
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Shanmuganathan Chandrakasan,
School of Medicine, Emory University,
United States

REVIEWED BY

Na Liu,
Sun Yat-sen University Cancer Center
(SYSUCC), China
Shuguang Zuo,
Affiliated Liutie Central Hospital of
Guangxi Medical University, China

*CORRESPONDENCE

Zhijia Xia
Zhijia.Xia@med.uni-muenchen.de
Gang Tian
tiangang@swmu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Primary Immunodeficiencies,
a section of the journal
Frontiers in Immunology

RECEIVED 13 August 2022
ACCEPTED 16 September 2022

PUBLISHED 03 October 2022

CITATION

Chi H, Xie X, Yan Y, Peng G,
Strohmer DF, Lai G, Zhao S, Xia Z and
Tian G (2022) Natural killer cell-related
prognosis signature characterizes
immune landscape and predicts
prognosis of HNSCC.
Front. Immunol. 13:1018685.
doi: 10.3389/fimmu.2022.1018685

COPYRIGHT

© 2022 Chi, Xie, Yan, Peng, Strohmer,
Lai, Zhao, Xia and Tian. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 03 October 2022

DOI 10.3389/fimmu.2022.1018685
Natural killer cell-related
prognosis signature
characterizes immune
landscape and predicts
prognosis of HNSCC
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Background: Head and neck squamous cell carcinoma (HNSCC), the most

common head and neck cancer, is highly aggressive and heterogeneous,

resulting in variable prognoses and immunotherapeutic outcomes. Natural

killer (NK) cells play essential roles in malignancies’ development, diagnosis,

and prognosis. The purpose of this study was to establish a reliable signature

based on genes related to NK cells (NRGs), thus providing a new perspective for

assessing immunotherapy response and prognosis of HNSCC patients.

Methods: In this study, NRGs were used to classify HNSCC from the TCGA-

HNSCC and GEO cohorts. The genes were evaluated using univariate cox

regression analysis based on the differential analysis of normal and tumor

samples in TCGA-HNSCC conducted using the “limma” R package. Thereafter,

we built prognostic gene signatures using LASSO-COX analysis. External

validation was carried out in the GSE41613 cohort. Immunity analysis based

on NRGs was performed via several methods, such as CIBERSORT, and

immunotherapy response was evaluated by TIP portal website.

Results: With the TCGA-HNSCC data, we established a nomogram based on

the 17-NRGs signature and a variety of clinicopathological characteristics. The

low-risk group exhibited a better effect when it came to immunotherapy.

Conclusions: 17-NRGs signature and nomograms demonstrate excellent

predictive performance and offer new perspectives for assessing pre-
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immune efficacy, which will facilitate future precision immuno-oncology

research.
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Introduction

HNSCC accounts for 95% of head and neck cancers and

causes over 316,000 annual deaths worldwide (1, 2). Since the

head and neck region is home to many vital organs that control

important physiological functions, and a large number of

muscles, bones, blood vessels and nerves are concentrated in a

rather small space with interlocking organ sites (3), traditional

treatment methods such as surgery, chemotherapy and

radiotherapy are difficult to eradicate the disease. Compared

with traditional methods, NK immune cells are more precisely

targeted and can achieve the effect of removing cancer cells, anti-

relapse and anti-metastasis. However, due to the highly

aggressive and heterogeneous nature of HNSCC, the prognosis

of patients remains poor, with morbidity and mortality rates

increasing year by year (4). The TNM stage and histological

grade are closely correlated with the prognosis of HNSCC and

are also the main basis and foundation for treatment options

such as prognostic grading, immunotherapy, radiation and

chemotherapy (5). HNSCC patients may, however,

demonstrate different clinicopathologic characteristics,

suggesting that traditional clinicopathologic staging may not

be completely accurate (6). Consequently, finding new

prognostic biomarkers is crucial to improving the quality of

life of HNSCC patients.

NK cells, defined as CD3-CD16+CD56+ lymphocytes, are

the third class of lymphocytes in the body, accounting for

approximately 5% to 15% of the circulating lymphocyte count

(7). Many single-cell sequencing analyses have come to similar

conclusions, with fewer NK cells in tumors than in normal tissue

(8). In fighting solid tumors, NK cells may have an advantage

over T cells like enhancing the response to radioimmunotherapy

and chemotherapy (9, 10), thus exhibiting important prognostic

significance (11–14), despite having less tumor immune

infiltration (15).

With the continuous development of bioinformatics,

biomarkers have been defined in various ways. NK cell therapy

in combination with conventional oncology treatments can

effectively improve the outcome of oncology treatment (16).

Currently, the function of NRGs in HNSCC is not clear in terms

of diagnosis and prognosis. Hence, this study aimed to
02
comprehensively analyze the relationship between the

expression pattern of NRGs and the prognosis of HNSCC.

