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The use of immune checkpoint inhibitors to treat cancer resulted in

unprecedented and durable clinical benefits. However, the response rate

among patients remains rather modest. Previous work from our laboratory

demonstrated the efficacy of using attenuated bacteria as immunomodulatory

anti-cancer agents. The current study investigated the potential of utilizing a

low dose of attenuated Salmonella typhimurium to enhance the efficacy of PD-

L1 blockade in a relatively immunogenic model of colon cancer. The response

of MC38 tumors to treatment with aPD-L1 monoclonal antibody (mAb) was

variable, with only 30% of themice being responsive. Combined treatment with

aPD-L1 mAb and Salmonella resulted in 75% inhibition of tumor growth in

100% of animals. Mechanistically, the enhanced response correlated with a

decrease in the percentage of tumor-associated granulocytic cells,

upregulation in MHC class II expression by intratumoral monocytes and an

increase in tumor infiltration by effector T cells. Collectively, these alterations

resulted in improved anti-tumor effector responses and increased apoptosis

within the tumor. Thus, our study demonstrates that a novel combination

treatment utilizing attenuated Salmonella and aPD-L1 mAb could improve the

outcome of immunotherapy in colorectal cancer.
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1 Introduction
Cancer continues to be a serious public health concern

worldwide with nearly 10 million deaths attributed to this

chronic disease each year (1). Conventional cancer treatments

including chemotherapy and radiotherapy have major

limitations due to the lack of tumor specificity, inadequate

tissue penetration, significant toxicity and rising resistance.

The realization that the major driving force underlying cancer

development and progression is linked to a compromised

immune system has led to the birth of a new modality to treat

cancer using immunotherapeutic approaches, such as antibody-

mediated immune checkpoint inhibitors (ICIs), cancer vaccines

and adoptive T-cell transfer (2). Despite the promising recent

breakthroughs and cl inical benefi t s achieved with

immunotherapy, not all patients respond similarly to

treatment. Therefore, there is an increasing demand to develop

novel strategies to improve the efficacy of immunotherapy.

The identification of several so-called immune checkpoint

molecules has revolutionized our understanding of anti-tumor

immunity (3). Immune checkpoint molecules induce a series of

costimulatory and inhibitory signals that regulate antigen

recognition and determine the magnitude of T cell responses.

Within the tumor microenvironment, inhibitory ligands and

their receptors are predominantly overexpressed on both tumor

cells and tumor-infiltrating immune cells (4). The best

characterized negative immune regulators include cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4) which binds to the

costimulatory molecules CD80 (B7-1) and CD86 (B7-2),

programmed cell death-1 (PD-1) and its ligand (PD-L1),

lymphocyte act ivat ion gene-3 (LAG-3) and T cel l

immunoglobulin and mucin-domain containing-3 (TIM-3)

proteins (5–7). The past decade has witnessed unprecedented

and durable success with the use of ICIs in treating different

types of cancer, including melanoma, non-small cell lung

carcinoma (NSCLC), renal cell carcinoma (RCC), lymphoma

and mismatch-repair deficient (dMMR) tumors (8, 9). However,

only a fraction of cancer patients responds to the treatment in

which the overall response rate can be as low as ~20-40% (10,

11). This highlights the need to identify potential means by

which the resistance to ICIs can be alleviated in order to improve

the clinical outcome.

Different innate and acquired resistance mechanisms have

been associated with the reduced anti-tumor efficacy of PD-1/

PD-L1 inhibitors and these include: (a) Lack of tumor

immunogenicity leading to impaired antigen presentation and

T-cell recognition (12–15), (b) poor intratumoral T cell

infiltration, activation and differentiation (16, 17), (c)

immunosuppressive cellular and soluble components of the

tumor microenvironment including MDSCs, Tregs, pro-tumor

M2 macrophages and their associated cytokines and chemokines

(18–21), in addition to (d) T-cell dysfunction that results from
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checkpoint ligands (22). In order to improve the anti-tumor

efficacy of PD-1/PD-L1 inhibitors, combination therapies with

other immune checkpoint targeting antibodies, chemotherapy,

radiotherapy, and tumor neoantigen vaccine that target

resistance mechanisms and enhance the different components

of the immune system were utilized and succeeded in treating

advanced and poorly immunogenic tumors in pre-clinical and

clinical models (23, 24).

Several lines of evidence documented the anti-tumor efficacy

of the facultative anaerobic bacteria Salmonella enterica serovar

Typhimurium (hereafter S. typhimurium) against a broad-

spectrum of murine tumor models (25–28). Salmonella-

mediated cancer therapy has unique aspects over conventional

treatment modalities in the preferential colonization and

proliferation in tumor tissues, immunomodulatory effects and

engineering plasticity (29–31). In previous studies from our lab

and others, the anti-tumor potential of attenuated S.

typhimurium was associated with its ability to modulate

different immune system components and transform the

tumor microenvironment form being immunosuppressive into

becoming more immunogenic (32–37). It is well established that

Salmonella bacteria utilize macrophages as their primary niche

in the host (38, 39) and this associated with the activation of

several immunomodulatory functions in these cells (40). Our lab

demonstrated that treating tumor-bearing mice with attenuated

S. typhimurium induced phenotypic and functional maturation

of tumor-infiltrating myeloid cells and, therefore, inhibited their

suppressive capacity (41). These changes were accompanied

with the increased infiltration of intratumoral T cells and

upregulated expression of MHC class II and Sca-1 on myeloid

cells. In addition, other studies documented the role of

Salmonella in manipulating the intratumoral immune

components in favor of tumor inhibition through increasing

the infiltration of anti-tumor immune cells, upregulating the

expression of pro-inflammatory cytokines and chemokines in

addition to its role in transforming the function of certain

immune cells (29).

Given that the immunosuppressive nature of the tumor

microenvironment is a major obstacle to achieving favorable

outcome in treating cancer using PD-1/PD-L1 blockade, we

hypothesized that Salmonella-induced changes in the tumor

t i s sue cou ld ame l i o r a t e th e immunosuppr e s s i v e

microenvironment and, therefore, enhance the response rate

and therapeutic efficacy of PD-1/PD-L1 blockade. In the current

study, our group investigated the anti-tumor potential and

immunomodulatory activity of a low dose of attenuated S.

typhimurium and its capability to improve the therapeutic

outcome of antibody-based PD-L1 inhibitors in the MC38

murine colon adenocarcinoma model . Our resul ts

demonstrated that attenuated Salmonella altered the tumor

microenvironment, effectively increasing the immunogenicity

o f th i s o therwise re la t ive ly immunogenic tumor .
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Mechanistically, this was achieved through an enhancement in

the expression of MHC class II proteins on intratumoral myeloid

cells, increasing access by CD4+ tumor-infiltrating T cells, and

decreasing the percentage of intratumoral T cells that express

inhibitory immune checkpoint molecules. Combining

attenuated Salmonella with PD-L1 blockade improved the

overall response rate and inhibited MC38 tumor growth more

efficiently compared to monotherapy by further enhancing the

infiltration and function of T cells, altering the composition of

intratumoral myeloid cells and increasing the number of

apoptotic cells. Overall, the findings of this investigation

provide insights into utilizing attenuated bacteria to enhance

the therapeutic efficacy of cancer immunotherapy.
2 Materials and methods

2.1 Cell line, bacterial strain and mice

The murine colon adenocarcinoma MC38 cell line was

kindly provided by Prof. Jo Van Ginderachter (Vrije

University Brussel, Belgium). Cells were maintained in

Dulbecco ’s Modified Eagle Medium (DMEM) media

supplemented with 10% FBS, 100 IU/ml penicillin, 100 IU/ml

streptomycin and 50 mg/ml gentamicin (all reagents from Gibco-

ThermoFisher Scientific). BRD509E is an aroA/aroD

auxotrophic mutant strain of Salmonella enterica serovar

Typhimurium and has been previously described (42, 43). The

50% lethal dose (LD50) in normal mice of BRD509E given

intraperitoneally is >2x106 CFUs. C57BL/6 mice were obtained

from the Jackson Laboratory (Bar Harbor, Maine, USA) and

bred in the animal facility of the College of Medicine and Health

Sciences, UAE University. For the present studies, male mice

were used at 8–12 weeks of age.
2.2 Tumor implantation and
in vivo treatment

The procedure for implanting tumor cells in syngeneic

C57BL/6 mice has been described (44). Briefly, 8-week-old

mice were individually tagged, inoculated subcutaneously in

the right flank with 2x 105 MC38 tumor cells and staged to

day 7 at which time visible tumors began to be observed. On day

7 post tumor implantation, mice received either BRD509E (5 ×

103 CFUs per mouse) or saline as control, both given

intraperitoneally. Tumor-bearing mice were intraperitoneally

treated with 5 mg/kg (100 mg/dose/mouse) of anti PD-L1 mAb

(clone 10F.9G2, BioXCell, USA) or IgG2b isotype control (clone

LTF-2, BioXCell) on days 8, 10, 14 and 17 post tumor

implantation. Tumor growth was followed by quantitative

determination of tumor tissue volume twice a week, measured
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as the product of the perpendicular diameters using digital

calipers, according to the formula: Tumor volume = W2/(2 ×

L). All data of tumor volumes is presented as mean ± SEM.
2.3 Bacterial preparation

Viable BRD509E was obtained from a frozen glycerol stock

and plated on Tryptone Soy Agar (TSA) supplemented with

ampicillin (100 µg/ml) and streptomycin (200 µg/ml).

