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In patients with primary
Sjögren’s syndrome innate-like
MAIT cells display upregulated
IL-7R, IFN-g, and IL-21
expression and have increased
proportions of CCR9 and
CXCR5-expressing cells

Anneline C. Hinrichs1,2, Aike A. Kruize1, Helen L. Leavis1

and Joel A. G. van Roon1,2*

1Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht
University, Utrecht, Netherlands, 2Center for Translational Immunology, University Medical Center
Utrecht, Utrecht University, Utrecht, Netherlands
Introduction:Mucosal-associated invariant T (MAIT) cells might play a role in B

cell hyperactivity and local inflammation in primary Sjögren’s syndrome (pSS),

just like previously studied mucosa-associated CCR9+ and CXCR5+ T helper

cells. Here, we investigated expression of CCR9, CXCR5, IL-18R and IL-7R on

MAIT cells in pSS, and assessed the capacity of DMARDs to inhibit the activity of

MAIT cells.

Methods: Circulating CD161+ and IL-18Ra+ TCRVa7.2+ MAIT cells from pSS

patients and healthy controls (HC) were assessed using flow cytometry, and

expression of CCR9, CXCR5, and IL-7R on MAIT cells was studied. Production

of IFN-g and IL-21 by MAIT cells was measured upon IL-7 stimulation in the

presence of leflunomide (LEF) and hydroxychloroquine (HCQ).

Results: The numbers of CD161+ and IL-18Ra+ MAIT cells were decreased in

pSS patients compared to HC. Relative increased percentages of CD4 MAIT

cells in pSS patients caused significantly higher CD4/CD8 ratios in MAIT cells.

The numbers of CCR9 and CXCR5-expressing MAIT cells were significantly

higher in pSS patients. IL-7R expression was higher in CD8 MAIT cells as

compared to all CD8 T cells, and changes in IL-7R expression correlated to

several clinical parameters. The elevated production of IL-21 by MAIT cells was

significantly inhibited by LEF/HCQ treatment.

Conclusion: Circulating CD161+ and IL-18Ra+ MAIT cell numbers are

decreased in pSS patients. Given their enriched CCR9/CXCR5 expression

this may facilitate migration to inflamed salivary glands known to

overexpress CCL25/CXCL13. Given the pivotal role of IL-7 and IL-21 in
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inflammation in pSS this indicates a potential role for MAIT cells in driving pSS

immunopathology.
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Introduction

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune

disease clinically characterized by dryness of eyes and mouth,

fatigue and myalgia (1). Hallmark features of pSS are B cell

hyperactivity and lymphocytic infiltration of exocrine glands (2,

3). B cell hyperactivity is reflected by e.g. elevated serum IgG, the

presence of autoantibodies in the circulation, elevated numbers

of IgM/IgG plasma cells in the salivary glands, and an elevated

risk of developing lymphoma (4, 5).

Several T cell subsets have been studied in pSS for their

potential to drive B cell hyperactivity, and to organize ectopic

lymphoid structures (ELS) (6–9).

T follicular helper (Tfh) cells are B cell activating T cells that

express CXCR5, and that can reside in germinal centers (GCs) in

lymph nodes (10). The number of Tfh cells is elevated in salivary

glands and in peripheral blood of pSS patients, just like the levels

of Tfh-associated cytokines such as CXCL13 (which CXCR5+

cells migrate towards), IL-21, and IL-4 (6, 7, 11–14). Tfh cell

numbers correlate to autoantibody levels, and disease severity

(14–18). Increased expression of ligand CXCL13 in the glands is

associated with a higher number of lymphocytic foci and

increased organization into ELS (6, 7, 9).

In the context of pSS also two Tfh-like cells subsets have

been studied recently, T peripheral helper (Tph) cells, and CCR9

+ Tfh-like cells, both lacking CXCR5. Tph cells are CXCR5-PD-

1hi memory T cells, produce high levels of IL-21 and CXCL13,

like Tfh cells, and are found in elevated numbers in blood of pSS

patients, and in the salivary glands of pSS patients with GCs in

their gland tissue (18–20). CCR9+ Tfh-like cells are cells that are

enriched in mucosa-associated tissues, and are potent B cell

activating T cells that have elevated expression of ICOS, PD-1,

CCL5 and IL-7R, and also produce high amounts of IFN-g, and
IL-21 (21–23). The number of CCR9+ Tfh-like cells is elevated

in peripheral blood of pSS patients. In (mucosa-associated)

salivary glands of pSS patients both CCR9+ T cell numbers,

and levels of its ligand CCL25 are elevated (21–24). In

secretomes of salivary gland tissue CCL25 levels were also

found to be associated with SSA positivity, B cell hyperactivity

(serum IgG levels), and levels of IL-21 and soluble IL-7R (25).