In our study, 17 reliable NRGs were screened to establish a

prognostic model via TCGA-HNSCC cohort, and we continued

to form a risk score to analyze the relationship between NRGs

and immune microenvironment, immunotherapy as well as

chemotherapy sensitivity. We aim to demonstrate the value of

NRGs for assessing the prognosis of HNSCC patients through a

comprehensive analysis of genomic data, as well as to develop

new tools for improving treatment options.
Method

Patient data sources

We downloaded gene expression profiles and clinical data of

TCGA-HNSCC cohort including 504 tumor patients and 44

normal controls from TCGA database (https://portal.gdc.cancer.

gov/). The level 3 HTSeq-Fragments per kilobase million

(FPKM) data of TCGA-HNSCC was converted to TPM

(transcripts per million reads) according to the following

formula: TPMn = FPKMn * 106/(FPKM0 +… + FPKMm),

where n represented gene n and m represented the total

number of all genes, respectively. Then, we performed log2-

based transformation of TPM. The sample size of HNSCC

patients at the M stage varied greatly. This stage was

consequently excluded from the analysis. Among them, 501

HNSCC samples with complete clinical information were used

as the train cohort for further analysis. The gene profiles and

clinical data of 97 HNSCC patients in GSE41613 dataset were

downloaded from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). The GSE41643 was considered as an external

validation dataset.
Model construction and validation

The immport portal website contains 134 NRGs that are

related to NK cells (https://www.immport.org/resource)

(Supplementary Table 1) and the Molecular Signature
frontiersin.org
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Database (MSigDB) covers 18 NK cells associated Gene

Ontology (GO) pathways (Supplementary Table 2) (17).

Finally, 244 NRGs were obtained after eliminating duplicate

genes from both datasets. A differential analysis between normal

and tumor groups was performed using the “limma” R package

(18), based on a screening threshold of |log2FC| > 0.5 and an

adjusted P-value <0.05. By performing univariate Cox regression

analysis, we identified genes associated with survival, followed by

LASSO regression analysis with “glmnet” in R, and tenfold

cross-validation was used to determine the penalty regularization

parameter l. In the following steps, multivariate Cox regression

models were used to identify and calculate the coefficients for the

central genes. Based on the best lambda values and the

corresponding coefficients, we constructed risk signatures based

on 17-NRGs. For each patient, the NRGs risk score was calculated

as follows, risk score = ExpressionmRNA1 × CoefmRNA1 +

ExpressionmRNA2 × CoefmRNA2 +… ExpressionmRNAn × CoefmRNAn.
Model formula

All HNSCC patients were given risk scores based on output

model equations, and median value were calculated using R

package “survminer”, classifying all HNSCC patients into low-

risk and high-risk groups, and plotting survival curves for the

two subgroups. The R package “pec” was adopted to calculate the

C-index. For assessing genetic traits’ predictive power, ROC

curve analysis using the “time-ROC” R package was conducted.

Decision curve analysis (DCA) of a multi-factor Cox regression

model was plotted using the “ggDCA” R package.
Independent prognostic analysis and
nomogram construction

We conducted univariate and multivariate Cox regression

analyses to assess risk score as an independent prognostic factor.

Using the “rms” R package, histograms were constructed using

risk scores versus clinicopathologic characteristics to predict

survival at 1, 3, and 5 years for patients in TCGA-

HNSCC cohort.
Functional enrichment analysis

Gene Set Variation Analysis (GSVA) was performed using

“c2.cp.kegg.v7.4.symbols.gmt” from the MSigDB. Using

“GSVA” R package to perform GSVA enrichment analysis.

The “heatmap” R package was used to create heat maps.

According to the “limma” R package, an adjusted P-value <

0.05 indicates statistical significance for subgroup differences.

Through functional enrichment analysis of differentially

expressed genes in HNSCC associated with NRGs, functional
Frontiers in Immunology 03
annotation and enrichment pathways have been explored. The

analysis of GO and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways was done using the “ClusterProfiler” R

package, where P-value < 0.05 represents a statistically

significant difference. The “circlize” R package visualized GO

and KEGG results.
Immunity analysis of the risk signature

Currently accepted methods, including XCELL (19, 20),

TIMER (21, 22), QUANTISEQ (21, 22), MCPCOUNT (23),

EPIC (24), CIBERSORT (21, 25) and CIBERSORT-ABS (26)

were used to measure immune infiltration scores. Spearman

correlation analysis was used to examine the correlation between

immune cells and risk scores. Based on the immune cell

characteristics of HNSCC patients, the single sample GSEA

(ssGSEA) method was adopted to differentiate patients at low-

risk from those at high-risk. Using a list of 20 suppressive

immune checkpoints derived from Auslander’s study, we

assessed the suppression of immune checkpoints between

high-risk and low-risk groups (27). The “estimate” R package

was used to calculate the immunological and mechanistic scores

of the specimens from the RNA-seq data to assess the purity of

the tumors. Evaluation and visualization of immunotherapy

efficacy in HNSCC patients by “limma” and “ggpubr” R package.

