may form

non-covalent drug–biomolecule complexes immediately, which

can bind to cross-linking specific IgE and stimulate the

degranulation of mast cells and basophils in seconds or

minutes. Although the non-covalent drug–biomolecule

adducts cannot elicit IgE antibodies by themselves, they can

quickly react with preformed IgE (30, 58).
Drug-induced immune
thrombocytopenia

Some drug-induced immune thrombocytopenia is partly due

to drug-dependent antibodies, which can trigger clearance of

platelets or direct platelet destruction. It has been assumed that

the patients may already have low-affinity antibodies for platelet

glycoprotein. When the drug is administrated, it can non-

covalently bind to a complementary-determining region on

the antibody, which may increase antibody affinity for a

specific epitope expressed on the platelet glycoprotein. The

hypothesis has been widely accepted in studies on quinine

(30, 59).
Mechanisms of non-allergic
hypersensitivity reactions from small
molecule drugs

NADHRs are also termed pseudo-allergic or anaphylactoid

reactions and cannot be easily distinguished from type I ADHRs.

These reactions can arise at the first exposure to drugs,

independent of prior sensitization, and are usually correlated

with excessively high dose levels. Currently, direct activation of

mast cells, provoking the complement system, stimulating or

inhibiting inflammatory reaction-related enzymes, accumulating

bradykinin, and/or triggering vascular hyperpermeability are

considered the main factors leading to NADHRs (14,

60) (Figure 3).
Direct activation of mast cells

Many small molecule drugs directly activate mast cells in an

IgE-independent manner, which can immediately provoke the

degranulation of mast cells and initiate the rapid release of

multiple inflammatory mediators, such as histamine, tryptase,
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serotonin, heparin, and proteases. Subsequently, chemokines,

cytokines, leukotriene C4 (LTC4), and prostaglandin D2 are

produced, which propagate further late tissue injury (60–62).

The clinical symptoms of NADHRs induced by the direct

activation of mast cells mainly include rash, urticaria,

angioedema, bronchospasm, diarrhea, and anaphylaxis. These

reactions generally occur immediately after the first intake of the

drugs, and the clinical presentations are undistinguishable from

those observed in IgE-mediated ADHRs.

In humans, mast cells are classified into two types according

to the proteases contained in their secretory granules. Most mast

cells located in connective tissues (predominantly skin and

major bronchi) containing tryptase and chymase are

categorized as MCTC, whereas major mast cells found in the

lungs and small intestine mucosa that contain tryptase, but little

or no chymase, are recognized as MCT (63, 64). In recent years,

Mas-related G protein-coupled receptor X2 (MRGPRX2),

expressed on human MCTC, has been discovered as a crucial

receptor responsible for NADHRs. Mas-related gene (Mrg)

receptors belong to class A G protein-coupled receptors, which

can bind to several endogenous and exogenous ligands (65–68).

To date, NADHRs produced by many drugs, such as iohexol

(69), mivacurium (70), cisatracurium (71), isosalvianolic acid C

(72), clozapine (73), icatibant (74), and phenothiazine

antipsychotics (75), have been found to be related to

MRGPRX2. Agents can bind and couple with MRGPRX2,

which stimulates phosphorylation cascades, augments

intracellular calcium levels, and induces degranulation of mast

cells. The mitogen-activated protein kinase (MAPK), nuclear

factor kappa B (NF-kB), PI3K/AKT, and PLCg signaling

pathways have been reported to correlate with MRGPRX2-

mediated mast cell activation (76, 77). MrgprB2, MrgprB3,

and MrgprX2, orthologs of human MRGPRX2, have been

proposed as the mouse, rat, and dog mast cell basic

secretagogue receptors related to non-allergic hypersensitivity

reactions, respectively (68, 78–81). However, although human

MRGPRX2 and MrgprB2 share certain similar characteristics,

such as being selectively expressed in mast cells located in

connective tissues and being activated by compound 48/80,

they only share approximately 53% overall sequence identity,

34% N-terminal amino acid sequence identity, and 47% C-

terminal amino acid sequence identity (68). Therefore, caution

should be exercised when employing animals to test NADHRs

induced by mast cell activation.