Other cells that are enriched in mucosal tissues and that are

increasingly studied for their potential role in autoimmune
02
diseases, including pSS, are mucosal-associated invariant T

(MAIT) cells. MAIT cells are unconventional innate-like

effector T cells that become activated by binding to MHC class

I-like molecule MR1 (26). MAIT cells express a semi-invariant T

cell receptor (TCR) TCRVa7.2-Ja12/20/33 with a limited

amount of options of Vb chains (27–30). MAIT cells are

abundant in e.g. peripheral blood, liver, gastro-intestinal tract,

and mesenteric lymph nodes, and play an important role in

mucosal immunity against infections, e.g. by rapidly producing

cytokines, such as IFN-g, IL-21, TNF-a, IL-17, perforin, and
granzyme B (31–37). MAIT cells are activated both in TCR-

dependent and TCR-independent ways, including stimulation

by IL-7, IL-12, and IL-18 (37–40). In humans MAIT cells

predominantly express CD8, or express neither CD8 nor CD4

( ± 70-80% and ±15%, respectively), and just a few percent of

MAIT cells express CD4 (28, 35, 41, 42). MAIT cells can be

identified in blood and tissues based on the expression of CD3

and TCRVa7.2 in combination with either CD161 and/or IL-

18Ra (32, 35, 43). Furthermore high levels of CCR6, CXCR6, IL-

7Ra (CD127), ABCB1 and NKG2D were found (35). Also

CCR9-expressing MAIT cells have been identified, and were

found to be enriched in mucosal sites such as the colon, with

similar CCR9 expression between colonic CD8 MAIT cells and

non-MAIT CD8 T cells (44). Finally MAIT cells in a human in

vitro model have been shown to stimulate B cell activity

associated with production of IL-21, IL-10, and IL-6, and in a

lupus-like mouse model MAIT-driven B cell activation and

autoantibody production has been shown (36, 45–47).

In pSS patients the number of circulating CD161+

TCRVa7.2+ MAIT cells was decreased compared to controls,

whereas in salivary gland tissue the number of (CD161+)

TCRVa7.2+ MAIT cells was elevated as compared to non-

Sjogren sicca patients and mild sialoadenitis patients (without

anousspSS) (48, 49). pSS patients had significantly more

circulating CD4, and naive CD8 CD161+ TCRVa7.2+ MAIT

cells, which was not the case for CD161- TCRVa7.2+ T cells

(48). MAIT cells from salivary glands of pSS patients produced

increased levels of IL-17, an effect that was validated in vitro

upon stimulation of MAIT cells with IL-7 (49).

Currently, the number of studies on MAIT cells in pSS is

limited and the precise mechanisms by which MAIT cells could

instigate pSS immunopathology are not known. In the present
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study in pSS patients and healthy controls we for the first time

investigated CCR9 (in comparison with CXCR5) as a receptor

that might facilitate migration of MAIT cells to mucosa-

associated tissues such as salivary glands. In addition, given

the potential role of IL-7 and IL-18 to drive MAIT cell responses

in immunopathology of pSS we here assessed the presence of IL-

18Ra+ MAIT cells, and IL-18 and IL-7 receptor expression on

MAIT cells in pSS patients as compared to HCs (50–53). Also

the capacity of IL-7 to induce IL-21 and IFN-g by MAIT cells

was studied, as well as the potential of disease-modifying

ant i rheumat i c drugs (DMARDs) leflunomide and

hydroxychloroquine to inhibit this production.
Methods

Patients and controls

Peripheral blood mononuclear cells (PBMCs) were collected

from n=12 primary Sjögren’s syndrome (pSS) patients and n=11

healthy controls (HC). Controls were age and sex matched to

patients. All pSS patients were diagnosed by a rheumatologist or

clinical immunologist and met the 2016 ACR-EULAR criteria

(54). All participants were included in the University Medical

Center Utrecht (UMC Utrecht) and gave written informed

consent. The Medical Research Ethics Committee (METC) of

the UMC Utrecht approved the study (reference number 13/

697). Demographic and clinical data are shown in Table 1.