Xu et al. developed a website that provided us with gene

sets related to cancer and immunity (28) (http://biocc.hrbmu.

edu.cn/TIP/) and a set of genes positively associated with anti-

PD-L1 drug response was obtained (23) from Mariathasan’s

study features (29). Enrichment scores for gene feature

positively associated with cancer immune cycles and

immunotherapy were calculated between two subgroups by

GSVA algorithm (30) and P-value <0.05 was considered

statistically different. The R package “ggcor” for the analysis

of correlations between risk scores and the two genetic traits

mentioned above was used.
Drug sensitivity

The “pRRophetic” R package was used to assess treatment

response in high-risk and low-risk groups of patients, as

determined by the half-maximal inhibitory concentration (IC50)

of each HNSCC patient on the Genomics of Drug Sensitivity in

Cancer (GDSC) (https://www.cancerrxgene.org/) (31).
Gene set cancer analysis database

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/)

provides an online cancer genomic analysis platform by

integrating 33 cancers data from TCGA and normal tissue
frontiersin.org
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genomics data from GTEx (32). In this study, we analyzed the

genomic level, copy number level, methylation level and

pathway activity of NRGs in HNSCC by GSCALite.
Tumor immune single cell hub database

TISCH (http://tisch.comp-genomics.org) is an large-scale

online database of single-cell RNA-seg focused on the tumor

microenvironment (TME) (33). In this database, the

heterogeneity of TME in various cell types and data sets was

systematically examined.
Statistical analysis

Statistical analyses were performed using R software v4.1.3.

Kaplan-Meier (KM) survival curves and log-rank test were used

to compare OS between high- and low-risk groups. LASSO-Cox

regression model was used to construct NRGs signature. Time-

dependent ROC was used to evaluate the predictive performance

of the model. Spearman correlation analysis was used to evaluate

the correlation between risk score and immune cell infiltration.

Wilcox test was used to compare the proportion of tumor-
Frontiers in Immunology 04
infiltrating immune cells, immune checkpoints, and immune

function between the two groups. P-values <0.05 were

considered statistically significant and false discovery rate

(FDR)<0.05 was considered statistically significant.
Result

Identification of candidate NRGs

The graphical flow chart outlines the main design of this

study (Figure 1). Using R’s “limma” package, we analyzed gene

expression differences in HNSCC patients, and 140 NRGs with

up-regulated expression and eight NRGs with down-regulated

expression were obtained with |log2FC|>0.5. The heat map

(Figure 2A) and volcano map (Figure 2B) were plotted by the

“pheatmap” R package. Univariate Cox regression analysis of

148 differentially expressed NRGs (DE-NRGs) identified NRGs

associated with OS (P<0.05) (Figure 2C), and mutation

correlation analysis was performed on 501 HNSCC samples.

We found that 44 NRGs were mutated on 112 patients with a

frequency of 21.96% (Figure 2D). Correlation analysis of 44

prognosis-related DE-NRGs was performed by the “maftool” R

package, which identified 61 pairs of genes susceptible to co-
FIGURE 1

The flowchart summarizes the main design of the present study.
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mutation, of which eight pairs were highly susceptible to co-

mutation (Figure 2E).
Construction and validation of
NRGs signature

A risk score model based on NRGs was developed in order to

identify a biomarker that predicts the prognosis of patients with

HSNCC. LASSO regression analysis was performed for DE-

NRGs with prognostic value, and LASSO regression curves
Frontiers in Immunology 05
(Figure 3A) and cross-validation plots (Figure 3B) were

obtained. The number of genes involved in model

construction was obtained by the lowest point of the cross-

validation graph as 17, namely KIR3DL2, MAP2K1, CSF2,

ZAP70, SH3BP2, PIK3R2, ULBP1, KLRK1, PRKCA, FASLG,

BID, LAMP1, SLAMF7, PVR, PGM3, RAG1, and WIPF1.

