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The immune response to an allograft activates lymphocytes with the capacity

to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg)

can down-regulate allograft rejection and can induce immune tolerance to the

allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly

increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and

activated Treg that can be distinguished by several markers, many of which are

also expressed by effector T cells. More detailed characterization of Treg to

identify increased activated antigen-specific Treg may allow reduction of non-

specific immunosuppression. Natural thymus derived resting Treg (tTreg) are

CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell

activation of effector cells. Cytokines produced by activated effector cells

activate these tTreg to more potent alloantigen-activated Treg that may

promote a state of operational tolerance. Activated Treg can be distinguished

by several molecules they are induced to express, or whose expression they

have suppressed. These include CD45RA/RO, cytokine receptors, chemokine

receptors that alter pathways of migration and transcription factors, cytokines

and suppression mediating molecules. As the total Treg population does not

increase in operational tolerance, it is the activated Treg which may be the

most informative to monitor. Here we review the methods used to monitor

peripheral Treg, the effect of immunosuppressive regimens on Treg, and

correlations with clinical outcomes such as graft survival and rejection.

Experimental therapies involving ex vivo Treg expansion and administration in

renal transplantation are not reviewed.
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Introduction

Short-term renal transplant (RT) survival has significantly

improved over the past few decades due to more potent

immunosuppressive agents (1). Improving long-term RT survival

remains a significant challenge due to chronic immune-mediated

graft damage and side-effects of immunosuppression therapy (2).

Inducing a state of “operational tolerance” where a graft remains

rejection-free after withdrawal of immunosuppression is a sought-

after ideal.

Several protocols aiming to induce transplant tolerance to a

kidney allograft have been attempted (3–8). The original concept

involved deleting clones of alloreactive lymphocytes, especially T

cells (9). Injecting donor cells into neonatal rodents leads to

thymic deletion of alloreactive cells (10). In adults depleted of

lymphocytes, infusion of donor cells allows the thymus to delete

the regenerating alloreactive cells (11). Whilst the main aim is to

deplete clones reactive to the allograft, this is not essential to the

induction of transplant tolerance, as recently reviewed (12). The

other main mechanism is suppression or regulation. There are

many different cell populations that can regulate immunity

including CD4+ and CD8+T regulatory cells (Treg) (13),

regulatory B cells (14–16), myeloid cells, and tolerizing antigen

presenting cells. This review focuses on CD4+CD25+Foxp3+T

regulatory cells (Treg).

The evidence, mainly from animal models of transplant

tolerance, that T regulatory cells are major players in the

induction and maintenance of transplant tolerance is reviewed

here. We focus on the role of CD4+CD25+Foxp3+Treg which can

mediate alloantigen specific tolerance, as reviewed (17) We

examine the differences that distinguish naïve thymic derived

CD4+CD25+Foxp3+Treg (tTreg) from antigen activated

CD4+CD25+Foxp3+Treg, which mediate transplant tolerance.

The latter population includes cells produced by activation of

thymic derived naïve Treg, as reviewed below.

The review examines the many published studies that have

attempted to monitor CD4+CD25+T cells, starting with studies

on CD4+CD25+T cells. We examine the evolution in methods

that attempt to identify the activated Treg most relevant to the

mediation of alloantigen specific transplant tolerance.

The complexity of the very heterogenous CD4+CD25+T cell

and CD4+CD25+Foxp3+T cell populations is described. We

provide evidence that the most potent antigen specific Treg

require continued activation by antigen and key cytokines

produced by an ongoing effector T cell response. The rapid

loss of function of antigen specific Treg ex vivo, has been

underappreciated and has hampered attempts to study antigen

specific Treg,

Finally, future directions that may better monitor activated

Treg, which mediate transplant tolerance are discussed,
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Evidence that CD4+CD25+T cells
can mediate transplant tolerance

Evidence for a key role of Treg in alloantigen specific

tolerance is nearly solely derived from animal studies. In

murine models, transplant tolerance can be induced by short-

term non-specific immunosuppression without depletion of

peripheral lymphoid cells, as recently reviewed (12).

Lymphocytes from these tolerant hosts react to donor

alloantigen in vitro (18) and in graft versus host assays (19),

indicating there is no clonal deletion. These lymphocytes

transfer tolerance and prevent normal cells mediating rejection

in vivo (20–22). Transfer of tolerance is by CD4+T cells, not

CD8+T cells or B cells (21). The CD4+T cells from tolerant hosts

suppress co-transferred naïve CD4+T cells’ capacity to effect

specific donor rejection. These CD4+T cells from tolerant hosts

only suppress CD4+T cells reactive to specific donor.

Tolerant host CD4+T cells, that can transfer alloantigen

specific tolerance, are not stable in culture however and regain

the capacity to effect rejection (22, 23). Addition of both specific

alloantigen and cytokines produced by activated lymphocytes to

cultures of the suppressor CD4+T cells promotes the survival of

inhibitory function (24–26). These studies identified that

cytokines produced by activated T effector cells drive

induction of antigen-specific Treg with many characteristics of

the activated effector T cells (17, 27–31). These observations led

us to examine for expression of CD25 on tolerance transferring

CD4+T cells.

Murine studies of transplant tolerance first identified the

alloantigen specific CD4+Treg (21) that express IL-2 receptor

alpha (CD25), CD45(CD45RC) and MHC class II (22). The

Summary in this manuscript describes the findings as “The CD4+

suppressor was shown to be MRC Ox22+ (CD45R+), MRC Ox17+

(MHC class II), and MRC Ox39+ (CD25, IL-2-R)” (22). This

observation that CD25 is expressed by suppressor cells was

unexpected as effector CD4+T cells activated by alloantigen are

induced to express CD25 (32) and are the target of anti-rejection

therapy with anti-CD25 monoclonal antibodies (mAb) (32, 33).

Thus, both effector T cells and Treg depend on IL-2 for their

activation and survival.

CD45RA is the high molecular weight form of CD45 (220kd)

and is expressed by non-activated effector and regulatory CD4+T

cells and other leukocytes. Upon activation both effector and

regulatory T cells, but not other leukocytes, splice out one or

more exons of CD45 (34). Initially intermediate molecular

weight isoforms CD45RB and CD45RC are expressed.

Activated T cells and memory T cells express CD45RO, the

lowest molecular weight (180kd) form (34, 35). Activated Treg

also do not express CD45RA but express CD45RB, RC and RO

(27, 35) (Figure 1).
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Class II MHC, HLA-DR in man, is expressed on activated

Treg, but not effector T cells, and is a valuable marker of

these cells.

One set of markers that change on activation of Treg is

predictable from an early observation that tolerance mediating T

cells do not recirculate from blood to lymph (36) but like memory

effector T cells reside in tissues and do not recirculate (37). Activated

Treg lose expression of CD62L and CCR7, which promote Treg

migration into secondary lymphoid organs, and acquire chemokine

receptors that promote migration into sites of inflammation (38).

These key markers remain important identifiers of activated,

tolerance mediating CD4+CD25+ Treg. Molecules that differ

between resting/naïve Treg and activated Treg are summarized

in Table 1 and described in detail elsewhere (17, 27, 39, 40).

Five years after CD4+CD25+T cells were identified to

mediate transplant tolerance (22), Sakaguchi et al. identified

that CD4+CD25+T cells produced by the thymus (tTreg) prevent
Frontiers in Immunology 03
autoimmunity (41). These cells also inhibit allograft rejection

(42, 43). They described CD4+CD25+ T cell that controlled

autoimmunity as act ivated T cel l s . We descr ibed

CD4+CD25+T cells that maintain transplant tolerance as

activated T cells and had looked for CD25 expression as they

behaved as activated cytokine dependent T cells (22, 26, 44). It is

now known that the tTreg described by Sakaguchi et al., are

resting cells that have not been activated by antigen in the

periphery but have been selected for reactivity to autoantigens in

the thymus. They are unlike CD4+CD25+Treg from animals

with transplant tolerance which have been activated in the

periphery as part of an immune response to an antigen. tTreg

suppress induction of autoimmunity in a non-antigen specific

manner (42), whereas activated Treg from transplant tolerant

hosts suppress in vivo in an alloantigen specific manner (22, 45).