Fresh PBMCs were isolated from Lithium-heparinized blood

using density gradient centrifugation on Ficoll-PaqueTM Plus
Frontiers in Immunology 03
(GE Healthcare Life Sciences). Collected PBMCs were frozen

and stored in liquid nitrogen until further use.
Cultures

From 5 individuals (n=3 HC and n=2 pSS patients) 0,5.106

thawed PBMCs were cultured overnight with optimal IL-7

concentrations as previously demonstrated at biologically

relevant (10ng/ml, Peprotech) (55, 56). Leflunomide (33mM,

biologically active metabolite A77 1726, MedChemExpress,

Monmouth Junctions, USA), hydroxychloroquine (10mM,

Sigma-Aldrich), or the combination of both drugs were tested

at clinically relevant concentrations inducing optimal inhibition

of lymphocyte activation as previously demonstrated (57, 58). In

our hands upon in vitro cultures, and following T cell activation,

CCR9 was strongly reduced after 48 hours of culture. Hence to

appreciate cytokine secretion by CCR9+ T cells we cultured for

24 hours. For T cell cytokine analyses all samples were

restimulated with phorbol myristate acetate (PMA) and

ionomycin for 4 hours, in the presence of Brefeldin A.

Medium control was taken along. The pSS patients whose

PBMCs were used for this culture were not prescribed

immunosuppressive drugs.
Flow cytometry

PBMCs from all donors were thawed and stained with fixable

viability dye eF780 (eBioscience), after which the cells were stained

with fluorochrome-conjugated antibodies against CD3, CD4,

CD8, CD45RO, CD161, CCR9, CXCR5, TCRVa7.2, IL-7Ra
(CD127), and IL-18Ra (CD218a). For intracellular staining

after overnight stimulation cells were fixed/permeabilized using

Fixation/Permeabilization Concentrate and Diluent (Cat #00-

5123-43, #00-5223-56, eBioscience) according to manufacturer’s

protocol. In this panel IL-7Ra and IL-18Ra were replaced with

IL-21 and IFN-g. Details of used antibodies can be found in

Supplementary Table 1. All samples were acquired on a BD

LSRFortessa (BD Biosciences) using BD FACSDiva software

v.8.0.1 (BD Biosciences). For data analysis FlowJoTM Software

v10.8 (BD Life Sciences) was used. MAIT cells were defined using

either CD161+ or IL-18Ra+, combined with TCRVa7.2+ CD3

cells. Gating of MAIT cells (CD161+ and IL-18Ra+ in

combination with TCRVa7.2+) within CD4/CD8 populations is

shown in Supplementary Figure 1.
Statistical analysis

Data were analyzed and visualized using IBM SPSS Statistics

26 and Graphpad Prism 8. Mann-Whitney U test (for unpaired

analyses) and Wilcoxon non-parametrical paired test were used
TABLE 1 Participants’ characteristics.

HC (n = 11) pSS (n = 12)

Female, n (%) 11 (100) 12 (100)

Age, years 55 (49-60) 59 (54-64)

Anti-Ro/SSA positive, n (%) 8 (67)

Anti-La/SSB positive, n (%) 4 (33)

ANA positive, n (%) 7 (58)

Lymphocytic focus score (foci/4mm2) 1.8 (1.1-2.4)

IgA positive plasma cells (%) 65 (40-81)

Schirmer (mm/5min) 0 (0-1)

Serum IgG (g/L) 13.6 (11.4-15.2)

ESSDAI score (0-123) 4 (2-5)

ESSPRI score (0-10) 6.3 (5.3-7.3)

Immunosuppressants use, n 3
Medians with interquartile range (Q1-Q3) are shown, unless specified otherwise. Used
immunosuppressants are hydroxychloroquine (n = 2) and methotrexate (n = 1). HC,
healthy controls; pSS, primary Sjögren’s syndrome; anti-Ro/SSA, anti-Ro/Sjögren’s
syndrome related antigen A antibody; anti-La/SSB, anti-La/Sjögren’s syndrome related
antigen B antibody; ANA, antinuclear antibody; ESSDAI, European League Against
Rheumatism (EULAR) Sjögren’s syndrome disease activity score; ESSPRI, EULAR
Sjögren’s syndrome patient reported index.
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(for paired analyses). For correlations Spearman’s rho was used.