Prognostic index (PI) = (-0.369*KIR3DL2 exp.) +

(0.207*MAP2K1 exp.) + (0.026*CSF2 exp.) + (-0.177*ZAP70

exp.) + (-0.286* SH3BP2 exp.) + (-1.020*PIK3R2 exp.) +

(0.122*ULBP1 exp.) + (-0.395*KLRK1 exp.) + (0.113*PRKCA

exp.) + (0.294*FASLG exp.) + (0.150*BID exp.) +
B

C D

E

A

FIGURE 2

Identification of candidate NRGs. (A, B) Heat map and volcano plot of differentially expressed NRGs. (C) Prognosis of 44 NRGs in the whole
HNSCC cohort analyzed by univariate Cox regression model. (D) Oncoplot of 44 mutant NRGs in the HNSCC cohort. (E) Co-mutation analysis
of NRGs.
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(0.070*LAMP1 exp.) + (0.009*SLAMF7 exp.) + (0.081*PVR

exp.) + (0.013*PGM3 exp.) + (0.086*RAG1 exp.) +

(-0.187*WIPF1 exp.). On the basis of median scores, we also

calculated prognostic risk scores for HNSCC patients. According

to the risk heat map (Figure 3C), high-risk genes correlate

positively with risk and low-risk genes correlate negatively. In

the TGCA-HNSCC cohort, survival of HNSCC patients showed
Frontiers in Immunology 06
an increase in mortality with increasing risk (Figures 3D, E), and

a better prognosis was observed in the low-risk group (P<0.001)

(Figure 3F). Based on principal component analysis (PCA)

analysis, low-risk and high-risk patients were clearly separated

(Figure 3G). In the GSE41613 cohort, we demonstrated the same

results as in the TCGA-HNSCC cohort. Increasing risk scores

increased mortality for patients (Figures 3H, I). The KM survival
B C

D

E

F G

H

I

J K

L M N

A

FIGURE 3

Construction and validation of NRGs Signature. (A)Ten‐time cross‐validation for tuning parameter selection in the LASSO model. (B)LASSO
coefficient profiles. (C) Heat map of risk factors in high- and low-risk patients. (D) Distribution of risk scores between low- and high-risk groups
in the TCGA group. (E) Survival status of HNSCC patients in the low- and high-risk groups in the TCGA group.(F) (KM curve compares the
overall HNSCC patients between low- and high-risk groups in the TCGA cohort. (G) PCA plot in the TCGA cohort. (H) Distribution of risk scores
between low- and high-risk groups in the GEO cohort.(I) Survival status of HNSCC patients in the low- and high-risk groups in the GEO cohort.
(J) KM curve compares the overall HNSCC patients between low- and high-risk groups in the GEO cohort. (K) PCA plot in the GEO cohort.
(L) Correlation analysis and co-expression heat map of 17-NRGs. (M) Correlation of 17 NRGs with riskscore (N)Correlation analysis of 17 NRGs
with immune cells.
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analysis indicated that low-risk patients have an improved

prognosis when compared to high-risk patients (P=0.028).

(Figure 3J). PCA analysis suggested significant differences

between low- and high-risk patients (Figure 3K). Based on the

above results, we can conclude that the construct of our

prognostic model is quite superior. In addition, the results of

correlation analysis for 17-NRGs (Figure 3L) indicated that most

of them correlated positively. We then further explored the

correlations between these 17-NRGs expressions and risk scores

and found that all of these 17-NRGs we studied were closely

associated with risk scores. Among them, KIR3DL2, ZAP70,

SH3BP2, PIK3R2, KLRK1, FASLG, SLAMF7, and WIPF1 had a

significantly negative correlation with risk scores, whereas the

rest had a significantly positive correlation with risk scores

(Figure 3M). Meanwhile, to investigate the relationship

between the expression of these genes and immune

infiltration, we examined the correlation between 17-NRGs

and a variety of immune cells and found that 17-NRGs

expression was closely associated with various immune cells

including NK cell resting and NK cell activated (Figure 3N).
Establishment of nomograms in
combination with clinical characteristics

Considering that the constructed risk model was

significantly associated with poor prognosis, we combined the

OS of HNSCC patients with their clinical characteristics in

univariate and multivariate Cox analyses to determine whether

our prognostic characteristics derived from 17 NRGs are

independent predictors of survival. Univariate cox analysis

revealed that risk score, age, gender, grade, and stage were

significantly associated with prognosis in HNSCC (P<0.001)

(Figure 4A). The outcome risk score (P=0.006) was found to

be an independent and reliable predictor of outcome risk

(Figure 4B). For HNSCC patients, ROC curves were used to

assess the model’s accuracy. Figure 4C indicated that the

prediction model is highly sensitive and specific depending on

the AUC values for risk score, 1, 3, and 5- years (AUC = 0.684,

0.725, 0.717). In addition, the risk score (AUC=0.717) was a

better predictor of HNSCC prognosis compared with traditional

clinicopathological features (Figure 4D). To enlarge the clinical

application and usability of the constructed risk model, we

constructed a nomogram based on gender, age, stage, grade,

and risk score to predict the probability of prognostic survival at

1, 3, and 5 years in HNSCC patients (Figure 4E). The risk score

was found to have the greatest impact on predicting OS, showing

that HNSCC could be more accurately predicted when using a

risk model based on 17 NRGs. The calibration curves also

showed satisfactory agreement between predicted and

observed values in terms of the probability of 1, 3, and 5-year

OS (Figure 4F). Nomogram showed the best predictive power

(AUC=0.775), compared to risk (AUC=0.717) and clinical
Frontiers in Immunology 07
characteristics (Figure 4G). Multiple results demonstrated that

our model had the highest net benefit, suggesting that risk

models constructed based on NRGs are more influential than

traditional models in clinical decision-making (Figure 4H).
Correlation analysis of
clinicopathological characteristics and
risk scores