Inoculated TSA plate was incubated overnight at 37°C. On the

next day, a single colony from a fresh BRD509E culture was

inoculated into 10 ml of Tryptone Soy Broth (TSB) and

incubated stationary overnight (16-18 hours) at 37°C. Next,

1 ml of the bacterial culture was added to 9 ml of TSB,

creating a dilution factor of 1:10. The freshly prepared

Salmonella suspension was incubated in an orbital shaker at

37°C, 200 rpm for 2 hours to mid-logarithmic growth phase. To

determine the bacterial concentration, optical density was

measured at a wavelength of 600 nm using Du-70

spectrophotometer (Beckman coulter Inc. Pasadena, CA,

USA). The freshly prepared stock concentration was estimated

according to the following formula: OD600 of 0.1 is equivalent to

0.6 × 108 CFU/ml. The final required dose for treatment was

prepared by performing appropriate serial dilutions of the

bacterial suspension in pyrogen-free PBS.
2.4 Bacterial load determination

Tumor-bearing mice were sacrificed following treatment

with BRD509E. Tumors, spleens and livers were resected and

weighed. Aliquots of tissues were homogenized in cold sterile

PBS using Ultra-turrax T-25 tissue homogenizer (Janke &

Kunkle, Staufenim Breisgau, Germany) and 1:10 serial

dilutions of tissue homogenates were plated on Salmonella-

Shigella (SS) Agar plates, as previously detailed (26). After

overnight incubation at 37°C, bacterial CFUs were counted

and tabulated as CFUs per gram of tissue.
2.5 Flow cytometry

Spleen and tumor tissues were harvested 21 days post tumor

implantation and single-cell suspensions were prepared as

previously described (41). Analysis of total spleen and tumor

single cells was carried out using a 3-laser 12-color flow

cytometry. Washed cells were incubated with FcgR blocking

antibody (anti-mouse CD16/32) (Cat# 101302, Biolegend, San

Diego, CA) for 30 mins at 4°C and, then, stained with

fluorochrome-conjugated primary antibodies- at pre-

determined optimum concentrations- for 30 min at 4°C in the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1017780
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Al-Saafeen et al. 10.3389/fimmu.2022.1017780
dark. The antibodies used in the current study, all purchased

from Biolegend, were anti-CD45-APC (Cat# 103112), anti-

CD45-PE (Cat# 103106), anti-CD3-BV785 (Cat# 100232),

anti-CD4-FITC (Cat# 100509), anti-CD8-APC-Cy7 (Cat#

100714), anti-CD11b-Alexa Flour-488 (Cat# 101217), anti-

Ly6G-APC (Cat# 127614), anti-Ly6C-APC/Fire 750 (Cat#

128045), anti-Ly6C-BV785 (Cat# 128041), anti-F4/80-BV421

(Cat# 123137), anti-MHC II (I-A/I-E)-BV785 (Cat# 107645),

anti-MHC II (I-A/I-E)-APC-Cy7 (Cat# 107628), anti-CD19-PE

(Cat# 115508), anti-PD-L1-PE-Texas Red (Cat# 124324), anti-

PD-1-BV605 (Cat# 135220) and anti-LAG-3-BV421 (Cat#

125221). Non-viable cells from spleens and tumors were

excluded using Zombie Aqua dye (Biolegend) or 7-AAD

viability dye (Biolegend), respectively. Data were collected on

50,000 cells using a BD FACSCelesta flowcytometer (BD

biosciences, Mountain View, CA, USA) and analyzed using

FlowJo software (BD biosciences).
2.6 Immunohistochemistry staining

Formalin-fixed paraffin-embedded tumors (FFPE) were

sectioned at a thickness of 5 mm using a rotary microtome

(Shandon AS 325, USA) and put on ACP-coated slides. For

immunohistochemical staining, deparaffinization, rehydration

and endogenous peroxidase activity was performed, per

established protocols in our laboratory (45). Antigen

unmasking was performed through heat-induced epitope

retrieval in which sections were steamed in Tris-EDTA buffer

(Sigma Chemicals Co., St Louis, MO) pH 9.0 at 95°C for

10 min. Slides were, then, allowed to cool in the buffer and

non-specific binding was blocked by incubating tissue sections

with 1% BSA protein block (Sigma). After draining BSA,

sections were incubated with a pre-determined concentration

of unconjugated, primary monoclonal antibody overnight at 4°

C. The primary antibodies used in the current study were as

follows: anti-PD-L1 (1/100; ab238697, Abcam, UK), anti-PD-1

(1/1000; ab214421, Abcam), anti-CD4 (1/1000; ab183685,

Abcam), anti-CD8 (1/2000; ab209775, Abcam) and anti-

granzyme B (1/200; 44153S, Cell Signaling). On the next day,

washed tissue sections were incubated with goat polyclonal

secondary antibody (HRP polymer) (ab214882, Abcam) for

45 min at room temperature. Following a washing step, DAB

chromogen (Dako, Carpinteria, CA) was used as a substrate to

detect the activity of HRP; hematoxylin was utilized as a

counterstain. All immunohistochemical studies were done

using the described protocol except for cleaved caspase-3

staining which was done following the protocol of IHC

Detection Kit of the manufacturer (Cel l Signal ing

Technology; #12692). Images were generated with an

Olympus BX51 microscope model V-LH100HG (Olympus

Corporation, Japan) at x400 magnification.
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2.7 Quantitative real-time PCR

qRT-PCR was carried out as previously detailed (41). RNA

was extracted by TRIzol method and re-purified on Qiagen

columns (RNA easy mini kit, Qiagen, Valencia, CA). The quality

and quantity of the RNA was determined using the Nanodrop

ND-1000 spectrophotometer (Thermo Scientific, Waltham,

MA). cDNA was synthesized using Taqman reverse

transcription reagents (Applied Biosystems, Foster City, CA)

using manufacturer’s protocol. Premade TaqMan primers and

probes (Applied Biosystems) were used to study the expression

of HPRT (Mm01545399_m1), PD-1 (Mm01285676_m1),

mCXCL9 (Mm00434946_m1), mCXCL10 (Mm00445235_m1),

IFN-g (Mm01168134_m1), granzyme B (Mm00442834_m1),

CXCL1 (Mm04207460_m1) and CXCL2 (Mm00436450_m1)

genes. Transcript levels of target genes were normalized

according to the DCq method to the respective mRNA levels

of the housekeeping gene HPRT. The expression of the target

gene is reported as the level of expression relative to HPRT and

presented as fold change relative to non-treated mice.
2.8 Immunofluorescence staining

Immunofluorescence analysis was used to detect Treg cells

in MC38 tumor tissues extracted from mice. The details of the

procedure have been described (46). FFPE tissues were sectioned

and transferred to gelatin-coated slides. Tissue sections were

dewaxed, rehydrated, blocked with 3% BSA and incubated

overnight with the primary antibodies: rabbit anti-CD4 (1/

1000, ab183685, Abcam) and rat anti-Foxp3 (1/50, 14-5773-

82, eBioscience, San Diego, CA, USA). Following a washing step,

sections were incubated with anti-rat Alexa Flour-488-labelled

(1/200, 712-545-153, Jackson ImmunoResearch, West Grove,

PA, USA) and anti-rabbit TRITC-labelled (1/100, 111-025-003,

Jackson ImmunoResearch) secondary antibodies for 1 hour in

the dark. TO-PRO™-3 iodide (642/661) (T3605, Thermo Fisher

Scientific) was used as a counterstain for viable cell nuclei. Last,

sections were washed, mounted with fluorescence medium

(Dako) and visualized using Nikon C1 laser scanning

confocal microscope.
2.9 Statistical analysis

Statistical significance between control and treated groups

was analyzed using the unpaired, two-tailed Student’s t-test.