CD4+CD25+ Treg represent <10% of peripheral CD4+T cells

and include resting tTreg and activated Treg, induced Treg
FIGURE 1

Effector lineage CD4+CD25-CD127+CD45RA+Foxp3- and Treg. CD4+CD25+CD127loCD45RA+Foxp3+ T cells are concurrently produced in the
thymus and migrate from there to peripheral lymphoid tissue. They recirculate from lymphoid tissue to blood and back to lymphoid tissue,
which is promoted by expression of CD62L and CCR7. When they recognize an antigen, they are activated and proliferate. In this process the
effector lineage cells produce IL-2 and express IL-2R including CD25 (IL-2Ra chain). The IL-2 activates CD25 both on Treg and effector cells. In
an immune response, naïve T cells (CD4+CD25+CD127+CD45RA+Foxp3-T-bet-CCR7+), in the presence of IL-2 and antigen, acquire CD25,
Foxp3 and T-bet expression but no longer express CD45RA. This transient expression of Foxp3 and CD25 blurs the distinction between Treg
and effector T cells. These effector CD4+T cells produce IL-2 that promotes polyclonal expansion of tTreg. Activated T effector cells, in the
presence of IL-2 and IFN-g, get further activated to express the transcription factor T-bet and acquire chemokine receptor CXCR3 and produce
IFN-g. In parallel, in the presence of an antigen, IL-2 induces proliferation of resting tTreg that recognize the specific-alloantigen. This activated
antigen-specific Treg population (CD4+CD25hiCD127loCD45RA-Foxp3hi) is induced to express the receptor for late Th1 cytokines IL-12 and IFN-
g. Further, these activated cells, in the presence of IL-12 or IFN-g become Th1-like Treg, which express mRNA for Th1 transcription factor T-bet,
Th1 cytokine IFN-g and Th1 chemokine receptor CXCR3. Th1-like Treg continue to suppress and have a much greater potency than resting/
naïve Treg. Because they are progeny of tTreg, they have demethylated TSDR and stable Foxp3 expression. These activated memory Treg
control immune inflammation in the graft and promote tolerance. They are the mediators of transplant tolerance. In the presence of TGFb, but
not IL-6 or IL-1, naïve T cells can become induced Treg (iTreg) expressing CD25 and Foxp3. These iTreg are unstable as their TSDR is not
demethylated. In an inflammatory environment they can revert to activated effector T cells. Whether they can become stable activated/memory
Treg is unclear.
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(iTreg) as described below and activated effector cells. Naive tTreg

inhibit antigen-presentation through cytotoxic T-lymphocyte-

associated protein 4 (CTLA4) down-regulating the co-stimulatory

ligands CD80 and CD86 (46–48). CTLA4 on Treg depletes CD80/

86 by trogocytosis, thereby reducing the ability of antigen

presenting cells (APC) to activate T cells (49). This process of

depletion of CD80/86 on APC also releases free PD-L1 from APC

and this further inhibits activated T cells (49). Naïve tTreg are weak

at suppressing alloimmune responses (50) and to fully suppress

allograft rejection they are required at unsustainably high ratio of

1:1 or 1:2 to CD4+CD25- effector T cell (42, 50).

In the humans, CD4+CD25hi T cells in blood include the

equivalent of tTreg described by Sakaguchi et al. in mice but also

identify activated Treg as well as activated CD4+ T effector/memory

cells. Distinguishing the relative proportion of naïve resting tTreg

from activated Treg and activated effector cells is now possible.

CD4+CD25+Treg express forkhead box protein P3 (Foxp3),

a transcription factor that confers regulatory status, including

inhibition of IL-2 production and induce expression of CD25

(51). tTreg have demethylation of Treg specific demethylation

region (TSDR), which stabilizes expression of Foxp3 (52).

In states of transplant tolerance, theproportionofCD4+CD25+T

cells remains in the usual range of <10% of CD4+T cells (53),

demonstrating that within this population there are highly potent

Treg that suppress rejection even at very low ratio to effector cells.

Their phenotype is distinct to tTreg (22, 40, 44). These rare

alloantigen-specific Treg are of greatest importance when

monitoring transplant recipients for tolerance. This review will

examine techniques thatmay identifyactivatedantigen-specificTreg.

It is apparent other regulatory cells and other mechanisms

may contribute to transplant tolerance induction and

maintenance including but not limited to CD8+Treg,

Regulatory B cells, tolerogenic APC and myeloid cells.

Exhaustion of effector cell response and partial clonal deletion

can also contribute to immune tolerance, these mechanisms are

beyond the scope of this review.
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transplant tolerance

CD4+CD25+Foxp3+Treg can induce and maintain

unresponsiveness to antigens in the absence of clonal deletion

(54, 55). Refinement of techniques to monitor subpopulations of

Treg may allow more conclusive interrogation of Treg and

identify a state of operational tolerance to transplanted tissue

and loss of tolerance in autoimmunity.

Within the CD4+T cell population, the CD25+Foxp3+cells

are the main regulatory cells. Foxp3 is a transcription factor that

induces regulatory function of the lymphocytes. Natural Treg

(nTreg), also known as thymus derived Treg (tTreg), are

produced in the thymus. These naïve cells and their progeny

have stable expression of Foxp3 and CD25 as the Foxp3 TSDR/

CNS2 enhancer element is demethylated (52) but demethylation

alone is not sufficient to maintain regulatory function (56). In

transplant tolerance, hosts have naïve tTreg, as well as activated

alloantigen specific Treg.

The evidence that naïve tTreg, CD4+CD25+Foxp3+T cells, can

be activated by an allograft to expand alloantigen specific potent

Treg has been reviewed elsewhere (17, 40). Much of the literature

assumes CD4+CD25+Foxp3+Treg are naive cells and only suppress

in a non-antigen specificmanner. This is an erroneous assumption.

Induced Treg (iTreg), are peripheral CD4+T cells that have

been activated by antigen in the presence of TGF-b and IL-2 (57)
and the absence of inflammatory cytokines such as IL-1b, as
reviewed (58). In the presence of inflammation, especially IL-6,

iTreg are unstable and can revert to effector cells, as their Foxp3-

TSDR is not demethylated. Studies of CD4+CD25+FoxP3+T cells

do not differentiate individual activated tTreg and their progeny,

from iTreg.

Some effector/memory CD4+T cells also express CD25 and

Foxp3 but are not inhibitory (59). Effector CD4+CD25-Foxp3-T

cells can be converted to graft protective cells during induction

of tolerance in a murine model (60) showing some
TABLE 1 Markers of Naïve and activated Treg.

Marker Naive Activated/Memory

TCR Polyclonal Antigen-specific

CD4 +++ +++

CD25 +++ ++++

Foxp3 +++ ++++

Other Transcription Factors – T-bet, RORgT, GATA 3 or Bcl6

CD45RA ++++ –

CD45RB, RC RO – ++++

CD62L +++ –

Chemokine receptors CCR7 CXCR3, CCR8, CCR6, CXCR5

Effector Molecules CTLA4 CTLA4, CD39, HLA Class II MHC, PD1

CD31- Thymic immigrants + –
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CD4+CD25+Foxp3+ T cells in tolerant hosts may be

induced Treg,

Effector CD4+CD25-Foxp3- T cells can be induced to have a

regulatory function but do not express CD25 or Foxp3, these

include Tr1 cells induced by repeated activation of CD4+T cells

in the presence of IL-10 and antigen (61). Also, Th3 cells which

are induced by stimulation with antigen and TGF-b (62). The

inhibitory cytokine IL-35 can transform effector cells into

regulatory T cells, known as iTR-35, which are Foxp3- and

suppress by release of IL-35, not IL-10 or TGF−b (63). None

of these effector CD4+T cells expresses Foxp3 or CD25 and are

not identified by the studies covered in this review.
The adaptive immune response to
an allograft

There are multiple pathways of activation of CD4+T cells

that induce different sets of cytokines (64, 65). This activation is

of both effec tor CD4+CD25-Foxp3-T cel l s and of

CD4+CD25+Foxp3+Treg. The activation of both cell types

involves recognition of the same antigen by T cell receptors

specific to the alloantigen and cytokines produced by the

immune response, mainly effector cells and APC. Thus,

effector CD4+T cells and Treg are activated by the same

cytokines and are induced to express similar effector

molecules, cytokines, and transcription factors. Treg can best

be envisaged as a T cell with expression of a transcription factor

Foxp3 that protects its regulatory functions and stops

development of effector cell functions that could damage

the graft. tTreg are activated in all immune responses to act as

a natural sel f -regulation to prevent excessive and

damaging inflammation.
The rejection response to an
allograft is heterogeneous

Allograft rejection can be mediated by T cells, especially

CD4+T cells, in the absence of alloantibody, B cells (54, 66, 67)

and CD8+T cells (68). Activation of CD4+T cells is required to

help induction of B cells and cytotoxic CD8+T cells, making

control of CD4+T cell activation central to induction of

transplant tolerance. In a similar manner, activated effector

CD4+T cells produce cytokines that promote activation and

differentiation of tTreg to alloantigen specific Treg.

Thymocytes and recent thymic emigrants do not effect

rejection and inhibit other peripheral T cells (66, 69). Thus,

thymic cells act by non-antigen specific suppression, much

like tTreg.

The dominant response to allografts is naïve effector CD4+ T

cell activation driven by antigen and IL-2 to induce Th1 cells that
Frontiers in Immunology 05
produce IL-2 and express IL-2R including CD25. IL-2 produced

by activated T cells has an autocrine/paracrine effect and binds

to IL-2R to promote further activation of T cells to Th1 cells

producing interferon–gamma (IFN-g) and tumour necrosis

factor alpha (TNF-a) and beta (TNF-b) (70) (Figure 1). Th1

cells express the transcription factor T-bet and chemokine

receptor CXCR3 (71). Th1 cytokines, IL-12 and IFN-g activate
alloantigen-specific cytotoxic CD8+T cells, B cells that produce

complement-fixing antibody (72) and macrophages (67). This

Th1 inflammation mediates injury to the allograft by induction

of expression of Class I and II MHC by graft cells (73) and

release of cytotoxic cytokines such as TNF-b.
Th2 cells are both activated by, and produce, Type-2

cytokines. This process is driven by IL-4. Th2 cells produce

IL-5, IL-13, and other cytokines. Their expression of CCR8

promotes migration to sites of Th2 inflammation. Th2 cells

activated in response to an alloantigen can mediate rejection (45,

74), albeit Th2 cells are not considered the main mediators

of rejection.