Statistical significance was considered for differences at p<0.05.
Results

The number of CD161 and IL-18Ra MAIT
cells is decreased in pSS patients, and
MAIT cells have a significantly different
CD4/CD8 ratio in pSS patients

To define MAIT cells from live CD3 cells TCRVa7.2+
expression was analyzed together with either CD161+ or IL-

18Ra+ (representative plots from HC and pSS patient in

Figure 1A). The numbers of CD161+, IL-18Ra+, and co-
Frontiers in Immunology 04
expressing (memory) MAIT cells were all significantly

decreased in pSS patients compared to HC (Figure 1B).

Whereas in the total CD3 population CD4 T cells were the

largest subset, in MAIT cells CD8 cells represented the largest

subset, followed by CD4-CD8- and CD4MAIT cells (Figure 1C).

Increased numbers of CD4 MAIT cells were found in pSS

patients as compared to controls (p=0.02 for CD161+, and

p=0.049 for IL-18Ra+ MAIT cells, Figure 1C). This resulted in

significantly skewed CD4/CD8 ratios for CD3 cells and MAIT

cells from 2.2 (1.7-4.6) (median with interquartile range using

pooled HC and pSS data) for CD3 cells to below 0.50 (median)

in MAIT cell subsets (Figure 1D). In addition, in pSS patients a

significantly higher CD4/CD8 MAIT cell ratio compared to HC

was observed, in line with the increased CD4 MAIT cell

percentages in pSS patients (Figure 1D).
A C

DB

FIGURE 1

Reduced frequencies and shift in CD4/CD8 ratio of antigen-experienced CD161+/IL-18Ra+ MAIT cells in pSS patients. (A) Representative flow
cytometry plots from a HC and a pSS patient of MAIT cell staining. Gates are shown of TCRVa7.2+CD161+ and TCRVa7.2+IL-18Ra+ within CD3
+ cells. (B) MAIT cell subsets defined by TCRVa7.2 expression in combination with CD161, IL-18Ra, and CD45RO, are shown as percentages of
the CD3+ T cell population in pSS patients and controls. (C) Representative dot plots of CD4/CD8 staining of all CD3+ cells, CD161+ and IL-
18Ra+ TCRVa7.2+MAIT cells, with quantification below the representative dot plots. (D) CD4/CD8 ratio in CD3+ cells and MAIT cells defined by
TCRVa7.2+CD161+, TCRVa7.2+IL-18Ra+, and combination of MAIT markers TCRVa7.2, CD161, IL-18Ra, and CD45RO in pSS patients and HC.
Bar plots show all individuals and median (interquartile range). HC, healthy control; pSS, primary Sjögren’s syndrome. * indicates statistical
significance of p < 0.05.
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CCR9-expressing MAIT cells are mainly
observed in CD4 MAIT cells and are rare
in CD4-CD8- and CD8 MAIT cell
populations

Earlier work from our group and others has shown increased

CCR9 expression on CD4 and CD8 T cells in pSS compared to

HC (21–24). In this study we confirmed these findings

(representative dot plots in Figure 2A). In fact, in most CD3

populations (CD3 total, CD4 T cells, CD8 T cells, CD161+ MAIT

cells and IL-18Ra+MAIT cells) the percentage of CCR9-expressing

cells was elevated in pSS patients (Figure 2B). Within both CD161+

and IL-18Ra+MAITcell subsetsCD4cells expressedmostCCR9. In

addition, significantly increasedCCR9expression inpSSpatientswas

found for CD161+ and IL-18Ra+ CD8 MAIT cells (Figure 2C).

Overall the proportions of CCR9-expressing cells follow the same

skewing inCD4-CD8-,CD4,andCD8MAITcells as in therespective

total populations. Interestingly, forCXCR5 expression similar results

were found. CXCR5 expressionwas elevated in pSS compared toHC

in CD161+ and IL-18Ra+ MAIT cell subsets, with the highest

expression of CXCR5 in CD4 MAIT cells (Supplementary

Figures 2, 3).
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IL-7R expression is increased on CD8
MAIT cells, and is associated with
inflammatory parameters. IL-21
production by MAIT cells is increased,
and in the context of IL-7 activation
reduced by LEF and HCQ

CD8 MAIT cells showed a significantly increased IL-7R

expression compared to the total CD8 population (Figure 3A).