Survival analysis was performed by Kaplan–Meier survival

curves and log-rank test. Tumor doubling time and growth

rate constants were determined using multiple linear regression-

exponential (Malthusian) growth curves. All analysis was done

using the statistical program of GraphPad Prism software
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version 9 (San Diego, CA). Statistical significance was shown as *
(P < 0.05), ** (P < 0.01), *** (P < 0.001) and **** (P < 0.0001).
2.10 Study approval

All studies involving animals were carried out after approval

of the animal research ethics committee of the College ofMedicine

and Health Sciences, UAE University (#ERA_2018_5743).
3 Results

3.1 PD-1 and its ligand are expressed in
MC38 tumor tissues

Efficient responses to PD-1/PD-L1 blockade treatment using

monoclonal antibodies have been associated with adequate

expression of these targets within the tumor tissue (47, 48).

Therefore, we evaluated the expression of PD-1 and PD-L1

proteins on murine MC38 colon adenocarcinoma cells grown in

vitro or on tumor tissues that were excised from mice on day 21

post tumor implanta t ion . Us ing flow cytometr ic ,

immunohistochemical and gene expression analyses, we

demonstrate that PD-L1 and PD-1 are expressed on MC38

tumor cells (Figures 1A, B) as well as on both CD45+ and

CD45- cells within the tumor tissue (Figures 1C-F). PD-1 mRNA

expression was also analyzed using RT-PCR on in vitro-grown

MC38 cells, whole MC38 tumors and normal spleen cells. As

shown in Supplementary Figure 1, PD-1 expression is

upregulated on whole tumor tissue compared to in vitro-

grown MC38 cells. Nevertheless, it is clear that PD-1 is

expressed at higher levels in normal splenic immune cells

compared to MC38 cells. The detected expression of PD-1 on

tumors is consistent with previous findings (49–51). The

confirmed expression of these molecules validated our

approach to modulate the immunosuppressive environment

through targeting this negative regulatory axis in the MC38

murine colon adenocarcinoma model.
3.2 A low dose of attenuated Salmonella
inhibits MC38 tumor growth in vivo

The potential of attenuated Salmonella as an anti-cancer

therapeutic agent has been demonstrated in different tumor

types. In previous work from our lab, we illustrated the anti-

tumor potency of an attenuated strain of S. typhimurium, known

as BRD509E, against the B16.F1 melanoma model, and its

capacity to convert the tumor microenvironment from being

immunosuppressive to becoming more immunogenic by

modulating the functional properties of myeloid cells (26, 33,

41). The bacterial doses used in the various studies were in the
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range of 1-5x105 CFUs per mouse. In order to minimize

bacteria-associated adverse effects, we wished to test the

potential effect of much lower doses of bacteria (2-5-x103

CFUs/mouse), which represent 1/1000 of the LD50 dose of the

BRD509E strain, when used in combination with other

treatments. Using this low dose of bacteria, detection of

bacterial colonies in the different organs exhibited wide

variability (Supplementary Figure 2). Nevertheless, as was

generally demonstrated previously (26, 41), preferential

homing to tumor tissue was still evident (Supplemental

Figure 2). The marked variability in the number of colonies

detected in mice of the same experimental group could be related

to the low bacterial doses used where the bacterial CFUs in the

various tissues are reaching the limit of detection. We first

evaluated the effect of BRD509E on the growth of MC38 colon

adenocarcinoma tumor cells in vivo. C57BL/6 mice were

implanted with MC38 tumor cells and staged to day 7 at

which time visible tumors began to be observed. Tumor-

bearing mice were then treated with a single intraperitoneal

injection of BRD509E, or saline as control. Significant reduction

in tumor growth was observed in mice treated with BRD509E as

compared to untreated mice (Figures 2A-C). Tumor inhibition

was observed as early as 7 days post bacterial treatment

(Figure 2A) and reached ~40% two weeks after treatment

(Figures 2A, B). Individual tumor growth curves in control

and Salmonella-treated mice are shown in Figure 2C. In

addition to its effect on tumor growth, bacterial treatment

resulted in ~18% increase in overall survival (Figure 2D).
3.3 A low dose of attenuated Salmonella
enhances the tumor infiltration of CD4+

T cells and increases the percentage of
MHC II-expressing myeloid cells

Next, we assessed the immunomodulatory effects of BRD509E

within the tumor microenvironment by analyzing the changes in

the cellular constituents of MC38 tumors using multi-color flow

cytometry. The gating strategies used to identify the lymphoid and

myeloid subpopulations are illustrated in Supplementary Figure 3.

The results revealed that although the percentage of total

intratumoral CD45+ leukocytes in control vs. Salmonella-treated

groups remained unchanged (Figures 3A, B), there was a

significant increase (~2.1-fold) in the percentage of CD4+ T cells

(Figures 3C, D) in Salmonella-treated tumors. On the other hand,

the percentage of tumor infiltrating CD8+ T cells was not altered

post Salmonella treatment (Figures 3C, E). The increase in the

infi ltration of CD4+ T cells was also demonstrated

morphologically by immunohistochemistry where a 3.8-fold

increase was evident in Salmonella-treated tumors (Figures 3F-

G). In contrast, no change in intratumoral CD8+ T cells infiltration

was observed following treatment with Salmonella (Figures 3H-I).

A more in-depth analysis using immunofluorescence staining
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revealed that treating tumor-bearing mice with attenuated

Salmonella decreased the ratio of Tregs/CD4+ T cells within the

tumor tissue (Figures 3J-L). Representative images at lower

magnification are presented in Supplementary Figure 4 for the

control and Salmonella-treated groups. Interestingly, no

significant alteration was observed in the percentage of CD11b+

myeloid cells, including Ly6G+ and Ly6Chi subpopulations,

between the two groups (Figures 4A-E). However, a significant

increase in the percentage of MHC class II-positive monocytes

(CD11b+ Ly6Chi) was observed in Salmonella-treated tumors

(Figures 4F, G), suggesting an enhancement of the antigen

presentation capacity of these cells. Consistent with this

observation, an increase in the median expression level of MHC

class II antigens was also evident on Ly6Chi myeloid cells
Frontiers in Immunology 06
(Figure 4H). Collectively, these results indicate that a low dose

of Salmonella could enhance the immunogenicity ofMC38 tumors

through an increase in the antigen presentation potential of

tumor-associated monocytes as well as the extent of CD4+ T cell

infiltration into the tumor microenvironment.
3.4 Salmonella treatment decreases
the percentage of T cells that
express inhibitory checkpoint
ligands in MC38 tumors

Due to the considerable role of immune checkpoint proteins

in modulating the tumor microenvironment and determining
A B

D

E F

C

FIGURE 1

PD-1 and PD-L1 are expressed in MC38 tumors. Representative flow cytometric dot plots showing the expression of PD-L1 (A, C) and PD-1
(B, D) on MC38 tumor cells grown in vitro (A, B) or on single cell suspension of dissociated tumor tissues excised from mice 21 post
subcutaneous implantation (C, D). Immunohistochemical staining was also used to illustrate the expression of PD-L1 (E) and PD-1 (F) on MC38
tumor tissue sections. Magnification 400×. Scale bar 20 mm.
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anti-tumor immune responses, we analyzed the effect of a low

dose of Salmonella on the expression of inhibitory checkpoint

molecules, namely PD-1, PD-L1 and LAG-3, on intratumoral T

cells using flow cytometry. Our results indicate that

administration of Salmonella induced a significant reduction

in the percentages of CD4+ and CD8+ TILs that express PD-1

and LAG-3 checkpoint molecules (Figures 5A, B and E, F). Flow

cytometric analysis revealed that ~42% and 23% of CD4+ T cells

and ~64% and 53% of CD8+ T cells express the PD-1 and LAG-3

inhibitory ligands, respectively, in tumors from untreated mice.