Th17 cells are induced by antigen in the presence of IL-6,

TGF-b and IL-23. They produce IL-17A, IL-17F and IL-22, and

express the transcription factor Rorgt and the chemokine

receptor CCR6. Depending on the cytokine milieu they can

revert to other Th phenotypes (75). The role of Th17 responses

in allograft rejection is unclear, as rejection is not associated with

a neutrophil infiltrate, which is the hallmark of a Th17 response.

In mice with no Th1 response, Th17 cells mediate rapid allograft

rejection (76). Th17 associated molecules such as IL-17A and IL-

23 are increased in RT patients with acute rejection (77).

Increased Th17 relative to Foxp3 cells in renal allograft

biopsies indicates a poorer outcome (78) as does increased

Th17 cells in blood (79). In operationally tolerant RT

recipients Th17 responses were low compared to other RT

patients and healthy volunteers (HV) (80). Treg can control

Th17 responses in RT patients (81).

T-follicular helper cells (Tfh) are induced by antigen, IL-6,

IL-21, and Inducible T-cell Co-stimulator (iCOS). They express

the transcription factor Bcl6 and CXCR5 that promotes their

migration to B cell areas into germinal centres in secondary

lymphoid tissues. They provide help to B cells through CD40L

and secretion of IL-21 and IL-4 and induce production of highly

specific antibodies (82). Tfh provide help for antibody

production in the germinal centres of lymphoid tissues and in

transplanted patients, contribute to the donor specific

alloantibody response. Circulating Tfh and activated B cells

increase during antibody mediated rejection (83–87).

In the absence of IL-6 and an inflammatory response, TGF-b
and antigen induce effector CD4+T cells to iTreg/pTreg, a

regulatory CD25+ and Foxp3+ phenoype (88). IL-2 contributes to

the activation of iTreg by engagement of the IL-2 receptor in the

presence of TGF-b (89, 90). IL-2 binding to CD25 enhances

proliferation, potency and stability of Foxp3 expression by iTreg

(90, 91). TGF-b1 and IL-2 induce iTreg to express Foxp3, and are
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alloantigen specific in their protection (92). iTreg are unlikely to be

induced when there is inflammation from rejection but may

develop over time when there is no rejection and inflammation,

and IL-6 is not present to prevent iTreg induction (Figure 1).
CD4+CD25+T cells activation to
regulate allograft rejection

IL-2 produced by activated T effector cells in Th1 responses

polyclonally expands CD4+CD25+Foxp3+Treg. Murine studies

found alloantigen and IL-2 induce expression of receptors for

other Th1 cytokines, IFN-g (31) and IL-12 (29). These IL-2 and

alloantigen-induced Treg can be further activated by the same

alloantigen and IL-12 and are activated to a Th1-like Treg that

expresses IFN-g and the Th1 transcription factor T-bet but

continue to express CD25 and Foxp3 (28). These cells do not

produce IL-2, and express the Th1-directing chemokine receptor

CXCR3, not CCR7 (Figure 1). They suppress naïve alloreactive

cells at ratios of <1:1000 (28). IFN-g also promotes induction of

activated antigen-specific Treg (60, 93, 94).

Separate pathways of activation of Treg by antigen and Th2,

Th17 and Tfh cytokines respectively induce highly activated

Th2-like Treg, Th17-like Treg and follicular T regulatory cells

(Tfr Treg) (17, 27). Respectively, they express the lineage

transcription factors Gata3, Rorgt, Bcl6 (17) and chemokine

receptors CCR8, CCR6, CXCR5 (95, 96).

Activated and antigen-specific Treg migrate to sites of

inflammation. Their suppressor mechanisms vary, and some

may not yet be described. Naive tTreg may inhibit through

cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which

down-regulates co-stimulatory ligands CD80 and CD86 on

APC. This likely leads to reduced ability of the APCs to activate

effector cells. Other inhibitory mechanisms include generation of

extracellular adenosine by CD39, granzyme and perforin release

leading to cell apoptosis, inhibition of effector cells by CTLA-4,

the PD1/PD1 ligand pathways, and production of inhibitory

cytokines TGFb, IL-10 and IL-35 (97–103). Not all described

mechanisms are simultaneously employed (104). Some

suppression mechanisms may be more dominant than others.

Use of immune checkpoint inhibitors CTLA4 and PD1 to

treat malignancy in some RT patients has resulted in a high rate

of rejection, indicating a role of Treg and highlighting the

importance of CTLA4 and PD-1/PDL-1 pathways in Treg

mediated suppression of rejection (105).
Identification of Treg population in
peripheral blood

Treg can be identified by mAb staining of whole blood or

peripheral mononuclear cells. Numerous combinations of cell
Frontiers in Immunology 06
surface and intracellular markers have been used to stain Treg in

RT patients, summarised in Table 2.

Earlier studies defined Treg as CD4+CD25+ (114) (122),

however activated effector T cells also express CD25 (160).

Thus, early studies on Treg were detecting activated effector

cells as well as Treg. Identification of Treg based on CD4 and

CD25 expression is not ideal as activated effector CD4+CD25+T

cells promote the rejection response and effect rejection (32). The

CD4+T cells with higher CD25 expression suppress

rejection (161).

Other markers for Treg were subsequently described and

these will be discussed here. Each molecule has added precision

to the identification of Treg, but all have potential limitations.

Foxp3 identifies Treg (53, 111, 113, 126, 129, 134, 135, 145)

and is the transcription factor that promotes the functional CD4 +

Treg. It is an intracellular molecule, not expressed in the cell

surface. The detection of Foxp3 requires intracellular staining

(162) thus this marker cannot be used to sort out viable Treg. In

mice, Foxp3+ cells do not always have strong CD25 expression

(163). Foxp3 remains the major identifier of Treg, albeit activated

effector T cells can transiently express Foxp3.

Treg have demethylated TSDR/CNS2 - the enhancer

element for Foxp3. Demethylation of TSDR stabilizes Foxp3

expression in Treg. Demethylated TSDR identifies tTreg and

their progeny. Effector lineage CD4+T cells and iTreg can

transiently express Foxp3 (164) but do not have demethylated

TSDR, making Foxp3 expression unstable (165). Detection of

demethylated TSDR requires cell DNA, and cannot be used to

enrich/sort Treg.

In humans, low expression of the interleukin-7 receptor

(CD127) on the surface of cells identifies Foxp3+ cells.

CD4+CD25hiCD127lo T cells are highly suppressive in vitro

(166, 167). The CD4+CD25hiCD127lo cells are a functional

Treg population in renal transplant patients (119, 126, 132,

137, 154, 168, 169).

CD45RA further delineates non-activated Treg (CD45RA+)

from activated/memory Treg (CD45RA-) (35, 137). CD45RA

expression identifies three subpopulations of CD4+CD25+

Foxp3+CD127loTreg (35, 170), as described by Miyara et al.

(35) and illustrated in Figure 2. This identifies naïve/resting

tTreg as CD4+CD25+CD45RA+CD127loTreg, which are the

human equivalent of the Sakaguchi et al’s tTreg in mice. These

inhibit activation of an immune response by APC such as

dendritic cells.

CD4+CD25hiFoxP3hiCD127lo cells are highly activated Treg

and probably include expanded antigen-specific Treg that

maintain transplant tolerance. The third population is

cytokine secreting CD4+CD25+FoxP3+T cells, some of which

can revert to effector T cells. Their full inhibitory capacity as

Treg is unclear.

Resting tTreg which are thymic emigrants, also express

CD31 (158) but lose it on activation.
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TABLE 2 Markers used to identify T regulatory cells in renal transplantation.