This increase was also seen in CD3, CD4-CD8-, and CD4 MAIT

cells (Supplementary Figure 4). Of note, CCR9+ CD8 T cells

showed a significant increase in IL-7R expression (p<0.001)

compared to CCR9- CD8 T cells, which was not the case

for IL-7R expression of CCR9+ CD8 MAIT cells compared

to CCR9- CD8MAIT cells, showing comparable high expression

(Figure 3A). For CXCR5-expressing MAIT cells a similar

pattern of IL-7R expression was seen as for CCR9+ cells

(Supplementary Figure 5).

In pSS patients, a decreased expression of IL-7R on CD8

CD161+ MAIT cells significantly correlated to increased

lymphocytic focus scores (LFS), decreased percentage of IgA

+ plasma cells in minor salivary gland tissue (IgA%), and
frontiersin.org
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FIGURE 2

Increased frequencies of CCR9-expressing cells among circulating MAIT cells in pSS patients. (A) Representative flow cytometry plots of CCR9
expression on CD4-CD8-, CD4+, and CD8+ T cells from one pSS patient and one HC. (B) CCR9 expression is compared between pSS patients
and healthy controls in different CD3+ cell subsets, including CD161 and IL18Ra-expressing MAIT cells. (C) In CD4-CD8-, CD4+, CD8+ cells
from CD161+ and IL-18Ra+ MAIT cells CCR9 expression is quantified. Bar plots show median (interquartile range). HC, healthy control; pSS,
primary Sjögren’s syndrome. *, ** indicates statistical significance of p < 0.05, p < 0.01, respectively.
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increased serum IgG levels (Figure 3B). Also, IL-7R expression

on CD8 CD161+ MAIT cells was significantly decreased in

pSS patients with anti-SSA-autoantibodies (Figure 3B).

Since DMARDs leflunomide (LEF) and hydroxychloroquine

(HCQ) were recently shown to be efficacious in vivo, and in vivo

block inflammatory activity (58), we tested the capacity of these

drugs to target MAIT activity. For this purpose we cultured ex

vivo IL-7-stimulated cells with LEF and HCQ, and evaluated

IFN-g and IL-21 production (Representative stainings

Supplementary Figure 6). CD8 CD161+ MAIT cells produced

more IL-21 compared to (CCR9+) non-MAIT CD8 T cells

(median 12.2% versus 3.8% (p=0.009) and versus 5.4

(p=0.048) for CD8 and CCR9+ CD8 T cells respectively,

Figure 3C). Unfortunately, it was not feasible to directly

evaluate CCR9-expressing CD8 CD161+ MAIT cells due to

limited CCR9 cell counts within this population. However, the
Frontiers in Immunology 06
results of CD8 T cells, CCR9+ CD8 T cells and CD8 CD161+

MAIT cells could be evaluated and showed a similar reduction in

IL-21 expression in the presence of LEF and/or HCQ, which was

statistically significant for conditions in MAIT cells (Figure 3C).