Upon treatment with Salmonella, these percentages were

significantly decreased to an average of ~23% and 7% among

CD4+ TILs and ~51% and 33% among CD8+ TILs. Moreover, a

slight decrease in the percentages of PD-L1+ cells among CD4+

but not CD8+ T cells was observed post treatment (Figures 5C-

F). On the other hand, Salmonella treatment did not alter the

expression of neither PD-L1 nor PD-1 on tumor CD45-negative

cells (Supplemental Figure 5). Taken together, the decreased

percentage of T cells expressing inhibitory checkpoint ligands

within the tumor tissue could potentially contribute to reversing

the inhibitory factors exerted on T cells and, thereby,

reinvigorating anti-cancer immunity.
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3.5 Salmonella increases the percentage
of splenic CD4+ T cells and Ly6G+

neutrophils in MC38 tumor-bearing mice

Since the peripheral immune system plays a positive role in

anti-tumor therapies, alterations in spleen cell populations were

analyzed using flow cytometry. The gating strategies used to

identify the lymphoid and myeloid subpopulations are presented

in Supplementary Figure 6. Our results indicate that a low dose

of Salmonella induced a slight increase in the percentage of

splenic T cells (~27% to ~32%) accompanied with a slight

decrease in the percentage of B cells (52% to 47%)

(Figures 6A-C). The increase in the percentage of T cells was

mostly due a significant increase in the percentage of CD4+

helper T cells (~15%-19%), but not CD8+ cytotoxic T cell

population (Figures 6D-F). On the other hand, the overall

percentage of CD11b+ myeloid cells remained unaltered post

treatment (Figures 6G, H). Regarding the myeloid

subpopulation, Salmonella resulted in an increase in the

percentage of Ly6G+ neutrophils from ~32% of splenic

myeloid cells to ~46% (Figures 6I, J). This was compensated

by a decrease in the percentage of Ly6G- F4/80+ monocytes/
A B
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FIGURE 2

Salmonella treatment retards MC38 tumor growth. MC38 tumor cells (2× 105) were subcutaneously implanted into the right flank of C57BL/6
mice. Seven days post implantation, mice were injected intraperitoneally with either Salmonella strain BRD509E (~5× 103 CFUs) or saline as
control. (A) Tumor volumes were measured twice a week for up to 14 days post bacterial treatment. The data is shown as mean ± SEM of 9-12
mice per group, pooled from 2 independent experiments. (B) Tumor weights were recorded at the end of the observation period (day 21 post
implantation). Each data point represents a single mouse, pooled from two independent experiments. (C) Tumor growth curves in each
individual mouse in the control and BRD509E-treated groups are presented. (D) The effect of BRD509E treatment on the survival of MC38
tumor-bearing mice. Asterisks denote statistically significant differences from control group *(P ≤ 0.05) and ** (P ≤ 0.01).
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FIGURE 3

Treatment with Salmonella enhances the infiltration of CD4+ T cells and decreases the ratio of Tregs/CD4+ T cells in MC38 tumors. MC38
tumor-bearing mice were treated with Salmonella, or saline as control, on day 7 post tumor implantation. Mice were sacrificed 2 weeks later
and tumors were collected for further analysis. The percentages of different intratumoral immune cells were determined using flow cytometry.
Representative dot plots and the combined results analyses for the percentages of CD45+ immune cells (A, B), CD4+ T cells (C, D) and CD8+ T
cells (C, E) were shown for each group. Each data point represents a single mouse, pooled from 3 independent experiments. Tumor sections
were stained with anti CD4 and anti CD8 antibodies as described in the material and methods section. Representative images and graphs depict
the number of CD4+ (F, G) and CD8+ cells (H, I)/HPF (high-power field) are presented for each group. Magnification 400×. Each data point
represents a single mouse pooled from two independent experiments. Representative immunofluorescent images of CD4, Foxp3, TO-PRO-3
nuclear staining and the merge picture from the control and Salmonella-treated groups (J), and the number of CD4+ and CD4+ Foxp3+ cells
were quantified/HPF (K). Scale bar 25 mm. The ratio of Tregs (CD4+ Foxp3+)/CD4+ cells were also determined (L). Each data point represents a
single mouse pooled from two independent experiments. Asterisks denote statistically significant differences from control group, ** (P ≤ 0.01),
*** (P ≤ 0.001), **** (P ≤ 0.0001) and ns (no statistical significance, ≥ 0.05).
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macrophages (Figures 6I, K). Nevertheles, F4/80+ macrophages

showed a significant increase in MHC class II expression (~4.1-

fold in % positive cells) following bacterial treatment

(Figures 6L, M) accompanied with a significant increase in the

expression level of MHC class II antigens (Figure 6N). In line

with these changes, Salmonella treatment resulted in ~2.1-fold

increase in spleen weights compared to spleens of tumor-bearing

mice (Supplementary Figure 7A). This was also accompanied

with changes in spleen cellularity as demonstrated by ~2.0-fold

increase in the absolute spleen cell counts (Supplementary

Figure 7B). Our results showed that both the lymphoid

(Supplementary Figures 7C-F) and myeloid (Supplementary

Figures 7G-I) populations contributed to this increase.

Collectively, these results highlight the capacity of a low dose

of Salmonella to activate systemic immunity through increasing

the infiltration of immune cells into the spleen and enhancing

the antigen presentation potential of monocytic cells.
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3.6 A low dose of attenuated Salmonella
dramatically improves the anti-tumor
efficacy of PD-L1 blockade in MC38
colon adenocarcinoma model

We have demonstrated the potential capacity of a low dose

of BRD509E in modulating the immunosuppressive tumor

microenvironment through enhancing the intratumoral T cell

infiltration, increasing the antigen presentation potential and

decreasing the percentage of TILs that express inhibitory

checkpoint molecules. Therefore, we next investigated whether

BRD509E-induced alterations in the tumor microenvironment

are capable to enhance the response and anti-tumor efficacy of

PD-L1 blockade immunotherapy against MC38 tumors. We

examined the effect of aPD-L1 monotherapy or combination

of aPD-L1 and BRD509E on MC38 tumor growth rate. To

address this, C57BL/6 mice were inoculated subcutaneously with
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FIGURE 4

Treating MC38 tumor-bearing mice with Salmonella increases the antigen presentation potential of CD11b+ Ly6Chi intratumoral myeloid cells.
MC38 tumors were collected from control and Salmonella-treated mice on day 21 post tumor implantation and the percentages of different
intratumoral immune cells were determined using flow cytometry. Representative dot plots and the combined results analyses for the
percentages of CD11b+ (A, B), Ly6G+ (C, D), Ly6Chi (C, E) intratumoral myeloid cells and MHC II-expressing cells (gated on CD11b+ Ly6Chi cells)
(F, G) are shown for each group. The expression of MHC II was evaluated using MFI (Median Fluorescence Intensity). (H). Each data point
represents a single mouse, pooled from 3 independent experiments. Asterisks denote statistically significant differences from control group,
**** (P ≤ 0.0001) and ns (no statistical significance, ≥ 0.05).
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MC38 tumor cells and staged to day 7 at which time visible

tumors began to be observed. In the combination treatment

regimen, tumor-bearing mice were treated with a single

intraperitoneal injection of BRD509E (5× 103 CFUs/mouse),

or saline as control, on day 7 post tumor implantation. Next,

aPD-L1 mAb (5 mg/kg) or IgG2b isotype control were

intraperitoneally administered to tumor-bearing mice on days

8, 10, 14 and 17 post tumor implantation. The described
Frontiers in Immunology 10
treatment protocol is illustrated in Figure 7A. The results of

the current study illustrate that MC38 tumor growth was

variable in mice receiving aPD-L1 monotherapy. In our

model, only 30% of mice were responsive to aPD-L1

monotherapy treatment and exhibited considerable inhibition

in tumor growth (Figures 7B, C). On the other hand, combined

treatment with aPD-L1 and BRD509E resulted in effective

inhibition of MC38 tumor growth in 100% of mice
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FIGURE 5

Salmonella treatment decreases the percentage of TILs that express inhibitory checkpoint ligands. MC38 tumors were harvested from tumor-
bearing mice on day 14 post bacterial treatment and tumor-infiltrating T cells were analyzed for their expression of PD-1, PD-L1 and LAG-3
using flow cytometry. Dot plots representing the percentage of CD4+ T cells that express PD-1 and LAG-3 (A) or PD-L1 (C) are illustrated. Dot
plots showing the percentage of CD8+ T cells that express PD-1 and LAG-3 (B) or PD-L1 (D) are also presented. The percentage of CD4+

(E) and CD8+ (F) cells that express different inhibitory checkpoint molecules are illustrated. The data is presented using mean ± SEM of 7-8 mice
per group pooled from two independent experiments. Asterisks denote statistically significant differences from control group, * (P ≤ 0.05),
** (P ≤ 0.01) and *** (P ≤ 0.001).
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FIGURE 6