Year First Author CD3 CD4 CD25 Foxp3 CD127 CD45R Chemokine receptor Activation molecules

2003 Salama (106) – + + – – – – CD134, iCOSlo

2003 Game (107) – + + + – – – –

2006 Louis (108) – + + + – – – –

2006 Lopez (109) – + + + – – – –

2006 San Segundo (110) – + + + – – – –

2007 Bestard (111) – + + + – – – –

2007 Kreijveld (112) + + + – – – – –

2007 Noris (113) + + + – – RO – –

2007 Braudeau (53) – + + + – – – –

2008 Akl (114) – + + – – – – –

2008 Bloom (115) – + + + – – – CTLA4

2008 Bluestone (116) – + + + + – – –

2008 Daniel (117) – + + + + – – HLA-DR, IFN-g

2008 Kreijveld (118) – + + + – – – –

2009 Hendrikx (119, 120) – + + – – RO – –

2009 Presser (121) – + + + + – – –

2009 Kim (122) – + + – – – – –

2009 Wang (123) – + + + – – – –

2009 Sewgobind (124) – + + + + RO CCR7 –

2010 Carroll (125) – + – + + – – CD69

2010 Fourtounas (126) + + + + + RA/RO – HLA-DRhi

2010 Vondran (127) – + + + + – – –

2010 Sagoo (128) – + + + – – – –

2010 San Segundo (129) – + + – + RO – –

2011 Hoerning (130) – + + + – – CXCR3 –

2011 Iwase (131) – + + + – – – –

2011 Valloton (132) – + + + + – – –

2012 Hoerning (133) – + + + – – CXCR3, CCR5 –

2012 Krystufkova (134) – + + + + – – –

2012 Lin (135) – + + + – – – –

2012 Macedo (136) – + + + + – – –

2012 Schaier (137) – + + – + RA – HLA-DRhi

2012 Zhao (138) – + + + – RA – –

2013 Schaier (139) – + + + + – – HLA-DRhi

2014 Bouvy (140) + + + + + RO – Helios, CD31 (thymic-derived)

2014
2014

San Segundo (141)
Hu (142)

-
-

+
+

+
+

+
+

-
-

RO
-

-
CXCR5

CD62L
-

2015 Krepsova (143) + + + + – – – –

2015 Braza (144) + + + + + RA – CD39, GITR

2015
2015

Wlasiuk (145)
Ma (146)

-
-

+
+

+
+

+
+

-
-

-
-

-
-

-
IFN-g and IL-17

2016 Trojan (147) + + + + – – CXCR3 CD28, HLA-DR, CTLA-4, Perforin, Fas-L

2017 McRae (148) – + + – – – – CD39

2017 Trojan (149) + + + + + – – Helios, IFN-g

2018 Durand (150) – + + + + RA – CD39

2018 Mathew (151) + + + + + RA CCR7, CXCR3 CXCR4 Helios

2019 Mederacke (152) – + + + – – – GARP

2019 San Segundo (153) – + + + + – – –

2019 Krajewska (154) + + + – + – – –

(Continued)
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TABLE 2 Continued

Year First Author CD3 CD4 CD25 Foxp3 CD127 CD45R Chemokine receptor Activation molecules

2020 Roemhild (155) – + + + + – – HLA-DR

2020 Mirzakhani (156) – + + + – RA – –

2021 Harden (157) – + + + + – CCR7 HLA-DR, CD57

2021 Shahi (158) – + + + – RA – CD31

2021 Tamita (159) – + + – + RA – –
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FIGURE 2

Identification of T regulatory cells in peripheral blood. Treg can be monitored as a proportion of CD4+ cells (A) in peripheral blood based on
expression of CD25 (B) or Foxp3 (C). Alternatively, Treg subpopulations can be identified as (1) resting Treg CD4+CD25+CD45RA+ (Population 1
in D) or CD4+Foxp3+CD45RA+ (Population I in E), activated Treg CD4+CD25hiCD45RA- (Population 2 in D) or CD4+Foxp3hiCD45RA- (Population
II in E) and non-suppressive cytokine secreting Treg CD4+CD25+CD45RA- (Population 3 in D) or CD4+Foxp3+CD45RA- (Population III in E). A
more reliable identification in human CD4+ cell populations is based on CD25 and CD127 expression where Treg are defined as
CD4+CD25+CD127lo (F), which can further be divided into Treg subpopulations I-III based on Foxp3 and CD45RA expression (G). Majority of
Treg Population II (>80%) express activation markers HLA-DR and CD39 (I) indicating Population II are activated Treg, whereas Population I
(H) and Population III (J) contain only <3% and <40% HLA-DR+CD39+ Treg respectively.
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Most of the early studies of Treg in renal transplant are

limited as they do not distinguish resting tTreg from the

potentially more important activated and alloantigen specific

Treg. The use of CD25, Foxp3, CD127, CD45RA staining can

identify resting tTreg from activated Treg and activated effector

lineage cells. Other markers can identify functionally different

activated Treg, and these markers are discussed below.
Changes in Treg over time in renal
transplant patients

Absolute Treg and other lymphocyte subsets numbers are

significantly reduced immediately post-RT and gradually

recover over three to twelve months to pre-transplant levels

(119, 122, 129, 131, 154). CD25+Treg are identified as early as 3

months post-RT and persist for years (106). A study of 39 stable

RT patients (mean 3 years post-transplant) found CD4+CD25hi

but not CD4+CD25hiCD127lo were reduced compared to HV

(126). Another cross-sectional study of RT patients found no

difference in CD4+CD25+Foxp3+Treg counts in patients who

were less than and over 5 years post-RT (145). In this latter

study, RT patients without a history of cancer post-transplant

had similar numbers of Treg to HV, whereas patients with

cancer post-transplant had increased CD4+CD25+Foxp3+Treg.

A comparison of 30 stable RT patients (mean 8 years post-

transplant), 5 hand transplant patients (mean 5 years post-

transplant) and 18 HV found that RT patients had fewer

CD4+CD25+CD127lo compared to the other groups (168).

These studies with limited phenotype analysis used absolute

counts, which reflect depletion of T cells as a whole. It is known

that there is tight control of Treg numbers relative to effector

CD4+T cells, so Treg do not exceed 10% of peripheral T cells.

Thus, many studies report Treg as a proportion of CD4+T cells,

which is a more meaningful reflection of Treg potential activity.

This is particularly the case in therapies that deplete T cells, such

as anti-CD25 mAb and anti-thymocyte globulin/anti-

lymphocyte globulin ATG/ALG.
Effect of immunosuppressive
therapy on Treg

Anti-CD25 mAb

The anti-human CD25 mAbs, Basiliximab and Daclizumab,

inhibit CD4+CD25+T effector cells and reduce rejection in RT

(171–173). Anti-CD25 mAb therapy depletes CD25+ cells or

blocks IL-2 binding to CD25 induced on alloantigen activated

effector T cells (174). IL-2 is required for generation and

maintenance of Treg (175, 176). Anti-CD25 may affect Treg

by downregulating CD25 expression by trogocytosis (123, 127,
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177, 178). In some studies, anti-CD25 fails to inhibit

CD4+CD25+Treg mediated suppression in vitro (107).

The effect of anti-CD25 mAb on Treg in vitro and in vivo has

been widely studied. When assessing CD25 expression after anti-

CD25 mAb therapy, a second fluorochrome-conjugated mAb

that does not compete for the CD25 binding site of the

therapeutic mAb must be used to avoid an erroneous

conclusion of CD25+cell depletion (179). In ten publications

on Treg after anti-CD25 mAb therapy in RT, four used mAb that

are not blocked by the therapeutic mAb (112, 115, 118, 120), two

used a mAb that blocked (127, 143) and the others did not

describe the clone (116, 123, 138, 180, 181).

Basiliximab (SDZ CHI 621) is a chimeric mouse-human

mAb that has high affinity for CD25 and blocks IL-2 binding,

thereby inhibiting IL-2 signalling on T cells (181). Basiliximab in

vitro does not inhibit suppression by Treg (107). Basiliximab has

a prolonged action in vivo and leads to transient depletion of

CD4+CD25+Treg and CD4+Foxp3+T cells in blood (115, 116,

138). A six-week reduction of CD4+CD25hiT cells was observed

in RT patients after treatment with Basiliximab, consistent with

its duration of action (127, 134). This reduction was associated

with a transient rise in CD4+CD25-CD127loFoxp3+ cells,

suggesting the mAb down-regulated expression of CD25

without reducing Treg numbers (127). Six months after anti-

CD25mAb treatment Treg had recovered (129).

Daclizumab, a humanized mAb to CD25 that blocks IL-2

binding preventing activation of the high affinity IL-2 receptor.

Daclizumab lowers CD4+CD25+Treg in RT patients (106, 115),

but functional Treg return to pre-transplant levels by 8 weeks

after a single dose (112). Others report Daclizumab reduces

CD25 expression without impeding Treg function (120, 123) or

depleting CD4+Foxp3+Treg (120, 121). Whether the depression

in CD4+CD25+Treg by anti-CD25 mAb therapy prevents their

ability to induce tolerance is unclear. Other studies found no

reduction in Treg (120).

In multiple sclerosis, continued treatment with Daclizumab

without concurrent immunosuppression leads to a high rate of

spontaneous autoimmunity (182). This suggests anti-CD25 mAb

can reduce Treg function over time and allow autoimmune

responses in patients not on concurrent immunosuppression

that could suppress autoimmune responses.

The evidence is inconclusive whether anti-CD25mAb therapy

inhibits Treg function or impedes induction of immune tolerance.

Anti-CD25 mAb are not used in trials of Treg infusion to

RT patients.
Anti-thymocyte globulin/anti-
lymphocyte globulin

Immunoglobulin from animals immunised with human

thymocytes (ATG) or lymphocytes (ALG) has been used to
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deplete peripheral lymphocytes of RT patients for over fifty years.

Immunomodulatory effects of ATG include depletion of peripheral

lymphocytes through complement-dependent lysis, T-cell

activation and apoptosis, blocking surface molecules on

lymphocytes, and promotion of Treg (183). ATG derived from

rabbit, but not horse, expands inhibitory CD4+CD25hiFoxp3+Treg

in vitro (184), but in vivo initially depletes CD4+Foxp3+CD127lo

cells (124).

Induction therapy with ATG in the first 7 days causes a

major reduction in all T-cells, including Foxp3+ cells (143). ATG

allows early preferential proliferation of Treg compared to

Basiliximab induction (140) and in both groups recovery of

depletion of Treg was due to homeostatic proliferation in the

periphery, not thymopoiesis.