Like IL-21, IFN-g was also significantly higher in CD8 CD161+

MAIT cells as compared to CD8, and CD8 CCR9+ cells (mean

84.9% versus 55.0% (p=0.004), and 31.6% (p=0.003),

respectively). However, in this short-term culture no

significant effect on IFN-g production was observed in

response to LEF/HCQ treatment (data not shown).
Discussion

In this study we demonstrated decreased circulating CD161

+ as well as IL-18Ra+ MAIT cell numbers in pSS patients.
A

C

B

FIGURE 3

Expression of IL-7R is increased on CD8 MAIT cells, and this is associated with inflammatory parameters. IL-21 production by MAIT cells is
increased and in IL-7-stimulated conditions reduced by leflunomide and hydroxychloroquine. (A) Representative histograms of IL-7R expression
on CD8+ CD161+ and IL-18Ra+ TCRVa7.2+ MAIT cells compared to IL-7R expression in CD8 total population. Bar plots showing medians
(interquartile range) of IL-7R on CD8+ (MAIT) cells and CCR9+ CD8+ (MAIT) cells in pSS patients and controls. (B) Correlation between IL-7R
expression on CD8+ TCRVa7.2+CD161+ MAIT cells and local (LFS and percentage of IgA-producing plasma cells), and systemic (sIgG) clinical
parameters. Bar graph shows comparison of IL-7R expression on CD8+ TCRVa7.2+CD161+ MAIT cells in pSS patients who are SSA
autoantibody positive or negative. (C) Representative dot plot of IFN-g/IL-21 expression in CD8+ cells. IL-21 expression of CD8+ cells, CCR9+
CD8+ cells, and CD8+ TCRVa7.2+CD161+ MAIT cells was measured upon overnight stimulation with IL-7, or IL-7 in combination with either
leflunomide, hydroxychloroquine or a combination of both drugs. HC, healthy control; pSS, primary Sjögren’s syndrome; LFS, lymphocytic focus
score; IgA%, percentage of IgA+ plasma cells in minor salivary gland biopsy (the percentage reduces when the percentage of IgM and IgG-
producing plasma cells increases); sIgG, serum immunoglobulin G; SSA, anti-Sjögren’s syndrome related antigen A antibody; LEF, leflunomide;
HCQ, hydroxychloroquine. * indicates statistical significance of p < 0.05.
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In addition, we found that proportions of CCR9-expressing cells

are elevated in MAIT cells of pSS patients. Interestingly, strongly

increased CCR9 frequencies were observed in CD161-

expressing, but not for IL-18Ra-expressing, MAIT cells.

Furthermore, expression of IL-7R was found to be increased

on CD8 MAIT cells as compared to total CD8 T cells. The

expression of IL-7R on CD161+ MAIT cells correlated to the

LFS, the percentage of IgA+ plasma cells in minor salivary gland

tissue, and serum IgG levels, and was associated with the

presence of anti-SSA antibodies. IL-21 production by CD8

MAIT cells stimulated with IL-7 was significantly reduced by

LEF and HCQ treatments.

In line with earlier reports we found reduced CD161+ MAIT

cells, which are at least partly caused by increased migration to

inflammatory sites, since MAIT cells were found increased in the

salivary glands of pSS patients as compared to controls (48, 49).

In addition, we for the first time demonstrate that CD161/IL-

18Ra co-expressing and single IL-18Ra+ MAIT cells are

decreased in pSS patients compared to controls. Also, as

anticipated CD161+ MAIT cells express high levels of the IL-

18Ra as compared to non-MAIT cells, but this was not

significant between pSS patients and HC (Supplementary

Figure 7). This suggests that IL-18Ra+ MAIT cells/IL-18Ra
expression may be mainly affected at the inflammatory sites. In

pSS patients increased local IL-18 production by macrophages,

dendritic cells, and epithelial cells has been demonstrated and

was associated with increased immune activation (50, 51, 59).

This indicates that increased numbers of IL-18Ra-expressing
MAIT cells at the inflammatory sites in pSS could form another

target for IL-18-mediated immune activation.

In accordance with earlier work, we found that in pSS patients

the number of CD4 MAIT cells is elevated as compared to controls

(48). Our data corroborate previous studies demonstrating that as

compared to CD3 T cells MAIT cells have a strongly skewed CD4/

CD8 T cell ratio with skewing towards CD8 T cells (28, 35, 41, 42).

Here we demonstrate that for both CD161 and IL-18Ra-expressing
MAIT cells in pSS patients this is even further skewed. As compared

to non-MAIT CD8 cells CD8 MAIT cells produce high levels of

IFN-g and IL-21. Currently, it is unclear to what extent CD8 T cells

and CD8 MAIT cells contribute to immune activation in pSS

patients. Nonetheless, it was observed that CD8 T cells were

found to associate with lymphocyte aggregates and Tfh numbers

in salivary glands of pSS patients (24). Hence, we anticipate that

increased CD8 MAIT cells may also significantly contribute to

immune activation in the glandular lymphocytic foci given their

effector profile. In addition, their innate-like properties, responding

to specific environmental/infectious antigens suggests their capacity

to respond in an early phase, perhaps (in certain cases) playing a

crucial role in initiating immune responses.