Salmonella treatment increases the percentages of splenic CD4+ T cells and Ly6G+ neutrophils in MC38-tumor bearing mice. Tumor-bearing
mice were treated with ~5× 103 CFUs of Salmonella on day 7 post tumor implantation. Mice were sacrificed on day 14 post bacterial treatment
and spleens were collected for flow cytometric analysis. Representative dot plots and the percentage of T cells (A, B), B cells (A, C), CD4+ T
cells (D, E), CD8+ T cells (D, F), CD11b+ myeloid cells (G, H), neutrophils (Ly6G+) (I, J) and monocytes/macrophages (Ly6G- F4/80+) (I, K) are
illustrated. The percentage of macrophages that express MHC class II was also determined (L, M). The expression of MHC II on monocytes/
macrophages was evaluated (N). Each data point represents a single mouse, pooled from two independent experiments. Asterisks denote
statistically significant differences from control group, * (P ≤ 0.05), ** (P ≤ 0.01), **** (P ≤ 0.0001) and ns (no statistical significance, ≥ 0.05).
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(Figures 7B, D). Overall, the combination treatment significantly

inhibited MC38 tumor growth compared to control, achieving

~75% inhibition in tumor volume by day 21 post tumor

implantation (Figure 7E). This is consistent with the

significant reduction in the weights of tumors which were

determined at the end of the observation period (Figure 7F).

Moreover, it is worth noting that tumor regression in mice

receiving aPD-L1 and Salmonella was observed as early as day 3

post bacterial treatment (Figure 7E).

In comparison to Salmonella treatment, the tumor growth

rate in aPD-L1 and Salmonella-treated mice was significantly

lower than that observed with Salmonella alone throughout the

observation period (Figure 7G). On day 21 post tumor

implantation, MC38 tumor growth in Salmonella-treated mice

was ~60% compared to control, whereas tumor growth in

combination-treated mice was ~20% of its growth in the

control group (Figure 7G). This superior effect of combination

treatment in retarding tumor growth compared to Salmonella

monotherapy was also observed as early as 3 days post bacterial

treatment. To further validate the differences in the experimental

groups, we calculated the tumor doubling time and the growth

rate constant for each experimental group (Supplemental Table

I). The findings show that there was no difference in tumor

growth characteristics in mice treated with saline or isotype

control antibody. Moreover, mice treated with a-PD-L1

antibody showed overall tumor growth that was close to

control mice (a mere 4% increase in tumor doubling time).

This fact is perhaps a reflection of the variability of the responses

in this experimental group. Treatment with a low dose of

Salmonella resulted in slower tumor growth with doubling

time increasing from a mean of 3.78 in control mice to 4.13

days in Salmonella-treated mice (an increase of 9% in doubling

time over control). Finally, mice subjected to combination

treatment exhibited the most pronounced retardation in tumor

growth with doubling time increasing from 3.8 to 6.36 days, an

increase of 67% compared to control (and 59% increase

compared to Salmonella alone group). Taken together, these

results collectively indicate that (1) a low dose of Salmonella is

successful in improving the response and enhancing the anti-

tumor efficacy of PD-L1 blockade in MC38 tumor model and (2)

the combined treatment of Salmonella and PD-L1 blockade

improves tumor inhibition more efficiently than monotherapy.
3.7 Combined treatment of aPD-L1 and
Salmonella is associated with a
significant increase in the infiltration of
CD45+ immune cells into MC38 tumors

Next, we aimed to study the effect of combined treatment on

the immune components of MC38 tumor microenvironment.

To address this, tumors were collected from control, aPD-L1-
treated and combination-treated mice on day 21 post
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implantation and intratumoral immune cells were analyzed

using flow cytometry. Our results show that the combined

treatment with aPD-L1 and Salmonella led to a significant

1.7-fold increase in the infiltration of CD45+ immune cells

into the tumor site compared to the control group (~18% vs.

31%) (Figures 8A, B). This significant increase in the percentage

of CD45+ immune cells was not observed following treatment

with Salmonella alone (Figure 4A). Regarding PD-L1 blockade,

the percentage of CD45+ cells in tumors from mice treated with

aPD-L1 were variable depending on the individual mouse

response to the treatment (Figures 8A-C). As clearly illustrated

in Figure 8C, there was a direct correlation between the

treatment outcome and extent of tumor infiltration of CD45+

immune cells among aPD-L1 and combination-treated groups

compared to controls, effectively demonstrating that the

beneficial responses were observed in tumors harboring a high

fraction of CD45+ cells.
3.8 Combination treatment enhances
the infiltration of TILs and upregulates
the expression of anti-tumor
effector molecules

Next, we examined the effect of combination treatment

on the different intratumoral immune cell subpopulations

us ing immunohis tochemis try and flow cytometry .

Immunohistochemical staining revealed that combination

treatment with Salmonella and aPD-L1 significantly increased

the infiltration of both CD4+ (Figures 9A and B) and CD8+ T

cells (Figures 9C and D) into MC38 tumor site. It worth noting

that the magnitude of increase among CD4+ cells was much

greater than that observed among CD8+ cells (~7-fold versus ~2-

fold). Flow cytometric analysis revealed that combination

treatment resulted in an increase in the % of CD4+ T cells

(~2.5-fold and ~1.9-fold) compared to the control or aPD-L1-
treated groups, respectively (Figures 9E, F). The percentage of

CD8+ T cells out of CD45+ cells remained unchanged following

combination treatment (Figures 9E, G). The increased

infiltration of CD8+ TILs cells into tumor tissues (as observed

in immunohistochemical staining) is attributed to the increased

infiltration of CD45+ immune cells that include similar

percentages of CD8+ T cells in the control and combination-

treated groups and this is demonstrated as an increase in the

percentage of these cells out of total tumor tissue (Figure 9G).

Based on gene expression analysis that was performed on total

tumor tissues using qRT-PCR, we demonstrated that the

enhanced recruitment of T cells could be attributed to the

increased expression of related chemokines where a 2.2-fold

increase in the expression of CXCL9 (Figure 9H) and a trend of

increase in CXCL10 (Figure 9I) were evident. In order to

establish the link between the significant inhibition in tumor

growth and the increased infiltration of T cells observed in
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1017780
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Al-Saafeen et al. 10.3389/fimmu.2022.1017780
combination-treated tumors, we also utilized qRT-PCR to

examine the expression of anti-tumor effector agents (IFN-g
and granzyme B) that are known to be produced and secreted by

T cells. The results demonstrate that the enhanced anti-tumor

immune response in combination-treated group was

accompanied by a pronounced upregulation in the expression
Frontiers in Immunology 13
of IFN-g (~3.9-fold) and cytotoxic granzyme B (~2.3-fold) at the

level of total tumor tissue (Figures 9J, K). Consistent with

these findings, we also found increased number of granzyme

B-secreting cells in MC38 tumors following treatment

with the combination of Salmonella and aPD-L1 using

immunohistochemistry (Figures 9L, M).
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FIGURE 7

Treatment with Salmonella improves the response and anti-tumor efficacy of PD-L1 blockade in MC38 tumors. (A) Schematic diagram
representing the treatment protocol. MC38 tumor cells were subcutaneously implanted into male C57BL/6 mice. aPD-L1-treated group
received 100 mg of aPD-L1 mAb (5 mg/kg) on days 8, 10, 14 and 17 post implantation. Combined aPD-L1 and Salmonella-treated group
received ~5 × 103 CFUs of BRD509 on day 7 post implantation followed by 4 doses of 5 mg/kg of aPD-L1 mAb on days 8, 10, 14 and 17 post
implantation. MC38 tumor growth curve for each mouse in the control (B) or aPD-L1-treated (C) or aPD-L1 and Salmonella-treated (D) groups
are displayed. The mean tumor volume (E) and tumor weights (F) are presented for each group. In (E), each data point is presented using mean
± SEM of 9-10 mice per group, pooled from two independent experiments. Each data point in (F) represents a single mouse, pooled from 2
independent experiments. (G) The percent tumor growth rate in mice treated with Salmonella alone, aPD-L1 alone or combination of aPD-L1
and Salmonella at different time points. The data is presented using mean ± SEM of 9-12 mice per group. Asterisks denote statistically
significant differences between control and combination groups, * (P ≤ 0.05) and ** (P ≤ 0.01). Number signs in (E) denote statistically
significant differences between control and aPD-L1 groups, # (P ≤ 0.05).
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3.9 Combined treatment is associated
with a reduction in intratumoral Ly6G+

myeloid cells and a significant increase in
Ly6Chi/Ly6G+ ratio in MC38 tumors

Analysis of the intratumoral CD11b+ myeloid population

revealed a small but significant decrease in overall percentage

following treatment with Salmonella and aPD-L1 compared to

controls (Figures 10A, B). However, the composition of this

myeloid population was profoundly altered following treatment

through a decrease in the percentage of Ly6G+ cells (~62%

reduction) and a corresponding increase in the percentage of

Ly6Chi cells (~62% increase) (Figures 10C-E). In other words,

the improved anti-tumor effects of combination treatment were

shown to be associated with increased Ly6Chi/Ly6G+ ratio

(Figure 10F) in comparison to untreated group (~1.4 vs. ~5.7).