Krystufkova et al. prospectively followed 71 RT recipients

who received calcineurin inhibitor (CNI)-based triple

immunosuppression and induction with either ATG,

Basiliximab or no induction antibody (controls) (134).

Compared to controls, CD25+Foxp3+Treg expansion among

CD4+T cells was observed in the ATG group at all post-

transplant time-points after day 14. A significant decrease in

Treg frequency and concurrent transient increase of

CD4+CD25lo/-Foxp3+T cells were observed in Basiliximab-

treated RT 7–60 days post-transplantation. In another

prospective study of 20 RT recipients receiving induction with

methylprednisolone and ATG, a similar early (day 5) increase of

CD4+CD25hi Treg was sustained over 24 months (111).

A cross-sectional study of RT over 100 days post-transplant

found no difference in CD3+CD4+CD25+Treg between patients

who had received ATG, Basiliximab or Daclizumab (117).
Cytotoxic T-lymphocyte-associated
protein 4 fused with
immunoglobulin IgG1 Fc

Abatacept and Belatacept are fusion proteins consisting of

the extracellular domain of CTLA4 linked to the modified Fc

(hinge, CH2, and CH3 domains) portion of human IgG1. Drug

binding to CD80 and CD86 blocks the CD28-CD80/CD86

costimulatory pathway required in T cell activation (185).

Belatacept has much higher affinity to CD80 and CD86

compared to Abatacept due to two amino-acid substitutions

(186), and is used in kidney transplantation as an alternative to

CNI in maintenance immunosuppression (187, 188). A

combination of Basiliximab and Belatacept had no effect on

CD4+CD25+Foxp3+Treg compared to CNI-treated patients (116).

Binding of CTLA4Ig to CD80 and CD86 also induces

dendritic cell production of the immunosuppressive enzyme

indoleamine 2,3-dioxygenase (IDO), which depletes local pools

of the essential amino acid tryptophan (189, 190). Experimental

evidence suggests that tryptophan deprivation sensitises

activated T cells to apoptosis prior to cell division and induces
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a regulatory phenotype in naïve T cells, further contributing to a

suppressive environment (191–193).

A study of stable RT recipients receiving either Belatacept or

cyclosporine (CSA) (194), has reported no difference in

peripheral CD4+CD25+Foxp3+Treg. However, Belatacept-

treated patients have significantly increased IDO+ peripheral

monocytes and increased percentage of Treg on graft biopsies

compared to CSA-treated patients. The same group reported

reduced inflammatory Th17,Th2 and M1 cells in Belatacept

treated compared to CNI treated RT patients and increased Treg

and other regulatory cells (195). In an early small study, there

was reduced Foxp3 in renal biopsies of Belatacept treated RT

patients compared to CNI treated (196). In the blood, Belatacept

treated RT had higher regulatory cell populations than CNI

treated, and reduced Th17 and Th22 populations (197). In

another study, CD4+CD25+Foxp3+ Treg were not different to

CNI treated but Th17 cells were depressed (198). Twelve months

post RT, Belatacept treated grafts had less Foxp3 than CNI

treated grafts, suggesting Belatacept did not induce Treg (199).

Combined Belatacept and Basiliximab therapy in RT had similar

Treg numbers to CNI controls, albeit there was an early transient

depletion of CD4+CD25+T cells (116).
Alemtuzumab

This anti-CD52mAb (Campath 1H) depletes T cells, B cells and

monocytes, with recovery of B cells, NK cells and monocytes taking

months. Recovery of CD4+T cells is slower and full recovery may

take more than a year (113). Within the CD4+T cells of RT patients

treated with Alemtuzumab there is predominance of memory

phenotype T cells (CD45RA-) (136, 200). The proportion of

CD4+CD25+Foxp3+T cells increases for years, compared with a

decrease in patients treated with CSA alone or with Basiliximab

(115). Patients treated with Alemtuzumab had greater return of

Treg if treated with sirolimus rather than CSA (113).

In a trial of Treg therapy, living donor RT recipients treated

initially withAlemtuzumab received an infusion of 5x109 expanded

recipient’s Treg 60 days after transplant. It was postulated that the

infused Treg would suppress allogeneic responses and induce

generation of new Treg. One year after transplant, a 5-20-fold

increase in the proportion of CD4+CD25+Foxp3+CD127- Treg was

observed but the absoluteTreg count had returned tonormal after 6

months (151). The relative increase in Treg was an effect of

Alemtuzumab and in vitro expanded Treg therapy. This shows

the relative proportion of Treg to effector CD4+T cells may change

after lymphocyte depletion.
Calcineurin inhibitors

CSA and Tacrolimus (Tac) act by blocking the TCR-Ag-

MHC pathway of T cell activation in both effector T cells and
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Treg (201, 202). CSA and Tac respectively bind to cyclophiln

and FK506 binding protein (FKBP) (203), CNI affect calcium

calmodulin preventing its dephosphorylation of the

transcription factor NFAT (202, 203). Thereby NFAT cannot

translocate to the nucleus and bind to genes that promote

transcription of cytokines. CNI thereby inhibits both Treg and

effector T cells activation and proliferation (110, 201).

In RT patients on CNI there is a decline in numbers of

CD4+CD25+Treg by 6-8 weeks, which increases by 6-8 months

(204). Transcripts of Foxp3 and CCR7 are higher in stable RT

patients without CNI therapy compared to those on CNI (205).

Ceasing CNI two years post RT allows development of Foxp3

expression and Treg (197). Similarly, in liver transplant,

stopping CNI and starting mycophenolate results in an

increase in CD4+Foxp3+Treg (206).

These clinical findings are consistent with CNI inhibiting

activation of Treg.
Mammalian target of
rapamycin inhibitors

The activation of CD4+CD25+Foxp3+Treg does not use the

mTOR pathway, whereas activation of effector T cells does.

Sirolimus and Everolimus bind to FKBP12 which engage and

bind to Target of Rapamycin (201). This blocks Signal 3 so

cytokines cannot activate cell division (201). mTOR inhibitors

do not inhibit calcineurin.

In vitro, Treg expansion can be promoted by mTOR

inhibitors, which block effector cell activation but permit Treg

activation (207).

Treg numbers in RT patients taking sirolimus are up to four

times higher than CNI-based regimens (111, 113, 132, 205). In a

randomised controlled trial of live donor RT, switch to sirolimus

at 2 months increases Treg numbers compared to controls

continuing on CNI (208)

CXCR3+Treg (Tregs activated by Th1 response) are present

in blood of CNI-treated patients, but in lower proportions than

in HV (133). Patients treated with mTOR inhibitors have more

CXCR3+Treg than those treated with CNIs (130).

Following Alemtuzumab therapy, RT patients treated with

sirolimus has greater regeneration of Treg than those treated

with CSA (113). Conversion from a CNI to Everolimus is

associated with a relative increase in CD4+CD25+Foxp3+Treg

and reduced effector CD4+T cells (209). In RT patients with

squamous cell carcinoma, conversion from CNI to sirolimus

increases CD4+CD127loCD25hiFoxp3+T cells after 6

months (210).

The clinical observations of Treg combined with the known

permissive effects on Treg by mTOR inhibitors, support a role

for these inhibitors in tolerance inducing protocols.
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Correlations of Treg with rejection
and stable graft function

The utility of Treg as a non-invasive biomarker for rejection

has been extensively studied, with mixed results (109). In a

comparison of 15 rejection-free living-related RT patients and 15

RT patients with biopsy-proven chronic rejection two years

post-transplant, there is a higher absolute number of

CD4+CD25hiTreg in rejection-free recipients (114), but this is

not greater than HV. CD4+CD25+Foxp3+T cells appear to be

reduced in acute rejection (146). CD4+CD25+Foxp3+T cells in

RT are higher than in dialysis patients, but are reduced with

acute rejection (142). CD4+CD25+Foxp3+CD45RA-Treg are less

in patients with rejection than in those without (156). RT

patients with antibody-mediated rejection have lower

CD4+CD25+Foxp3+Treg than those with stable graft

function (158).

In prospective studies, RT patients with chronic rejection

have lower Foxp3, CCR7 and granzyme B mRNA, and higher

TLR4 and proteasome subunit beta-10 mRNA compared to RT

without rejection (131). CD3+CD4+CD25+CD127loTreg count

and gene expression of Foxp3 and IL-10 at month 1 and month 3

correlates with long-term graft function (154). RT patients

whose absolute peripheral Treg count is above the median of

14.57 cells/mm3 at one year post-transplant have better death-

censored 5-year graft survival than those with Treg count below

the median (92.5% vs 81.4%) (153).

In cross-sectional studies, patients with chronic rejection

have lower CD4+CD25+Foxp3+Treg than rejection-free and

operationally tolerant RT (53), who have similar Treg to HV

(108). Patients with biopsy-proven chronic rejection have

significantly fewer CD4+CD25+ cells and lower Foxp3

transcripts compared to those with stable rejection-free RT,

drug-free tolerant RT, RT on minimal immunosuppression

and HV (108). The clinically tolerant RT patients have similar

Treg levels to HV.