To analyze the association between high and low-risk groups

and clinical characteristics, heat maps were drawn based on

clinical characteristics, risk score, and the expression of 17-

NRGs, showing the association between 17-NRGs identified in

the prognostic risk model and the clinical characteristics and risk

scores of all HNSCC patients in TCGA (Supplementary

Figure 1A). The distribution of tumor stage, grading, T stage,

and N stage was significantly different among high and low-risk

groups, while in both subgroups, neither age nor gender differed

significantly (Supplementary Figure 1B). We then used the

Wilcoxon test to compare the differences in risk scores of

clinical characteristics among the subgroups and thus test the

correlation between them. Results revealed a significant

association between risk scores and tumor pathological stage,

grade, and T stage (P<0.05) (Supplementary Figures 1C–H).
Clinical subgroup survival analysis of the
NRGs signature

To further understand whether the prognosis of patients in

different clinical subgroups differed, clinical analysis of the entire

sample subgroup was performed. All samples were divided into

different subgroups according to age (>65 years and ≤65 years),

gender (male and female), tumor grade (grades I-II and III-IV),

pathological N stage (N0 and N1-3), T stage (T1-2 and T3-4), and

pathological stage (I-II and III-IV) for further survival analysis.

The survival time of high-risk patients in all subgroups was

significantly shorter than that of low-risk patients (Figure 5). It

appears that the NRGs risk model currently identified can also

reliably predict the prognosis of certain subgroups of HNSCC

based on their clinical characteristics.
NRGs signature performed better than
others in prognostic prediction

To further demonstrate whether our constructed 17-NRGs

signature has the accurate predictive capability for HNSCC

patients, we compared it with five published prognostic

signatures, namely the Wang signature (34), Wu signature

(35), Xue signature (36), Yang signature (37) and Zhu

signature (4). For comparability of signatures, we calculated
frontiersin.org
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the risk score of each HNSCC sample in entire TCGA cohorts by

the same method and converted the risk score according to the

previous methods in the five signatures. Although the five

signatures effectively divided HNSCC patients into two

subgroups with significantly different prognoses, they exhibited

lower AUC values than our model at 1, 3, and 5-year survival

(Supplementary Figures 2A-F). Furthermore, the RMS analysis

and C-index analysis also show that our signature performs

significantly better than the other signature (Supplementary

Figures 2G, H). All these results clearly indicated that the

constructed 17-NRGs signature performs exceptionally well in

terms of predictive capability.
Frontiers in Immunology 08
Functional enrichment analysis

KEGG enrichment analysis and GO functional analysis were

performed to assess differential genes between the two

subgroups to elucidate the relevance of bioactivity and

signaling pathways to risk scores. The threshold FDR<0.05

and P<0.05 were used to select significantly enriched items.

Biological processes (BP) mainly included immunoglobulin

production, B cell receptor signaling pathway, humoral

immune response mediated by circulating immunoglobulin

and antigen receptor-mediated signaling pathway, etc. The

cellular component (CC) mainly included the external side of
B

C

D

E

F G H

A

FIGURE 4

Establishment of nomograms in combination with clinical characteristics. (A) Univariate and (B) multivariate COX regression analysis of the
signature and different clinical feature. (C) Time-dependent ROC curves analysis. (D) Multi-index ROC analysis (E) Nomogram for predicting 1, 3,
and 5-year OS of patients with HNSCC. (F) The calibration curve of the constructed nomogram of 1, 3, and 5-year survival. (G) The nomogram’s
time-dependent ROC curves. (H) Decision curve analysis.
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the immunoglobulin complex, T cell receptor complex, and

plasma membrane signaling receptor complex. Molecular

function (MF) mainly included immunoglobulin receptor

binding, cytokine receptor activity, and antigen binding

(Figure 6A; Supplementary Table 3). KEGG mainly included

PD-1 checkpoint pathway, T cell receptor signaling pathway,

natural killer cell mediated cytotoxicity, PD-L1 expression, and

Cytokine-cytokine receptor interaction in cancer (Figure 6B;

Supplementary Table 4). GSVA analysis identified 111

significantly enriched pathways (Figure 6C; Supplementary

Table 5), and among low-risk individuals, pathway enrichment

mostly involved immune function, including primary

immunodeficiency, allograft rejection, etc. In summary, we

were surprised to find a strong correlation between

enrichment analysis results and immune response, and

therefore we conducted a systematic analysis of the immune

landscape in the two subgroups of HNSCC patients.
NRGs risk score predicts immune cell
infiltration and TME

Tumor immune cell infiltration is widely considered to be

one of the important immune features of TME. Spearman

correlation analysis was performed to find a correlation
Frontiers in Immunology 09
between the risk score and the abundance of immune cells in

the HNSCC tumor microenvironment via various algorithms.