Unlike most G protein-coupled receptors, MRGPRX2 has

low-affinity for agents (67). Therefore, one key factor influencing

the occurrence of NADHRs via direct activation of mast cells is a

sufficiently high drug exposure (82). Meanwhile, disease,

combination medication, metabolic disorder, and individual

variation can also promote the reaction between drugs and

MRGPRX2. For example, patients with chronic spontaneous

urticaria exhibit much stronger responses to MRGPRX2 agonists

(83). NADHRs of fluoroquinolones are possibly related to
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FIGURE 3 (Continued)

The mechanisms involved in non-allergic hypersensitivity reactions to small molecule drugs. (A) Direct activation of mast cells. (B) Activation of
complement. (C) Inhibition of cyclooxygenases. (D) Elevation of bradykinin. (E) Activation of the RhoA/ROCK signaling pathway. ER,
endoplasmic reticulum; MRGPRX2, Mas-related G protein-coupled receptor X2; PLCg, phospholipase C gamma; IP3, inositol triphosphate; IP3R,
inositol triphosphate receptor; PKC, protein kinase C; P38, p38(MAPK) pathway; MAC, membrane attack complex; 12-/15-/5-HETEs, 12-/15-/5-
hydroxy eicosatetraenoic acids; 12-/15-/5-HPETE, 12-/15-/5-hydroperoxyeicosatetraenoic acid; LTA4/LTB4/LTC4/LTD4/LTE4, leukotriene A4/
B4/C4/D4/E4; PGG2/PGI2/PGE2/PGE2a/PGD2, prostaglandin G2/I2/E2/E2a/D2; TXA2, thromboxane A2; BKR-2, bradykinin receptor type 2;
JAK, Janus-activated kinase; STAT3, signal transducer and activator of transcription 3; DAG, diacylglycerol; eNOS, endothelial nitric oxide
synthase; NO, nitric oxide; PLA2, phospholipase A2; PGs, prostaglandins; LTs, leukotrienes; GDP-Rho A, an inactive GDP-bound Ras homolog
family member A; GTP-Rho A, an active GTP-bound Ras homolog family member A; ROCK, Rho-associated kinase; MLC, myosin light chain;
p-MLC, phospho-myosin light chain; MLCP, myosin light chain phosphatase.
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delayed drug elimination (83, 84). In addition, individuals

harboring missense MRGPRX2 mutations (G165E, D184H,

W243R, or H259Y) have been proposed to protect NADHRs

from mast cell activation, but the results have not been verified

clinically (85).
Complement activation

To mediate NADHRs, small molecule drugs with excipients

may aggressively trigger the complement system (86) and result

in the unusually augmented generation of toxic complement

protein fragments. These non-IgE-mediated hypersensitivity

reactions are related to complement activation and are

commonly referred to as complement activation-related

pseudo-allergy (CARPA). The exact mechanism of action of

CARPA has not yet been fully elucidated. Currently, the

accepted hypothesis is that agents may prompt the

complement cascade by upregulating complement convertase,

which results in increased production of anaphylatoxins such as

C5a and C3a (87). Subsequently, anaphylatoxins bind to effector

cells, such as macrophages, basophils, and mast cells, leading to

the liberation of a multitude of vasoactive inflammatory

mediators, including tryptase, histamine, platelet- activating

factor, and leukotrienes, which continually amplify

complement-induced effects (87, 88). Inflammatory mediators

can continue to induce the generation of C3a and C5a to expand

NADHRs (89). The process of this kind of reaction may involve

the classical, alternative, and/or lectin pathways (90–92).

Complement factors are present at high concentrations in the

blood and tissues, which serve as extraordinarily efficient

regulators to ensure that the system reacts quickly when

violated by foreign agents. Among the various complement

components (>30 soluble and surface-expressed proteins), C3a

and C5a are recognized as the chief culprits in eliciting the

degranulation and chemotaxis of mast cells and basophils via

C3aR and C5aR on the surface of cell membranes (93, 94).

Recently, it was shown that C3a-related reactions may also be

implicated in PLCb-mediated Ca2+ mobilization and
Frontiers in Immunology 09
upregulation of PKC, PI3K, and ERK. However, degranulation

caused by C5a is relevant only to PLCb (95).

NADHRs caused by radiocontrast media (96), doxorubicin

(Doxil®) (97), paclitaxel (98), and others are likely linked to

abnormal complement activation. Drug excipients such as

Cremophor-EL (98), Tween-80 (99), and liposomes (100, 101)

are considered to play an important role in NADHRs. However,

the factors affecting these reactions remain poorly understood.