This finding was not observed among Salmonella-treated group.

Moreover, combined treatment with Salmonella and aPD-L1
significantly increased the percentage of CD11b+ Ly6Chi

monocytes that express MHC class II in comparison to the

control and aPD-L1-treated groups (Figures 10G, H), suggesting

an increase in the antigen-presentation potential of these cells.

The observed reduction in the percentage of Ly6G+ cells
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correlated with a decrease in the expression of CXCL2

(Figure 10I), a neutrophil chemotactic factor, but not CXCL1

(Figure 10J). In addition to the enhanced tumor infiltration by T

cells, these results indicate that combination treatment with

Salmonella and aPD-L1 modulated the MC38 tumor

microenvironment and increased its immunogenicity in favor

of tumor inhibition.
3.10 Combination treatment with
Salmonella and aPD-L1 increases
tumor apoptosis

To further characterize the mechanisms underlying the

enhanced anti-tumor activities of combination therapy, we

determined the effect of Salmonella and aPD-L1 on tumor

apoptosis through performing immunohistochemical staining

for activated caspase 3, which is one of the key mediators of

apoptosis. The levels of cleaved caspase 3 were quantified

following treatment with either Salmonella or aPD-L1 alone

or combination of both. Our results demonstrated that

treatment with either Salmonella or aPD-L1 induced a 1.6-

fold or 1.8-fold increase in the number of cells undergoing
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FIGURE 8

The combination of aPD-L1 and Salmonella enhances the infiltration of CD45+ immune cells into MC38 tumors. MC38 tumor-bearing mice
were treated with aPD-L1 or combination of Salmonella and aPD-L1 or isotype control. On day 21 post tumor implantation, mice were
sacrificed, tumors were collected and the percentage of CD45+ cells were determined using flow cytometry. (A) Representative dot plots
showing the percentage of CD45+ cells out of MC38 tumors in control, aPD-L1 and combination-treated groups. (B) Quantification of the
percentage of CD45+ immune cells in the three groups. The correlation between tumor volumes and the infiltration of CD45+ cells is illustrated
(C). Each data point in (B) represents a single mouse, pooled from 2 independent experiments. Each data point in (C) represents a single mouse,
pooled from 3 independent experiments for control and aPD-L1-treated groups and from 2 independent experiments for combination-treated
group. Asterisks denote statistically significant differences from control group, * (P ≤ 0.05) and ** (P ≤ 0.01).
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FIGURE 9

Combination treatment increases MC38 tumor infiltration by CD4+ and CD8+ T cells and the expression of their effector molecules. MC38
tumor tissues were resected from non-treated, aPD-L1 and combination-treated mice on day 21 post implantation for further analyses using
immunohistochemistry, flow cytometry and qRT-PCR. Representative immunohistochemical images for CD4 (A) and CD8 (C) in tumor tissues
are presented for the control and combination-treated groups. Magnification 400×. Scale bar 20 mm. CD4+ (B) and CD8+ (D) cells were
quantified in 15 HPF for control, aPD-L1 and combination-treated groups. Each data point represents the average of positive cells/HPF from a
single mouse, pooled from 2 independent experiments. Representative flow cytometric dot plots and the combined result analyses for the
percentages of CD4+ (E, F) and CD8+ (E, G) cells in MC38 tumors are illustrated. RNA was extracted from total MC38 tumor tissues and gene
expression levels were determined using qRT-PCR. The effect of combination treatment on the expression levels of CXCL9 (H), CXCL10 (I), IFN-
g (J) and granzyme B (K) was assessed. Representative images for granzyme B staining in tumor tissues are presented for each group (L). Graph
depicts the number of cells/HPF (M). Magnification 400×. Scale bar 20 mm. Each data point represents a single mouse pooled from two
independent experiments. Asterisks denote statistically significant differences from control group, * (P ≤ 0.05), ** (P ≤ 0.01), *** (P ≤ 0.001) and
**** (P ≤ 0.0001).
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apoptosis, respectively (Figures 11A, B). In contrast,

combination treatment resulted in the largest increase (3.9-

fold) in the level of cleaved caspase-3 among all the treated

groups (Figures 11A, B). In other words, combined therapy

succeeded in promoting apoptosis more efficient ly

than monotherapy.
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4 Discussion

Immune checkpoint inhibitors have achieved unprecedented

success in cancer immunotherapy and have become one of the

principal modalities for cancer treatment. ICIs that target PD-1/

PD-L1 axis, in particular, have been utilized to treat different
A B

D E

F G

I

H

J

C

FIGURE 10

Combined treatment alters the intratumoral myeloid cells compartment in MC38 tumor-bearing mice. MC38 tumor tissues were resected from
non-treated, aPD-L1 and combination-treated mice on day 21 post implantation for flow cytometric analysis. Representative dot plots and the
combined result analyses for the percentages of CD11b+ myeloid cells (A, B), Ly6G+ (C, D), Ly6G- Ly6Chi (C, E) cells in MC38 tumors are
illustrated. The expression of MHC II on Ly6Chi cells was also assessed (G, H). The levels of CXCL2 (I) and CXCL1 (J) expression in total MC38
tumor tissues were determined using qRT-PCR. Each data point represents a single mouse pooled from two independent experiments. Asterisks
denote statistically significant differences from control group, * (P ≤ 0.05), **** (P ≤ 0.0001) and ns (no statistical significance, ≥ 0.05).
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types of cancer, however; the response rate among treated

patients remains rather modest with CRC being at the lower

of the spectrum (52, 53). In the past decade, efforts have been

made to overcome resistance and enhance the therapeutic

outcome of the treatment through combining PD-1/PD-L1

inhibitors with other therapies (23). In the current study, a

low dose of attenuated S. typhimurium (~5x 103 CFUs) was

utilized to ameliorate the immunosuppressive tumor

microenvironment and, therefore, improve the response rate
Frontiers in Immunology 17
and therapeutic efficacy of PD-L1 blockade in the murine MC38

colon adenocarcinoma model. Different studies showed

variability in the response of this model to aPD-L1 mAb.

Whi l e s ome s tud i e s demons t r a t ed tha t aPD-L1

immunotherapy inhibited tumor growth by ~60-70% (54–56)

others showed that only ~20-30% of tumor-bearing mice

responded efficiently to the treatment with ICIs (57, 58). It is

important to highlight that the S. typhimurium strain used in

this study (BRD509E) is an avirulent, double auxotrophic, strain
A

B

FIGURE 11

Combination treatment of Salmonella and aPD-L1 induces apoptosis more efficiently than monotherapy. Representative immunohistochemical
images for cleaved caspase-3 in tumor tissues are presented for control, Salmonella, aPD-L1 and combination-treated groups (A). Magnification
400×. Scale bar 20 mm. Cleaved caspase 3+ cells were quantified in 15 HPF for the different groups (B). Each data point represents the average of
positive cells from a single mouse, pooled from 2 independent experiments for all groups except for the control group, from three independent
experiments. Asterisks denote statistically significant differences from control group, * (P ≤ 0.05), ** (P ≤ 0.01), *** (P ≤ 0.001) and ns (no statistical
significance, ≥ 0.05).
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which has been extensively used to vaccinate animals against

virulent Salmonella (42, 43). The LD50 of BRD509E in C57BL/6

mice is >2x106 CFUs when given systemically. Thus, there is no

appreciable toxicity associated with this strain when given at the

low doses used in our study.