In a large group of RT patients, those with no rejection have

higher Foxp3+ cells in CD4+CD25+ compared with those who

had rejection, but on multivariate analysis this is not significant

(135). There is a positive linear relationship between glomerular

filtration rate and the percentage of CD4+CD25+Foxp3+ cells.

In a cross-sectional study of 156 RT patients on the day of

renal biopsy, the percentage of CD4+CD127loFoxp3+Treg within

CD4+T cells does not differ between the rejecting and non-

rejecting (137). The percentage of highly suppressive

DR+CD45RA- cells is greatly reduced in biopsy-proven

rejection (137). Furthermore, suppressive activity of

CD4+CD25+CD127loTreg from RT patients with rejection is

significantly reduced compared to non-rejecting and HV

(137). Another study also finds suppressive activity of Treg is
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significantly lower in RT patients with clinically significant

borderline rejection on biopsy and acute graft dysfunction,

than if there are no histological changes or acute graft

dysfunction (139).

RT patients who developed donor specific antibodies after 12

months, have less Treg than those who did not develop

alloantibodies (211).

Overall, freedom from rejection is associated with a greater

proportion of Treg, suggesting more detailed analysis may

identify patients with low risk of rejection and possibly able to

have a lower dose of immune-suppressing therapy.
Correlations of Treg and operational
tolerance to an allograft

Operational tolerance is stable renal allograft function in the

absence of immunosuppression. Several studies have

documented the B and T cell profiles of these patients (212–

215) but there is no consensus as to which are important (216).

Treg in operationally tolerant RT patients with no

immunosuppression for 12 months and a serum creatinine

of <150 mmol/L are compared to those with stable RT graft

function on immunosuppression over 2 years with serum

creatinine of <150 mmol/L, and also to RT patients with

chronic rejection, and HV (144). The operationally tolerant

group has a higher proportion of CD4+T cells with

demethylated TSDR, consistent with more Treg. This group

also has more activated CD4+CD25hiCD45RA-Treg. These

activated Treg have increased expression of CD39 and

glucocorticoid-induced TNF-related receptor (GITR). In a

later study, it is reported that patients with tolerant RT

maintain a physiological memory Treg/CD4+CD25- effector

ratio (150).

Drug-free tolerant patients have more B and NK cells

detectable than RT recipients on immunosuppressive

medications or recipients with chronic rejection (128, 213).

Tolerant patients also have less activated CD4+T cells,

including CD4intCD25+T cells, compared to HV and other

transplant patients (128). Whole blood gene expression levels

of Foxp3 and a-1,2-mannosidase both correlate with anti-donor

immune reactivity after RT (217). Tolerance is associated with a

high ratio of peripheral blood Foxp3 to a-1,2-mannosidase

expression (128).
Treg in renal transplant patients
with malignancy

In non-transplant patients, tumour infiltration with high

numbers of CD4+CD25hiFoxp3+ and CD8+CD28-T cells are

poor prognostic markers (218, 219). In two studies of RT,
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patients with squamous cell skin cancer have higher

CD4+CD25+Treg than those without cancer, and have lower T

cell counts and lower CD8/Foxp3 ratios (125, 135). This limited

data suggest too much regulation may increase the risk

of malignancy.
Activated/memory Treg

CD45RA –/CD45RO+

Naïve T effector cells and Treg express the high molecular

weight form of common leukocyte antigen (CD45RA), and upon

activation express lower molecular weight forms, CD45RB,

CD45RC and CD45RO. CD45RA staining of Treg is shown in

F igure 2 . In neona tes , the major i ty o f Treg are

CD4+CD25+CD45RA+Foxp3+T cells and the proportion drops

with age as naïve tTreg are activated to Treg that are

CD45RA- (220).

In RT patients with operational tolerance, there is an

increase in CD4+CD45RA-Foxp3hi cells that are identified as

memory Treg (144, 221). CD4+ cells from these patients have a

higher level of demethylated TSDR, indicating they are derived

from professional tTreg with stable Foxp3 expression. These

Treg have higher expression of CD39 and GITR.

In stable RT patients, CD4+CD25+CD45RO+Foxp3+CD127loT

cells are reduced and the CD4+CD25+CD45RO+Foxp3-CD127hi

population increased compared to HV (222). The reduction in Treg

is greater than in studies that use only CD4+CD25+ as a Treg

marker. The CD4+CD25+CD45RO+Foxp3-CD127hiT cells from

stable renal transplants do not suppress and secrete Th1

cytokines IFNg and TNF-a. In chronic rejection, there is further

increase in CD4+CD25+CD45RO+Foxp3-CD127hiT cells compared

to stable patients, and a complementary reduction in the suppressor

CD4+CD25+CD45RO+Foxp3+CD127 l oT ce l l s . The

CD4+CD25+CD45RO+Foxp3-CD127+T cells are found to be

allospecific and infiltrate the renal allograft.

Increase in post-transplant CD4+CD25+CD45RO+Foxp3-

CD127+T cells is reported in CNI-treated RT patients but not

in those with CNI-free immunosuppression, where activated

CD4+CD25+T cells remained similar tolike HV (132).

Compared to HV, in RT recipients CD25hiCD127-CD4+ T cells

are reduced and are lower in a subset of 11 patients who developed

donor specific antibodies (159). In this study patients developing

anti-donor antibodies, but not those with non-donor anti-HLA

antibodies, have more activated CD4+CD25+CD127loCD45RA-

Treg (159). The increased activated Treg may indicate the active

immune response to the RT may expand activated Treg in an

attempt toto control rejection.

Paradoxically, a multicentre study shows that a high

proportion of memory Treg (CD4+CD25hiCD62L+CD45RO+

cells) pre-transplant predicts acute rejection in the first year

post-RT (141).
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Theory on Treg suggests the more activated Treg that are

CD45RA- the better the graft outcome. The results to date

suggest this may be the case. Increase in activated Treg may

indicate a form of tolerance. This hypothesis needs to be tested

further with larger studies.
Treg activated by a Th1 response

Like effector Th1, Treg activated by Th1 cytokines acquire

expression of CXCR3, which promotes migration to sites of Th1

inflammation. Th1-activated Treg, like Th1 effector T cells, also

lose expression of CCR7 and CD62L, the molecules that

promote tTreg migration to secondary lymphoid tissues (223,

224). IP-10 (CXCL-10) attracts CXCR3-expressing cells, both

effector and Treg, into the site of graft rejection (225).

Treg activated by Th1 cytokines, in particular IL-12, become

Th1-like Treg that express the Th1 transcription factor T-bet as

well as Foxp3, and produce IFN-g but not IL-2 (28, 226). IFN-g-
expressing CD3+CD4+CD25+Treg have been detected in RT

patients, especially those with stable graft function (117). Such

patients have a similar proportion of IFN-g+ Treg to HV, and the

IFN−g+Treg include Helios+ and Helios- Treg and methylated

TSDR, suggesting a mixture of activated tTreg and induced Treg

(149). In vitro induction of T-bet+IFN-g+Treg is inhibited by

methylprednisolone, CSA and high-dose azathioprine and

mycophenolate mofetil (227). In long-standing stable RT

patients, IFN-g+Treg are associated with high NK cells, stable

Foxp3 expression, and expression of Helios and HLADR (147).

In vitro, CD4+CD25+Foxp3+IFN−g+Treg suppress and induce

apoptosis in effector cells (228, 229).

The studies on IFNg+ Tregmay identify highly activated Th1-

like Treg, which have much greater suppressing capacity. Such

Treg activated by an antigen and cytokines produced by a Type I

effector T cell response may be major contributors to tolerance

induction and important to monitor if tolerance is to be detected.
HLA-DR-expressing Treg

In the original description of CD4+CD25+T cells as mediators

of transplant tolerance, it was identified the CD4+CD25+T cells

expressed Class II MHC (22). Class II MHC is only expressed by a

small subset of peripheral T cells. Studies in multiple sclerosis

characterised CD4+CD25+Foxp3hiHLA-DR+ Treg, which are

highly suppressive (230).

An HLA-DRhiCD45RA- subset of Treg is found to be

reduced in the first 12 months post-RT but recovers after 12

months (137). This population is higher in RT patients without

acute rejection and does not recover in patients with biopsy-

proven (including borderline) rejection (139). Treatment with

methylprednisolone increases the proportion of highly

suppressive HLA-DR+Treg (231).
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HLA DR expressing Treg may be major mediators of

transplant tolerance and further studies are required to

establish their usefulness in monitoring for transplant tolerance.
CD39-expressing Treg

CD39 is an ectonucleotidase that degrades extracellular

nucleotides ATP and ADP to AMP. ATP and ADP released

from damaged tissue are pro-inflammatory, activating the

purinergic P2 receptor (232). CD39 is expressed on some

memory CD4+CD25+Foxp3+Treg. CD73 then converts AMP

to adenosine, which mediates immune suppression (233–235).

Adenosine binds to adenosine A2A receptors on activated Th1

and Th2 cells (236) and induces anergy and promotes Treg

(237). CD39 expression on CD4+T cells can denote memory (m)

Treg (CD4+CD25+CD45RO+CD39+) and memory effector cells

(CD4+CD45RO+CD25-CD39+). The latter have Th17 effector

potential, but also produce Th1 and Th2 effector cytokines

(97, 238).

Dwyer et al. have found CD4+CD25+CD39+T cells, do not

differ between HV, RT and end-stage renal failure patients (97).