In general, the primary influencing factors are exposure to the

agents and the speed of administration. The risk can be

decreased when the process of medication is well controlled

(87, 96). In addition, the surface charge, morphological

properties, size, and composition of the drugs or excipients are

reported to be related to these reactions. For example, it has been

proposed that ionic high-osmolarity radiocontrast media are

more likely to trigger ADRs than nonionic low-osmolarity

agents (96). Complement activation requires a surface that

allows the deposition of complement fragments to build

multimolecular C3 and/or C5 convertases and initiate the

complement cascade (102, 103). Elongated and irregular

liposomes with a low curvature oval and relatively long

diameter of the molecules are considered to more easily

activate the complement system (87, 103).
Inhibition of cyclooxygenases

Nonsteroidal anti-inflammatory drugs (NSAIDs) comprise a

heterogeneous group of compounds, including aspirin,

acetylsalicylic acid, and ibuprofen. These drugs can inhibit the

function of cyclooxygenases and suppress the conversion of

arachidonic acids to thromboxane and prostaglandin. As a

result, the augmented arachidonic acid shunt is metabolized

toward the 5-lipoxygenase pathway, leading to the increased

formation of leukotrienes (LTs) and cysteinyl leukotrienes (104,

105). Arachidonic acids are first transformed to 5-HPETE by 5-

lipoxygenase, which is then degraded to 5-HETE and the

unstable epoxide intermediate LTA4. LTA4 can then be

enzymatically converted to LTB4 or combined with
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1016730
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2022.1016730
glutathione to generate LTC4. Subsequently, LTC4 is

metabolized to sulfur-containing LTD4 and E4 leukotrienes by

the sequential removal of glutamic acid and glycine. To date,

four high-affinity receptors for LTs and cysteinyl leukotrienes

have been identified in lung smooth muscle cells, peripheral

blood leukocytes, and mast cells (BLT1 for LTB4, CysLT1 and

CysLT2 for LTC4 and LTD4, and GPR99 for LTE4) (106). LTB4,

C4, D4, and E4 are potent causative mediators that trigger both

immediate and delayed hypersensitivity reactions and

inflammation as well as provoke eosinophil chemotaxis,

vascular leakage, airway remodeling, and arteriolar

constriction (107–110). NADHRs resulting from the intake of

NSAIDs are attributed to the indirect abnormal upregulation of

leukotriene production (111, 112). An overdose of NSAIDs or

metabolic disorders can result in ADRs.
Elevation of bradykinin

Some non-allergic vascular leakages triggered by potentially

harmful agents are correlated with abnormally increased

bradykinin levels (113–116). The bradykinin-forming cascade

is initiated by stimulation of factor XII to produce augmented

kallikrein. Subsequently, high-molecular-weight kininogens are

digested by kallikrein to generate bradykinin (117, 118).

Bradykinin is a tissue hormone that increases vascular

permeability and decreases blood pressure. The elevation of

bradykinin in NADHRs mainly occurs as a result of unusual

kallikrein activation and abnormal C1 inhibitor activity (113).

Bradykinin B2 receptors play an essential role in the induction of

angioedema. Bradykinin B2 receptors on endothelial cells can

activate PLCg, upregulate the formation of inositol 1,4,5-

triphosphate and diacylglycerol, elevate intracellular Ca2+

levels, facilitate endothelial nitric oxide synthase, and trigger

PLA2. This series of processes leads to the extraordinary

generation of arachidonic acid metabolites and elevated

production of prostaglandins and LTs, which cause vascular

leakage (119–121). Drug-induced, bradykinin-related, non-

allergic angioedema is typically defined as a side effect that is

commonly observed with angiotensin-converting enzyme

inhibitors (122). Patients with C1 inhibitor deficiency tend to

develop bradykinin-mediated angioedema (113).
Provocation of vascular leakage

In recent years, some small molecule drugs have been found

to directly trigger aggressive vascular hyperpermeability and

NADHRs (123, 124). Currently, hypersensitivity reactions

caused by various traditional Chinese medicine injections

(125–128), penicillin (123), and paclitaxel (124) are reported

to be related to their adverse effects on vessels. So far, this
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opinion has been mainly proven by animal experiments, and the

reactions occur in a dose-dependent manner. The RhoA/ROCK

signaling pathway, which plays an essential role in regulating the

cytoskeleton and endothelial barrier, is considered to be an

important factor influencing these reactions (123, 124, 129).
Screening hypersensitivity reactions
in clinical practice