For NK cell infiltration, QUANTISEQ, MCPCOUNTER, and

EPIC showed negative correlations with risk scores. It is

interesting to note that, in CIBERSORT-ABS and CIBERSORT

results, NK cells resting had a positive correlation with risk

scores, but NK cells activated had a negative correlation with risk

scores (Figure 7A). To understand the distribution and

correlation of the relative content of 22 TICs (tumor-

infiltrating immune cells) in the TCGA-HNSCC cohort, we

calculated the level of immune cell infiltration in each sample

by the CIBERSORT algorithm. As compared with the high-risk

group, the low-risk group appeared to have higher levels of

immune infiltration, except for activated dendritic cells, CD4

memory resting T cells, and M0 macrophages (Figure 7B).

According to the results, NRGs risk score models are capable

of classifying different immune subtypes and thus influence the

response to immunotherapy. Differences in immune cell

infiltration may lead to alterations in immune function, so we

performed single sample GSEA (ssGSEA) score comparison of

immune function, and the vast majority of immune function

scores were significantly greater in the low-risk group versus

high-risk group (Figure 7C). Further, we explored the differences

in immune checkpoint expression between the two groups, due

to the importance of immune checkpoints for the effectiveness of
B C D

E F G H
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A

FIGURE 5

The risk score based on 17-NRGs signature is a valuable marker for poor prognosis in various subgroups divided by clinicopathological
characteristics. The NRGs could distinguish high-risk patients in a variety of subgroups divided by clinicopathological characteristics including
age (A, B), gender (C, D), grades (E, F), N stage (G, H), tumor stage (I, J) and T stage (K, L).
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immunotherapy in tumors. Low-risk individuals showed

significant upregulation of 11 immune checkpoint genes,

including LAIR1, IDO1, CD200R1, CEACAM1, CD200,

KIR3DL1, BTLA, ADORA2A, CTLA-4, PD-1, TIGIT. While

high-risk group showed significant upregulation of PVR and

CD276 immune checkpoint genes (Figure 7D). Upregulation of

immune checkpoint is a key feature of inflamed TME (38) and

may suggest that low-risk patients are in an inflammatory

microenvironment. Targeted therapy against immune

checkpoints with elevated expression could potentially benefit

patients with this subtype of tumor (39–41). Subsequently,

stromal score, immune score, and ESTIMATE score were

higher in the low-risk group (P<0.001), indicating the higher

overall immune level and immunogenicity of the TME in the

low-risk group (Figure 7E).
Frontiers in Immunology 10
NRGs risk score predicts treatment
response assessment

We first analyzed the differences in predicting immune

checkpoint blockade (ICB) response signatures between the

two subgroups. The low-risk group scored highly for Systemic

lupus erythematosus and Proteasome, while scored lowly for

Oocyte meiosis, Progesterone-mediated oocyte maturation, Cell

cycle, Spliceosome, Fanconi anemia pathway, and Homologous

recombination than those of the high-risk group (Figure 8A).

The correlation between NRGs risk scores and ICB-related

positive signals was further explored subsequently. The results

showed that risk scores were associated with Fanconi anemia

pathway, Homologous recombination, Oocyte meiosis,

Spliceosome, Progesterone-mediated oocyte maturation were
B

C

A

FIGURE 6

The enriched items in functional analysis. (A) GO enrichment analysis. (B) KEGG enrichment analysis. (C) GSVA analysis between the high-risk
cohort and the low-risk cohort.
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significantly positively correlated with Systemic lupus

erythematosus, Alcoholism, and Proteasome (Figure 8C). The

tumor immune cycle is a key indicator to evaluate the biological

f u n c t i o n o f t h e c h emok i n e s y s t em and o t h e r

immunomodulators (28, 42). Therefore, we analyzed the

differences in the activity of tumor immune steps between

high and low-risk groups, and in low-risk group, an

upregulation of the activity of most steps of the cycle was

observed, including cancer cell antigen expression (step 2),

initiation and activation (step 3), immune cell trafficking into

tumors (step 4) (T cell recruitment, CD4 T cell recruitment, CD8

T cell recruitment, Th1 recruitment, DC cell recruitment, Th22

cell recruitment, macrophage recruitment, NK cell recruitment,

Th17 cell recruitment, B cell recruitment, Th2 cell recruitment,
Frontiers in Immunology 11
Treg cell recruitment and), Infiltration of immune cells into