Overexpressed CCL25 in salivary glands is associated with

the presence of SSA autoantibodies and increases in lymphocyte

foci, B cell hyperactivity, and salivary gland secretome IL-21 and

sIL-7R levels (22). We here demonstrate that together with
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increased proportions of CCR9-expressing total CD4 and CD8

T cells, also proportions of CCR9-expressing CD161+ and IL-

18Ra+ CD8 MAIT cells were significantly increased in pSS

patients. Interestingly, the strongest increases in CCR9-

expressing cells were found in CD4 CD161+ MAIT cells in

pSS patients, which was not observed in IL-18Ra+ CD4 MAIT

cells. The elevated levels of CCR9 expression in circulating

(memory) MAIT cells of patients with pSS, a disease with

inflammation in mucosa-associated tissues, fit to the

observation that colonic MAIT cells with an activated memory

phenotype express CCR9 and other chemokine receptors such as

CCR6 (44).

In a similar pattern as CCR9-expressing MAIT cells,

increased proportions of CXCR5-expressing MAIT cells were

found. CXCR5 expression on CD161+ and IL-18Ra+ MAIT

cells was significantly increased in pSS patients. CXCL13, the

ligand for CXCR5, is overexpressed in salivary glands of pSS

patients, and increased expression of CXCL13 is associated with

increased B cell hyperactivity, and development of B cell

lymphoma (6, 7, 60). Together this suggests that overexpressed

CCL25 and CXCL13, facilitating the migration of CCR9 and

CXCR5-expressing MAIT cells, in addition to classical Tfh cells

and CCR9 Tfh-like cells, could contribute to immunopathology

in pSS patients.

Significantly increased IL-7R expression was observed on

MAIT cells, not significantly different between HC and pSS

patients. Interestingly, reduction of IL-7R expression on CD8

MAIT cells was associated with local and systemic immune

parameters, including lymphocytic focus scores and B cell

hyperactivity. Since IL-7 causes IL-7R receptor downregulation

this observation could reflect increased IL-7 levels in pSS

patients (61, 62). Both systemically and in the inflamed glands

of pSS patients increased IL-7 was associated with inflammatory

parameters, and disease activity parameters (52, 53, 63).

Alternatively, TCR-induced activation, which is another trigger

of IL-7R downregulation, might be related to reduced IL-7R

expression (64). Thus IL-7R downregulation might reflect

activation of MAIT cells either via IL-7 stimulation or TCR

cross-linking.

Immunohistochemical assessment of CCR9 and CXCR5

expression, as well as CD161 and IL-18Ra expression, on

MAIT cells in the salivary gland of pSS patients is currently

lacking. This might however be challenging due to low cell

frequencies, but also due to potential downregulation of

chemokine receptor CCR9. In our hands CCR9 expression was

strongly reduced upon T cell activation after 48 hours of in vitro

culture. Thus, considering immune activation and binding to its

ligand CCL25 (which is elevated in pSS salivary gland tissue),

assessment of CCR9+ T cells in inflamed salivary glands may be

a challenge. The same uncertainty holds true for MAIT cell

markers. For circulating cells it has been established that most

MAIT cells will be identified using CD3 TCRVa7.2+CD161+
expression (28). Whether this is also the case for MAIT cells in
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salivary gland tissue of pSS patients still needs to be confirmed.

Also, which subset of MAIT cells predominates locally (CD4,

CD8 or CD4-CD8-) in pSS patients still is unknown.

Enrichment of CD4-CD8- cells up to 40-50% of MAIT cells in

mucosal tissues previously has been demonstrated and could

match with the low frequencies seen in blood (65, 66). However,

this still needs to be evaluated in pSS.

In this study we have demonstrated that MAIT cells in the

circulation of pSS patients are antigen-experienced effector T

cells that are characterized by high expression of IL-7R, IFN-g,
and IL-21. The increased proportion of CCR9 and CXCR5-

expressing MAIT cells, and overexpression of the ligands CCL25

and CXCL13 to facilitate their migration into the inflamed

tissues in these patients suggests that these cells with innate

properties might contribute to the immunopathology in pSS. In

this respect IL-21 a potent B cell activating factor could play a

key role in B cell hyperactivity in pSS. Our data suggest that at

least part of the activity of both CD8 and CD4MAIT cells can be

targeted by DMARD treatment such as leflunomide and

hydroxychloroquine combination therapy.
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