Due to unpredictable reactions, DHRs cannot be prevented

completely before medication. In reality, a detailed clinical

history is the primary clue for identifying the possibility of an

allergic reaction. Moreover, many assays have also been

promoted to more deeply clarify whether patients labeled as

allergic are truly allergic to putative drugs and to prevent them

from further exposure to the causative agents. In addition,

several methods have been established to screen susceptible

populations. Biomarkers, including parameters obtained from

skin testing, drug-specific antibodies detected in blood, and

inflammatory factors such as histamine and cytokines, are all

crucial for allergic diagnosis (130). Risk HLA alleles that have

been identified to show strong associations with particular drugs

(such as HLA-B*5701 and abacavir) may be useful for predicting

ADHRs (3, 131, 132). Currently, no diagnostic method has been

specifically designed for NADHRs. These reactions can mostly

be defined when clinical presentations and inflammatory factors

suggest DHRs, but immune mechanisms cannot be

demonstrated in the patient.
Direct testing of specific antibodies

In clinical practice, skin testing mainly consists of prick,

intradermal, and patch tests to confirm or exclude the existence

of drug-specific IgE antibodies. When drug-related allergens

enter the skin, they react with drug-specific IgE–effector cell

complexes and cause the release of histamine and other

inflammatory mediators, which results in macroscopic skin

symptoms and indicates the possibility of allergy (133).

Currently, this diagnostic method is mainly used for b-lactam
antibiotics. Skin testing for penicillin has >95% negative

predictive value, and when combined with an oral challenge,

the predictive value can reach >99% (134). It is worth noting that

skin testing detects the presence of allergen-specific IgE to elicit

which small molecule drugs need to act as haptens to form

covalent hapten–biomolecule conjugates. This method is not

suitable for testing non-covalent drug–protein complexes (58).

Drug-specific IgE antibodies can be directly assessed in vitro

using a solid phase that is functionalized with drug–carrier

conjugates, followed by detection via fluoroimmunoassays,

radioallergosorbent tests, or enzyme-linked immunosorbent
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assays (135, 136). During these tests, small molecule drugs and

their metabolites must first bind to a carrier to obtain

immunological activity, and then, drug-specific IgE in serum is

quantitatively measured. In contrast to other in vitro antibody

detection methods, frozen samples can be used to determine

specific IgE levels (137). However, the complicated two-step

procedure affects the sensibility and accuracy of these methods

to some extent and limits their application. In addition, the

basophil activation test (BAT) using flow cytometry is now

widely applied as a functional assay to aid in the diagnosis of

IgE-related basophil degranulation. Patients with an allergic

history can undergo BAT for suspected, same class, and

alternative drugs (ranging from 5 to 12 drugs) (138–141). BAT

is considered to closely mimic in vivo type I allergic reactions

with high specificity because the basophil activation percentage

and mean stimulation index for CD203c expression have been

found to be much higher in allergic patients in clinical practice

(142, 143). Although BAT currently has up to 80% specificity,

the sensitivity generally ranges between only 50% and 60%; thus,

it still needs to be improved for diagnostics. At present, BAT is

mainly used to investigate the immediate DHRs of antibiotics,

neuromuscular blocking agents, and NSAIDs (144).
Determination of T-cell-induced
reactions

Until now, standardized methods used for the quantitative

measurement of relevant parameters of T- cell recruitment and

activation include enzyme-linked immune absorbent spot

(ELISpot), lymphocyte transformation test (LTT), and

cytokine/mediator detection assays (130, 145). ELISpot is a

quantitative method that measures the parameters relevant to

T- cell activation and evaluates T- cell immunity in clinical trials.

In the diagnosis of DHRs, ELISpot mainly focuses on detecting

cytokines of interest secreted by specific T- cell subsets in

response to suspected drugs. The utility of ELISpot is highly

dependent on the drug involved and biomarkers employed in the

test. For example, IFN-g can be used as a marker for CD8+

cytotoxic T cells, and it can distinguish different subsets of

activated T cells via cytokines (146–148). LTT is also a

relatively standard method based on evaluating the expansion

of drug-specific memory T cells, which are obtained by co-

incubation of the patient’s peripheral blood mononuclear cells

with the suspected drug (149–151). Currently, LTT is an

acceptable method applied in clinical experiments for

diagnosing delayed ADHRs by detecting drug-induced T- cell

proliferation. Additionally, the presence of HLA and TCR on

peripheral blood mononuclear cells enables drug interaction via

the p-i concept. Therefore, LLT may be appropriate for all DHRs

correlated with T cells, regardless of the background mechanism.
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Assessment of inflammatory factors
involved in NADHRs