tumors (step 5), Recognition of cancer cells by T cells (step 6),

Killing of cancer cells (step 7). While, neutrophil recruitment

(step 4), Basophil recruitment (step 4), MDSC recruitment (step

4) activity were decreased (Figure 8B). Similarly, we investigated

the correlation between these steps in the tumor immune cycle

and risk scores. In step 4, a significant positive correlation was

found between risk score and monocyte recruitment, neutrophil

recruitment, Eosinophil recruitment, and Basophil recruitment,

while significantly negatively correlated with each of the

remaining tumor immune cycle steps (Figure 8C). More

importantly, 17-NRG expression was significantly higher in

patients with progressive and stable disease than in those with

partial or complete responses (P=1.2e-05) (Figure 8D),
B

C

D E

A

FIGURE 7

17-NRGs risk score predicts tumor microenvironment and immune cell infiltration. (A) Immune cell bubble map. (B) Differences in immune cell
infiltration between high and low-risk groups. (C) Immune function ssGSEA scores between high and low-risk groups. (D) Immune checkpoint
differences between high- and low-risk groups. (E) TME component analysis. *P < 0.05, **P < 0.01, ***P < 0.001, ns ≥ 0.05.
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suggesting that patients with higher NRGs expression might

respond worse to ICB. Based on the BEST database, we

examined four external cohorts (GSE100797, GSE126044,

GSE135222, Nathanson) receiving immunotherapy for the

association between NRGs scores and the benefits of
Frontiers in Immunology 12
immunotherapy (https://rookieutopia.com/). High NRGs

expression in patients showed a higher degree of immune

response to CAR-T, anti-PD-L1, and anti-CTLA-4, and the

ROC curves confirmed the efficacy of NRGs in predicting

immunotherapy responsiveness (Figures 8E-H).
B
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FIGURE 8

17-NRGs risk scores predicting treatment response assessment. (A) The plot of the difference in enrichment scores between the high-risk and
low-risk groups on the immunotherapy prediction pathway. (B) The plot of differences between the high-risk and low-risk groups on each step
of the cancer-immune cycle. (C) Correlation of risk scores with ICB response signature and each step of the tumor-immune cycle.
(D) Correlation between risk scores and clinical response to cancer immunotherapy. (E) Evaluation of NRGs for CAR-T therapy in the
GSE100797 cohort. (F, G) Evaluation of NRGs for anti-PD-L1 therapy in the GSE126044 and GSE135222 cohorts. (H) Evaluation of NRGs for
anti-CTLA-4 treatment in the Nathanson cohort. PD: disease progression; SD: stable disease; PR: partial response; CR: complete response.
TIDE, Tumor Immune Dysfunction, and Exclusion. *P < 0.05, **P < 0.01, ***P < 0.001.
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NRGs signature predicts chemotherapy
sensitivity

Among the 12 immunotherapeutic agents applied in the

treatment of HNSCC, the low-risk group included A.443654

(P=0.032), A.770041 (P=0.001), AP.24534 (P=0.045) AS601245

(P=2.9e-07), AUY922 (P=0.0082), AZ628 (P=3.3e-07),

AZD.0530(P=3.6e-06). IC50 was relatively high compared to

the high-risk group (Figures 9A, B, F, G, I, K, L). In addition, we

found five other chemical or targeted drugs ABT.888 (P=8.7e-

15), AG.014699 (P=0.0016), AKT.inhibitor.VIII (P=5.5e-07),
Frontiers in Immunology 13
ATRA (P=3.4e-12), and Axitinib (P=0.00058), with lower IC50

in the low-risk group lower (Figures 9C, D, E, H, J). Based on the

risk score, we could further investigate the immunotherapy

response in HNSCC patients and enhance the precise

drug treatment.
Multi-omics mutation analysis of NRGs

Furthermore, we examined different histological levels,

including genomics and copy number, to understand the
B C

D E F

G H I

J K L

A

FIGURE 9

17-NRGs signature predicts chemotherapy sensitivity. (A) A.443654, (B) A.770041, (C) ABT.888, (D) AG.014699, (E) AKT.inhibitor. VIII, (F) AP.24534,
(G) AS601245, (H) ATRA, (I) AUY922, (J) Axitinib, (K) AZ628, (L) AZD.0530.
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biological mechanism of NRG aberrant expression. The single

nucleotide locus variation (SNV) results showed that

Missense_Mutation of NRGs was the most common variant

classification in the TCGA-HNSC cohort, while the most

prevalent variant type was single nucleotide polymorphism.

C>T had the highest frequency compared to other SNV

categories (Supplementary Figure 3A). And mutations

occurred in 49 HNSCC patients, with KIR3DL2 possessing the

highest mutation frequency (Supplementary Figure 3B).