The proportion of CD39+mTreg is reduced in CNI-treated hosts.

They find that CD4+CD25+CD39+T cells comprise 1.5% of

blood CD4+T cells.

In antibody-mediated rejection, there is an increase in

CD4+CD25-CD39+T cells, which return to non-rejecting RT

patient levels when rejection is resolved. In a longitudinal study,

compared to stable RT patients, those with acute T-cell mediated

rejection have reduced CD4+CD25+CD39+Treg and

CD4+CD25-CD39+T effector cells (148). After one year, RT

patients have lower CD4+CD25+CD39+Treg and CD4+CD25-

CD39+T effectors compared to HV, however cells from stable RT

patients exhibit more potent suppressor capacity.

RT patients with operational tolerance, who have been off

immunosuppression for >12 months with stable renal function,

have an increased proportion of CD39+mTreg compared to

those with stable RT on immunosuppression (150, 239).

Among CD4+T cells, only the CD3+CD4+CD25hiCD45RA-

Foxp3hi cells are increased. CD39+Treg from tolerant hosts

degrade ATP to AMP similarly to HV but greater than Treg

from RT patients with stable allograft function. Operationally

tolerant RT, but not RT patients with stable graft function on

immunosuppression, have mTreg to effector T cell ratios that are

increased, and similar to HV.

CD39, along with HLA DR expressing Treg, appear to be

markers of activated Treg. CD39 plays a role in mediating

suppression by Treg. Further detailed studies are required to

establish their role. One issue is immune response to non-

transplant antigens may induce activation of Treg to express

CD39, thus there may be a background incidence of CD39

expressing cells not related to the immune response to

the allograft.
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T follicular regulatory cells in
renal transplant

The nature of Tfr Treg has recently been reviewed (240–242).

Tfr are a small subset of CD4+T cells that control immune

responses in lymphoid follicles and germinal centres. Tfr control

germinal B cell activation (243).

Tfr are CD4+CD25+Foxp3+T cells that can be identified by

their high expression of CXCR5, PD1 and iCOS. Tfh cells have

intermediate expression of CXCR5 and PD1. CXCR5 promote

migration to germinal centres by CXCL13 released by germinal

centre dendritic cells (240, 242). Tfr inhibit through production

of IL-10 and PD1 (244). Other regulatory cells, such as tTreg,

regulatory B cells can inhibit alloantibody production (245). In a

murine model, while Tfh cells are required for production of

alloantibody, absence of Tfr worsenes alloantibody production

and rejection (246).

Niu et al. while examining Tfr in blood of 5-7 year old RT

patient’s blood, have found no difference in Tfh cells but reduced

Tfr cells in RT compared to HV (244), Prior alemtuzumab

therapy but no steroid or IVIg therapy has no effect on Tfr (244).

Yan et al. have reported lower Tfr cells in RT recipients with

chronic allograft dysfunction than in RT patients with stable

graft function (247).

Effective induction of Tfr-Treg may prevent donor specific

antibody responses - a major cause of graft loss. Their potential

as a therapy has been reviewed (248).
Treg in renal biopsies and urine

Veronese et al. have described increased Foxp3+ cells in

acute cellular rejection than in antibody mediated rejection

(249). The majority of cells are CD4+ and are located in

tubules, which may account for the high levels of Foxp3 in

urine during rejection. Higher Foxp3+ cell numbers correlate

with a worse prognosis (249), Others have reported early

infiltration of Foxp3+ cells in renal biopsies taken early after

transplant, especially if there is acute cellular rejection (250).

Examining the ratio of Foxp3 to granzyme B mRNA expression,

Grimbert et al. found it is greater in borderline rejection than in

acute cellular rejection of RT (251), Overall it has been suggested

that expression of Foxp3 in biopsies may predict a better

outcome (252).

Bestard et al. have found that in 6-month protocol RT

biopsies with borderline rejection, those stained for Foxp3+

cells are from patients who have better graft function at 2-, 3-

and 5-years post-RT than those with no staining (253, 254).

Foxp3+Treg/CD3+T cell ratio also correlates with better graft

function at 2 years. Treg predominance over cytotoxic T cells in

surveillance renal biopsies predicts good outcome, whereas

cytotoxic T cell predominance is associated with acute cellular
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rejection (255). In acute T cell-mediated rejection biopsies,

predominance of Foxp3+ cells over Th17 leads to better graft

survival at 1 and 5 years (78). These studies suggest that the

proportion of Treg within the T-cell infiltrate is relevant to

facilitating renal engraftment.

Bunnag et al. found expression of Foxp3 is higher in biopsies

with both cellular and antibody-mediated rejection than those

without rejection (256). Chronic antibody-mediated rejection is

also associated with increased Foxp3 and infiltration of Foxp3+

cells. It is proposed that Foxp3 expression is a time-dependent

feature of inflammatory infiltrates, and that entry of Foxp3+ cells

may stabilise inflammation or eliminate it.

In a study of urinary Foxp3 mRNA and other T cell markers

at the time of renal biopsy (257), the mean ratio of Foxp3 mRNA

to 18S ribosomal RNA copies is higher in urine from RT patients

with acute rejection (n=36) than those with chronic allograft

nephropathy (n=18) or normal biopsies (n=29). Foxp3 mRNA

levels are inversely correlated with serum creatinine levels in the

acute rejection group only. Reversal of acute rejection can be

predicted with high sensitivity and specificity by use of an

optimal cut off for Foxp3 mRNA. Low urinary Foxp3 mRNA

levels identify subjects at risk of graft failure within six months

after the episode of acute rejection. T cell markers, including

CD25, CD3e, perforin, and 18S rRNA are predictive of reversal

of acute rejection or graft failure.

These findings are confirmed in a large multicentre study of

4300 urine samples and 485 RT recipients in the first-year post

RT. mRNA expression for CD3e, IP-10 and 18S rRNA is used to

diagnose and prognosticate acute rejection (258). This group at a

single centre studied 3599 urines from 480 RT recipients,

confirming that mRNA for Foxp3, CD25, CD3e and perforin

can diagnose acute cellular rejection and the reversibility of the

rejection (259).

These studies are consistent with the inflammation of a

rejection response attracting Treg into the graft to control

rejection. In the absence of inflammation from rejection, there

is nothing to attract migration of Treg to the graft. Rejection will

attract Treg, so it is not surprising they are present during

rejection both in the graft and in urine. The presence of

Foxp3+Treg may be slowing rejection and contribute to its

reversal with a better outcome than when Foxp3+ cell number

is low.
Regulatory T cells as therapy for
kidney transplantation

The therapeutic potential of ex vivo expanded Treg is

explored in a number of studies (151, 155, 157, 260–265), and

has been reviewed elsewhere (266–268). Their use heightens the

need for better methods of monitoring Treg subsets as a

potential diagnostic test for tolerance. To date, studies of
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expanded naïve Treg therapy has been shown to be safe and

cause no harm to RT function. More specialized alloantigen

specific Treg, such as Tfr, have been prosed as therapy in

RT (248)
Discussion

This review makes the case that regulatory cells, especially

CD4+CD25+Foxp3+T cells, can control transplant rejection and

induce a state of operational tolerance where rejection does not

occur. In animal models of operational tolerance, second grafts

from the same donor strain are not rejected but third party grafts

are rejected (269). Thus, a state of specific unresponsiveness

develops yet the hosts lymphocyte are not clonally deleted (12)

and in vitro can respond to specific donor and third-party

alloantigen (18, 23, 270).

Human RT recipients can develop operational tolerance, but

most patients reject the graft if nonspecific immunosuppression

is stopped. Studies on RT patients with operational tolerance

have not described a precise mechanism. Most reports identify

changes in B cells (213–216). The changes in B cells were

inconsistent between studies, however. The potential of

regulatory B cells to induce transplant tolerance is not

established, but these cells may play a role.

Increased numbers of CD45RA-Foxp3hi Treg have been

identified in RT patients with operational tolerance (144, 221).

This population of CD45RA-Foxp3hi Treg is low in RT patients

with acute rejection (206). Miyara et al. identified these as fully

activated Treg (35) and this is likely the population containing

alloantigen specific Treg with great potency at regulation. There

is considerable evidence that activated alloantigen specific Treg

can induce operational transplant tolerance, but our knowledge

of these cells compared to tTreg is very limited. These activated

Treg should be the focus of future research to elucidate methods

to promote activated alloantigen specific Treg and to

monitor them.

Much can be learnt from murine models, and we will

summarize some of these issues below.

The tolerant state is maintained by Treg entering the graft

and controlling rejection in the graft (271). Thus, there should be

a focus on Treg expressing chemokine receptors that promote

migration to sites of inflammation such as CXCR3 and CCR6.

Treg expressing these chemokine receptors are found in the

CD45RA-Treg, especially those with high CD25 and

Foxp3 expression.

A major underappreciated issue is the differences in cytokine

requirement for T cells’ continued survival and function,

particularly in vitro and especially in reference to naïve tTreg

and antigen activated Treg. In early studies, lymphocytes were

found to die ex vivo and were considered to have no function

(272). To survive in vitro, all lymphocytes including Treg need

specific cytokines. Effector lineage T cells express CD127 (the IL-
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7 receptor) and IL-7 is required to stimulate their survival as

does IL-6 and IL-4 (273). After activation, effector T cells

become dependent on other cytokines such as IL-2, IL-4, IL-

12, IL-15 (274).