To date, no exclusive assessment of NADHRs has been

performed. As NADHRs show clinical manifestations identical

to those of IgE-mediated ADHRs, some diagnostic methods

focusing on inflammatory factors that are applied in ADHRs can

also be used in NADHRs with minor modifications. For

example, the determination of IgE-independent histamine and/

or tryptase release and the evaluation of various surface markers

for basophil activation (e.g., CD63 and CD203) are valuable

markers for the identification of NADHRs (152). Additionally,

the plasma complement terminal complex (SC5b-9) was tested

to confirm the involvement of the complement system in

NADHRs (97, 103).
Hypersensitivity evaluation for
investigational new drugs or
post-marketing drugs

Many preclinical in vivo and in vitro tests have been

conducted to evaluate the risk of drug-induced hypersensitivity

reactions. However, there is currently no validated method for

assessing all types of sensitizing potentials of small molecule

drugs during the preclinical phase (153). In the FDA guidance

on immunotoxicology evaluation, passive cutaneous

anaphylaxis, active cutaneous anaphylaxis, and active systemic

anaphylaxis assays have been used to predict type I reactions.

Although these assays have been used to detect allergenic

proteins, they have not been proven to be effective enough to

determine the adverse effects of small molecule drugs because

the production of the underlying haptens cannot be considered.

Positive reactions in the assays may indicate that the drug has

sensitizing potential, whereas negative results cannot confirm a

lack of immunization. At the same time, the Buehler test, guinea

pig maximization test, and murine local lymph node assay

(LLNA) have been recommended by the Center for Drug

Evaluation and Research to evaluate the topical sensitizing

potential of drugs. These methods are considered reliable and

have a high correlation with known human skin sensitizers,

which can be used to evaluate the safety of investigational new

drugs to support clinical trials. Detailed guidelines for the

Buehler test, guinea pig maximization test, and LLNA are also

recommended by the Organization for Economic Co-operation

and Development (OECD). In addition, the lymph node

proliferation assay, a modified LLNA method, has been

reported to further predict systemic hypersensitivity (154,

155). Moreover, mechanistically based in chemico skin

sensitization assays addressing the key event of the adverse
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outcome pathway (AOP) on covalent binding to proteins, in

vitro skin sensitization assays addressing the AOP key event on

keratinocyte activation, and the key event in the activation of

dendritic cells on the AOP for skin sensitization are also issued

by the OECD for risk assessment. All three methods have been

reported to possess high sensitivity and specificity. The three

methods with LLNA build an evaluation system for the skin

sensitization AOP. In addition to the methods recommended by

the FDA and OECD, high-throughput and standardized BAT

and LTT methods can quickly deliver information to hint at the

possibility of ADHRs induced by drug-specific IgE or T cells,

which could be acceptable in preclinical hypersensitivity testing.

Additionally, the ability of drugs to bind to HLA and/or TCR via

non-covalent interactions has been widely investigated using

peripheral blood mononuclear cell stimulation in combination

with molecular docking (156).

For NADHRs, experiments focusing on abnormal histamine

release, vascular leakage, and complement activation have been

established. MrgprB2MUT mice (79) and mouse vascular

permeability evaluation models (123, 125) have been

developed to investigate these underlying mechanisms. In

addition, animal models using different species to mimic the

responses in complement activation-related NADHRs have also

been developed (157, 158). Instead of prediction, these methods

are mostly used to investigate the underlying mechanisms

involved in existing ADRs. Furthermore, some in vitro

methods focused on mast cell degranulation and histamine/b-
hexosaminidase release, complement system activation, changes

in intracellular Ca2+ levels, and alterations in the endothelial

cytoskeleton and monolayer permeability have been applied to

predict the potential of drugs to induce NADHRs (99, 123, 129,

159, 160). However, the drug concentrations used in in vitro

experiments still need to be optimized because NADHRs are

highly correlated with drug exposure.
Conclusion

As unsolved and costly public health issues, hypersensitivity

reactions to small molecule drugs have attracted widespread
Frontiers in Immunology 12
attention. However, the mechanisms involved in allergic and

non-allergic reactions have not yet been fully clarified and

verified. Advanced, highly effective, and sensitive prediction

methods for clinical and non-clinical investigations are

urgently needed.
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