Our results indicate that, even at this low dose, attenuated

Salmonella organisms were able to effect significant changes in

the MC38 tumor microenvironment in favor of tumor

inhibition through enhancing the infiltration of CD4+ T cells

and increasing the antigen presentation capacity of

intratumoral macrophages through upregulating the

expression of MHC class II. It is reasonable to conclude that

Salmonella-induced alterations at the tumor site helped to

overcome the limitations of the treatment with ICIs. It has

been proposed that a favorable response to PD-1/PD-L1

inhibitors is dependent on the extent of T cell infiltration

into the tumor tissue (59, 60). Tumors with poor

immunogenicity were shown to be unresponsive to PD-1/

PD-L1 blockade due to insufficient pre-existing T cells at the

tumor site (61, 62). In addition, lack of T cell recognition of

tumor antigens is considered a barrier to the success of ICIs

that rely on neoantigen presentation and T-cell priming (63).

In our point of view, the illustrated capacity of Salmonella to

broaden the response to PD-L1 inhibitors is, in part, mediated

by its ability to increase the infiltration of intratumoral T cells

and its potential to induce direct tumor killing and release

tumor-associated antigens leading to the induction of antigen-

presenting cells, antigen cross-presentation and activation of T

cells. The observed increase in the percentage of myeloid cells

that express MHC class II proteins would most likely promote

the activation of helper CD4+ T cells.

Another important finding of this study relates to the

ability of a single intraperitoneal injection of attenuated

Salmonella to induce a significant decrease in the percentage

of CD4+ and CD8+ TILs that express the inhibitory immune

checkpoint molecules PD-1 and LAG-3, suggesting its

potential to reverse tumor immune tolerance and diminish

T-cell exhaustion and, therefore, enhance T cell-mediated

anti-tumor immunity . In this context , i t i s worth

highlighting that targeting a single immune checkpoint

molecule with ICIs enhances the upregulation of alternate

molecules including PD-1, CTLA-4, TIM-3 and LAG-3 (64–

66). This phenomenon could underlie the low response rate

among treated patients in addition to relapses due to

secondary resistance. Based on our observation, Salmonella

could interfere with this compensatory upregulation, break T

cell dysfunction and act as a co-target therapy. The underlying

mechanisms for the downregulation of the expression of

inhibitory checkpoints are not sufficiently investigated. One

study correlated Salmonella-induced downregulation of PD-

L1 in tumor tissues to the inhibition of AKT/mTOR/p70S6K
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signaling pathway post treatment with Salmonella in a murine

tumor model (67). Moreover, the inhibition of immune

checkpoints expression could also be delivered through

Salmonella’s capacity to downregulate the expression of

certain immunosuppressive factors including TGF-b that

induces the expression of PD-1 on T cells (41, 68). It is

important to observe that the expression of PD-1 and PD-L1

can be also regulated at the posttranslational level by

glycosylation, fucosylation and ubiquitination reactions (69).

In this context, it is noteworthy that we have detected an

upregulation in PD-1 cell surface expression on MC38 tumor

tissue. This upregulation could result from enhanced gene

transcription, as shown in the results of the RT-PCR analysis,

as well as posttranslation modification of the PD-1 protein by

glycosylation and fucosylation in the ER and Golgi apparatus

(70). The significance of tumor-specific PD-1 expression on

the observed enhancement with the combination treatment is

under investigation.

Tumor-targeting immunotherapies require the systemic

immune responses to be effective. Herein, the systemic

administration of a low dose of attenuated Salmonella

resulted in a modest 2-fold increase in spleen weights. This

level of splenomegaly is significantly lower than the 5- to 10-

fold increase in spleen weights seen when higher doses (105-

106 CFUs per mouse) of BRD509E were used (43). Several

lines of evidence documented that splenomegaly associated

with Salmonella infections is mainly due the initiation of

extramedullary erythropoiesis and prominent increase in the

immature erythroid compartment (71, 72). Moreover, it is

worth noting that Salmonella organisms replicate extensively

within phagocytes of spleen, liver and bone marrow in

systemic infections (39, 73). In order to eliminate the

bacteria, chemokine-dependent recruitment of innate

immune cells, including neutrophils, to the infected site is

initiated (73, 74). This is followed by a marked activation and

expansion of CD4+ and CD8+ T cells that play an essential role

in controlling bacterial infection (75–77). The current study

illustrates that treatment using exceedingly small doses of

Salmonella organisms is associated with an attenuated and

transient level of splenomegaly, which is evidence of

mobilizing systemic immunity. However, these responses

would not be expected to result in any long-term adverse

effects in the host (43, 78).

Given the ability of a low dose of Salmonella to restructure the

immune component of tumor microenvironment and overcome

the major limitations to achieve favorable therapeutic outcome with

ICIs, we utilized Salmonella in combination with aPD-L1 to treat

MC38 tumor-bearing mice. Monotherapy with aPD-L1 resulted in
variable response rates among treated mice and this could be

associated with the frequency and proliferation of Tregs in tumor

tissues and multiple immune organs (79). In our settings, ~30% of
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mice were responsive to aPD-L1 while others were comparable to

the control group. On the other hand, the combination of aPD-L1
and Salmonella remarkably improved the response rate and

therapeutic efficacy of the treatment in all animals. Overall, the

combination inhibited MC38 tumor growth more efficiently than

monotherapy throughout the entire experimental period and this

has been associated with changes in the intratumoral immune

system compartment. Flow cytometric analysis demonstrated a

correlation between the anti-tumor potency of the treatment and

the percentage of CD45+ immune cells at the tumor site, in which

tumors from combination-treated mice were present with a higher

fraction of CD45+ cells compared to untreated mice (~70%

increase). The percentages of CD45+ cells in tumors from aPD-
L1-treated were variable depending on the individual mouse

response to the treatment. It is noteworthy that Salmonella

treatment alone did not alter the fraction of CD45+ cells

indicating that the observed increase in the infiltration of

immune cells is specific to the improved anti-tumor effect of

combination treatment.

A more in-depth analysis revealed that the combination

treatment with Salmonella and aPD-L1 enhanced the

intratumoral infiltration of both CD4+ and CD8+ cells in

comparison to either treatment alone. Unexpectedly, the

combined treatment largely induced a CD4+ T cell response

that is more prominent than CD8+ T cell response in MC38

tumors. This preponderance of CD4+ T cell responses over that

of CD8+ T cell could be attributed to the relatively larger

spectrum of MHC class II-restricted epitopes due to the more

relaxed binding requirements compared to MHC class I-

restricted epitopes (80). Evidence claimed that efficient

responses to ICIs require CD4+ T cell responses to MHC class

II-restricted antigens (81). The increased understanding of the

role of CD4+ T cells as an integral part of anti-tumor immune

response allowed us to explain the significant increase in the

infiltration of CD4+ cells along with the improved anti-tumor

potential of combination treatment. Several studies documented

the anti-tumor potency of CD4+ T cells and their role in directing

and sustaining efficient anti-tumor immune responses. The

activation and polarization of CD4+ T cells into Th1 phenotype

is accompanied by a heightened ability to produce and secrete

effector cytokines such as IFN-g and TNF-a that have direct anti-

tumor activities (82). In a similar manner to CD8+ T cells, CD4+

T cells were shown to induce direct cytotoxicity against tumor

cells in pre-clinical tumor models (83–85). Besides, CD4+ T cells

play an essential role in supporting the effector function of CD8+

cytotoxic T cells through (1) secreting IL-2 which promote the

activation and proliferation of CD8+ T cells (86), and (2)

activating and maintaining the proinflammatory cross

presenting DCs through the engagement of CD40L on

activated CD4+ T cells with CD40 on DCs (87, 88). This

interaction upregulates the expression of the co-stimulatory
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molecules CD80 and CD86 on DCs and promotes their

secretion of IL-12. This, in turn, aids in providing the required

signal for efficient CTL priming. Besides the increased fraction of

T cells in MC38 tumors post combination treatment, our data

suggest an increase in anti-tumor potential of these cells as

assessed by the levels of IFN-g and granzyme B. IFN-g is

predominantly secreted by NK cells, NKT cells, CD8+ CTLs

and Th1 CD4+ cells, and plays an essential role in modulating the

different immune cells in favor of tumor growth inhibition (89).

Moreover, CTLs exert their anti-tumor effects through the

introduction of granzyme B to the cytosol of target tumor cells

and, therefore, induce rapid cell death (90).