CD4+CD25+Foxp3+Treg have low or no expression of

CD127 (275) and their survival is dependent on IL-2 not IL-7.

When activated by antigen and IL-2, Treg become dependent on

IFN-g (29, 44)and IL-12 not IL-2 (28). Activated and alloantigen-
specific Treg require continued stimulation by specific antigen

and cytokines other than IL-2. In vitro without these two

requirements, activated antigen specific Treg will not survive.

This could lead to a false impression that activated antigen-

specific Treg do not exist and have no function, much as was

described in the early experiments in lymphocytes in vitro (272).

Anothermajor area to consider is that theCD4+CD25+Foxp3+T

cell population is not just resting/naïve tTreg but is very

heterogeneous. It contains a large number of resting naïve tTreg

subpopulation that act in a non-specificmanner to inhibit activation

of immune responses especially those to autoantigen. These cells are

depleted with age (220) but this subpopulation of naïve/resting Treg

is still present after renal transplant. This subpopulation is probably

not directly relevant when transplant tolerance is established, but

during induction of tolerance is the source of naïve Treg for

activation by alloantigen and cytokines from the activated effector

lymphocytes (17, 39, 40, 276).

The population of greatest interest is the CD45RA- subset of

CD4+CD25+Foxp3+T cell, which may include both antigen

activated effector T cells and antigen activated Treg. According

to Miyara (35), it is these cells with high expression of CD25 and

Foxp3 that are highly activated Treg. This population is

increased in RT patients with operational tolerance (144, 221)

and is potentially the most important. However, some cells of

this subset of CD4+CD25+Foxp3+CD45RA-T cells may have

been activated to other antigens such as autoantigens. In HV,

this population represents about 10% of CD4+CD25+Foxp3+T

cells, and is increased in diseases such as multiple sclerosis (158).

The relevant alloantigen specific Treg in this subpopulation may

be rare in the circulation.

Activated Treg migrate to tissue and may accumulate in the

graft where there is specific alloantigen and activated T effector

cells, that produce the cytokines required for their survival and

propagation. Cytokines such as IFN-g, IL-12 and IL-5 are

produced in a fully activated T cells, after they mature and stop

producing IL-2 and IL-4. Identification of activated Treg within

the graftmay reveal an increased number in operational tolerance.

Currently there is no immune monitoring test that

determines whether a tolerant state exists so safe withdrawal

of immunosuppression can occur. There is no standardised

method of estimating Treg (Table 2) as early studies counted

CD4+CD25+T cells and later CD4+CD25+Foxp3+ T cells

(Table 1), unwittingly including activated effector CD4+T cells.

Now human Treg should be identified more specifically as

CD4+CD25+Foxp3+CD127lo T cells (220, 275). Treg are
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depleted in the early stages following RT then recover to levels of

HV. Operational tolerance in animal models (44) and patients

(144, 221) is not associated with marked increases in

CD4+CD25+Foxp3+Treg in the circulation and peripheral

lymphoid tissues, albeit there are increased proportions of

Treg to effector CD4+T cells in many studies.

Staining CD45RA, CD4, CD25 and CD127 identifies three

Treg, and two effector T cell sub-populations (35) (Figure 2).

CD4+CD45RA+CD25+Foxp3+CD127loTreg are resting thymus-

derived cells, known as either nTreg or tTreg that prevent

autoimmunity (41). They inhibit naïve effector cell activation

by inhibiting antigen presentation by dendritic cells. They only

suppress rejection at unphysiologically high ratios to naïve

effector cells (42), levels not achieved post-transplant. In

chronic inflammation they are depleted (170).

tTreg can be activated by alloantigen and key cytokines (40)

to become alloantigen-specific Treg that suppress rejection at

low ratios to effector cells (28, 29). CD4+CD45RA-

Foxp3hiCD25hi cells are activated Treg, and do not include

recently activated CD4+CD45RA-Foxp3+CD25+ effector T cells

that can produce inflammatory cytokines such as IFN-g and IL-

17 (35). CD4+CD45RA-Foxp3hiCD25hi cells are increased in

operationally tolerant patients (144, 221).

When using lack of CD45RA as a marker of activated cells,

focus should be on the CD45RA-Foxp3hi population (170).

Activated Treg that mediate transplant tolerance do not

recirculate from blood to lymph and migrate into tissue (36).

They do not express CD62L or CCR7. They express other

chemokine receptors including CXCR3 for Th1-activated Treg,

CCR8 for Th2-activated Treg and CCR6 for Th17-activated Treg

(95, 96). Some activated Treg express two chemokine receptors

(170). These chemokine receptors direct migration of activated

Treg into inflamed tissue where they inhibit inflammation. Th1-

like Treg can be identified by their expression of IFN-g (117).

Th1-like Treg are the most potent antigen-specific Treg defined

(28). Tfr cells were depleted in RT patients destined to develop

chronic rejection (277) and in RT patients with long standing

immunosuppression, particularly those that received

Alemtuzumab (248). More detailed examination of Treg

subpopulations in RT patients is required.

Activated Treg also express molecules that mediate their

suppressive effects, including CD39/CD73, IL-35, HLA-DR,

CTLA4 and PD1. In a recent study with CyTOF (cytometry by

time of flight), over one hundred mAb have been used to

segregate subpopulations of lymphocytes (157). Activated/

memory Treg expressing these molecules may indicate

tolerance and can be assayed.

An area that the current researchdoes not adequately consider is

that our earlymurine studies have identified that alloantigen-specific

CD4+Treg do not survive when stimulated with specific alloantigen

unless key cytokines are available (24, 28, 29, 44). Activated Treg

express receptors for many cytokines not normally associated with

their function, such as IFN-g, IL-12, IL-5 (44). Further,
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CD4+CD25+Treg from tolerant hosts do not proliferate when

stimulated by specific donor alloantigen unless cultures are

supplemented with key cytokines (44). This is a critical

understanding to have when designing assays that detect

alloantigen specific Treg. Ex vivo they rapidly die even if

stimulated with specific alloantigen. This is the observation that led

us to examine if the tolerance transferring CD4+T cell was activated

and expressed the activation marker CD25, the IL-2 receptor.

Pardoxically, IL-2 cannot alone fully sustain activated

alloantigen specific Treg (44). In studies on enriched

CD4+CD25+T Cells from animals tolerant to an allografts,

their in vitro proliferation to specific donor is at background

and less than to self (44). Adding either IL-2 or IL-4 to culture

increases these cells’ proliferation to self, specific donor and third

party stimulator cells (44). Thus, there is an antigen nonspecific

response promoted by IL-2 (28, 29) and IL-4 (29).

We screened the effects of other cytokines in these cultures

and identified three that promote CD4+CD25+T cells to specific

donor but not to third party. Cytokines shown to promote

proliferation and survival of activated Treg are produced later

during the activation of effector CD4+ T cells including IFN-g,
IL-12 and IL-5 (44). Other cytokines such as TGF-b. IL-10 and

IL-13 do not promote proliferation of CD4+CD25+T cells from

tolerant animals (44). The cytokines identified to support

antigen-specific Treg are produced late in Th1 or Th2

responses, after the early cytokine production, mainly IL-2 or

IL-4 has waned. The role of IFN-g (25) and IL-5 (24) in

sustaining tolerance transferring CD4+T cells in short-term

cultures is confirmed.

We have started to extend these findings using human

CD4+CD25+T cells, and shown culture of normal tTreg cells with

an alloantigen and IL-4 induces expression of IL-5 receptor alpha

(29).Others found IFN−g critical for activation ofCD4+CD25+Treg
inmurine (278) andhuman (279, 280) studies. IL-12 induces IFN-g
in Treg but only if there is no IL-2 (28, 281). Further, treatment of

transplanted hosts with IL-12 (282) or IL-5 (283) delays graft

rejection. Taken together, these findings suggest the inflammatory

cytokines IL-5, IFN-g and IL-12 also can inhibit rejection, in part by
activating antigen specific Treg.

The immediate challenge in this field is to develop an assay

to identify alloantigen-specific Treg that are essential and

sufficient to achieve operational tolerance in RT patients. First,

this effort will require a better understanding of the stimuli and

cytokines that promote activation and expansion of antigen

specific Treg. Key contenders are IFN-g, IL-12 and IL-5.

Second, any assay needs to consider the short life span of

activated Treg ex vivo and their dependence on specific

antigen stimulation and cytokines other than IL-2. Third, to

explore the possibility that IL-2 itself may turn off activated Treg.

Fourth, to examine if activated Treg turn off activated effector

cells, and do not necessarily inhibit APC, as occurs with tTreg.

Thus, current assays used to measure suppression by tTreg, may

not identify the inhibitory potential of activated Treg.
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Well defined assays need to be developed that may identify

states of operational tolerance and guide future research into

effective interventions to achieve operational tolerance in RT

patients. In future studies, consideration also needs to be

given to other mechanisms of transplant tolerance, as

CD4+CD25+CD127loFoxp3+Treg may only be one of several

key mechanisms.
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