In addition to alterations in T cells, our study also revealed a

connection between the responsiveness to combination

treatment and the intratumoral myeloid populations. Although

the overall percentage of intratumoral CD11b+ myeloid cells was

not altered substantially, the treatment resulted in a marked

decrease in the percentage of Ly6G+ granulocytic cells and a

corresponding increase in the percentage of Ly6G- Ly6Chi

monocytic population. In addition, the combination treatment

led to enhanced expression of MHC class II- induced by IFN-g-
on Ly6Chi macrophages, suggesting an improvement in the

antigen-presentation potential of these cells. This is consistent

with the increased frequency of intratumoral CD4+ T cells

observed in these mice. Based on existing evidence, the

abundant intratumoral myeloid compartment is mainly

composed of TAMs, MDSCs, DCs and tumor-associated

neutrophils that exhibit divergent functions molded by the

local and systemic environmental stimuli during tumor

development (91–93). Most myeloid cells in the tumor

microenvironment promote survival, proliferation and

migration of cancer cells through either direct cell-cell contact

or/and release of soluble factors, in addition to their ability to

stimulate tumor angiogenesis, induce immune suppression and

promote drug resistance (94). On the other hand, intratumoral

myeloid cells could display potent anti-tumor properties and

exert tumoricidal effects. In our model, the enhanced anti-tumor

effect of combination treatment correlated with a remarkable

decrease in the percentage of Ly6G+ neutrophils suggesting that

these cells are associated with PMN-MDSCs that play

considerable pro-tumorigenic and immunosuppressive roles

(95). The inverse relationship between beneficial anti-tumor

effects and intratumoral PMN-MDSCs has been described in

other studies (96–98). In addition, combination treatment led to

an increase in the percentage of Ly6Chi macrophages, which are

known to exhibit considerable phenotypic and functional

heterogeneity and could contribute to either pro- or anti-

tumor immunity (99). The exact role of these cells in the

context of combination treatment of MC38 tumors requires

further investigation, particularly in terms of conducting cellular

assays that would help us to determine the function of these cells
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in MC38 tumors. In the context of our findings and given the

known plasticity of intratumoral myeloid cells (93), it is

reasonable to assume that the combination treatment with

Salmonella and aPD-L1 could induce transcriptional changes

through altering the expression of genes involved in chemotaxis,

metabolism, and differentiation, effectively reprograming the

function of Ly6Chi cells toward being anti-tumor effector cells

(100). Long et al. has linked the anti-fibrotic potential of anti-

CD40 treatment to the recruitment of Ly6Chi monocytes in

pancreatic cancer (101). The immunosuppressive tumor

microenvironment, including MDSCs, is considered a major

limitation to the success of ICIs in CRC (102). Therefore, the

ability of Salmonella and aPD-L1 combination to restructure the

myeloid compartment of MC38 tumor model in favor of tumor

inhibition provides a novel therapeutic approach to treat CRC.

In support of our findings, a similar observation of the

improved anti-tumor effect has been documented with the

combination of IDO-targeting Salmonella and PD-1/CTLA-4

inhibitors in the murine LLC1 tumor model in comparison to

either Salmonella alone or PD-1/CTL1-4 mAb alone (103). Using

subtherapeutic doses of IDO-targeting Salmonella, they observed an

increase in the antigen presentation machinery and costimulatory

molecules in intratumoral myeloid cells, decrease in the frequency

of Tregs in LLC1 tumor microenvironment and inhibition in the

expression of inhibitory immune checkpoint ligands on splenic

immune cells. On the other hand, the frequency of TILs remained

unchanged post treatment with Salmonella. Salmonella-induced

alterations in the expression of inhibitory checkpoint molecules

was only investigated among splenic immune cells but not on

intratumoral immune cells. In parallel with our study, the enhanced

anti-tumor effect in combination treatment was mediated by the

increased infiltration of CD45+ immune cells, CD4+ and CD8+ TILs

in addition to decreased percentage of CD11b+ Ly6G+ cells.

Contrary to our findings, the improved anti-tumor efficacy in

their settings was associated with a decrease in the percentage of

CD11b+ Ly6C+ intratumoral immune cells. Moreover, the

enhanced anti-tumor effect of combination treatment was

correlated with a decrease in the frequency of Tregs compared to

treatment with PD-1/CTLA-4 inhibitors. Despite these changes,

they illustrated that TILs-associated activation and effector markers

including IFN-g, granzyme B and CD62L remained unchanged post

treatment with Salmonella and PD-1/CTLA-4 inhibitors. Another

study illustrated enhanced rejection of B16-OVA melanoma cells

using ovalbumin-producing Salmonella and aPD-L1 compared to

Salmonella alone or combination of PD-L1 and CTLA-4 inhibitors

through enhancing the expansion of CD8+ T cells (104). The same

study documented that Salmonella is incapable to enhance the

therapeutic efficacy of CTLA-4 inhibitors. Others reported that

combined treatment with IDO-targeting Salmonella and aPD-1
inhibited the growth of CT26 orMC38 tumorsmore efficiently than

aPD-1 treatment alone, however; no additional anti-tumor effects
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of combination treatment has been observed in comparison to

Salmonella alone (105).

The current study elucidated insights into the mechanism

underlying the observed alterations in the immune cell

components in MC38 tumors post combination treatment as

shown by a significant increase in the expression level of CXCL9

and a trend of increase in CXCL10. Both CXCL9 and CXCL10

are chemokines secreted by monocytes, endothelial cells,

fibroblasts and cancer cells in response to stimulation by IFN-

g (106). These chemokines function through paracrine signaling

and regulate the recruitment of immune cells including CTL, NK

cells, NKT cells and M1 macrophages, and promote Th1

polarization and activation (106–108). Our results also

suggested that combination treatment decreased the expression

level of CXCL2. Several lines of evidence highlighted the critical

role of CXCL2 in recruiting tumor-associated neutrophils and

promoting their secretion of pro-inflammatory, angiogenic and

immunoregulatory factors, therefore, contributing to tumor

progression and metastasis (109–112). Overall, the increased

upregulation of CXCL9 and CXCL10, accompanied with the

downregulation in CXCL2, may underlie the observed

alterations in the cellular components at the level of systemic

organs and within the tumor microenvironment following

combination treatment. In the current study, gene expression

analysis was carried out on whole tumor tissue, which limits the

interpretat ion of our data . Given that the tumor

microenvironment is very heterogenous, in addition to the fact

that cytokines and chemokines are differentially secreted and

have distinct functions, it would be advantageous if gene

expression analysis was performed on purified subsets of

intratumoral immune cells. This would lead to a more

accurate understanding of the interplay between immune cells

and the tumor tissue.

In addition to the immunomodulatory activity, our

investigation provides a novel insight into another mechanism by

which the combination treatment operates. Caspase-3 plays an

essential role in inducing apoptosis through both the intrinsic and

extrinsic pathways and the presence of cleaved caspase 3 in cells is a

marker for apoptosis. The level of cleaved caspase 3-positive cells

was higher in tumors from mice treated with a low dose of

attenuated Salmonella compared to untreated control mice. The

induction of apoptosis through caspase 3 activation post Salmonella

treatment was previously demonstrated by other groups (113, 114).

The present study revealed that the combined treatment enhanced

caspase 3-mediated apoptosis to a greater extent compared to

monotherapy, and this highlights a potential mechanism by

which tumor growth is controlled. The increase in caspase-3

mediated apoptosis could be related to the upregulated expression

of granzyme B post treatment with Salmonella and aPD-L1
combined (115). Figure 12 summarizes the major findings of the

current study.
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Taken altogether, this study has elucidated new insights

into modulating the microenvironment of colorectal cancer

using attenuated Salmonella. The findings highlight the

possibility of Salmonella treatment to alter the phenotypic

and functional characteristics of intratumoral immune cells

in order to enhance the efficacy and response rate to PD-L1

blockade. This forms a rational basis for further exploration of

using Salmonella plus aPD-L1 combination to enhance the

therapeutic outcome of ICIs in colorectal cancer. Recognizing

that the findings of the current study are limited to the murine

MC38 colon adenocarcinoma model, additional work is needed

to confirm the improved effect of the proposed immune-

based combination treatment against a broad-spectrum of

cancer types that differ in their immunogenicity, tumor

microenvironment complexity and mechanisms of resistance

to immunotherapy.
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FIGURE 12

Attenuated Salmonella enhances the therapeutic efficacy of PD-L1 blockade in a murine colon adenocarcinoma model. A low dose of
attenuated Salmonella transforms the tumor microenvironment from being immunosuppressive to become immunogenic. Salmonella-induced
alterations in the intratumoral immune system components enhances the response rate and therapeutic outcome of PD-L1 blockade. The
potential underlying mechanisms of the improved effect of combination treatment are illustrated. Created with BioRender.com.
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