Subsequently, copy number variation analysis was performed

to summarize the ratio of Homozygous mutations and

he te rozygous muta t ions in NRGs in the sample

(Supplementary Figure 3C) . In addition, Spearman ’s

correlation coefficient analysis between copy number variants

and gene expression was performed, and it was found that copy

number variants of KIRK1 and FASLG were down-regulated in

HNSCC, while LAMP1, SH3BP2, MAP2K1, PGM3, PIK3R2,

BID, ULBP1, PVR, and KIR3DL2 were up-regulated

(Supplementary Figure 3D). We counted the two mutations

separately, and the results showed that the samples amplified

mainly in heterozygous mutations such as KIRK1, FASLG,

SLAMF7, etc., while CSF2, SH3BP2, etc. were copy number

deletions. The Homozygous mutations amplified mainly WIPF1,

while SH3BP2 showed mainly copy number reduction

(Supplementary Figures 3E, F), so the abnormal gene

expression may be the result of both copy number variation

and single nucleotide variation. Following this, we investigated

the relationship between the activity of cancer-related pathways

and the expression of NRGs. Results showed that cell cycle,

P13KAKT, RASMAPK, and TSCmTOR pathways were

inhibited in HNSCC patients under the regulation of NRGs,

while Hormone ER, Hormone AR, Apoptosis, EMT, DNA

damage, RTK pathways were activated or inhibited

(Supplementary Figure 3G). In addition, we explored that the

differential expression of NRGs was significantly correlated with

drug sensitivity in the Cancer Therapeutics Response Portal and

GDSC databases, respectively (Supplementary Figures 3H, I).

This implies that the expression of our risk profile genes could be

used as a predictor of chemotherapy drug sensitivity in patients

or could be used as a future drug sensitization target.
Correlation analysis of NRGs and
immune microenvironment

We used the single cell dataset HNSCC_GSE139324 from the

TISCH database to analyze the expression of 17-NRGs in the

immune microenvironment. In the GSE103322 dataset, there are

23 cell populations and 11 species of immune cell types

(Supplementary Figures 4A, B), and the distribution and

number of various cell types are shown (Supplementary

Figures 4C, D). The expression levels of each NRGs in immune

cells are shown in Supplementary Figure 4E. BID, LAMP1,
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MAP2K1, SH3BP2, WIPF1 and ZAP70 were expressed on

various immune cells, while CSF2, KIR3DL2, KLRK1, PGM3,

PIK3R2, PVR, RAG1 and ULBP1 were barely expressed in the

immune microenvironment. FASLG is mainly expressed in NK,

CD8Tex and Tprolif. PRKCA is mainly expressed in CD8T and

CD4Tconv. SLAMF7 is mainly expressed in NK, CD8Tex, Tprolif

and Mono/Macro.
Discussion

HNSCC exhibits considerable heterogeneity in terms of

human biologic behavior and treatment response, and despite

a plethora of therapies, the 5-year overall survival rate for

patients with HNSCC remains <50% (43–45). Despite ongoing

efforts to develop new concepts of HNSCC in precision

medicine, particularly ICB and targeting therapies, over the

past few decades, survival hasn’t improved (46). Most patients

present with advanced disease when they are diagnosed (47).

However, risk stratification by tumor size, lymph node and

distant metastasis and histological grade alone is not sufficient

to predict prognosis in patients with HNSCC, more accurate

models for predicting prognosis are urgently needed (48, 49).

NK cells play a crucial role in the tumor microenvironment and

immune surveillance, and their associated genes are gaining

attention (50). However, a comprehensive analysis of NRGs in

HNSCC has not been reported. Therefore, we used mRNA

expression data from the TCGA-HNSCC dataset to identify

important prognostic genes and developed a multi-biomarker

prognostic model based on natural killer cell-associated genes.

In this study, we integrated NRG gene expression profiles

from the TCGA-HNSCC dataset and selected 17 genes to

construct a new prognostic model for NRGs using LASSO

regression analysis and COX risk regression analysis. The

NRGs signature we constructed was shown to be an

independent prognostic factor for HNSCC and was divided

into two different prognostic subgroups based on median risk

scores. ROC curves, nomogram, and calibration curves were

subsequently constructed, and a comprehensive analysis

demonstrated a more prominent predictive performance of

HNSCC signature compared to other traditional clinical

indicators such as age, gender, histological stage, and tumor

grade. At the same time, the predicted values are in satisfactory

agreement with the observed values. It can provide a theoretical

basis for clinicians’ decision-making.

KIR3DL2, a member of the killer cell immunoglobulin-like

receptor, is involved in blocking NK cell activation and function

upon contact with HLA-A3 or HLA-A11, resulting in tolerance

(51–53). MAP2K1 is involved in regulating mitogen-activated

protein kinase (MAPK)-mediated release of cellular granules to

target cells, thereby altering the cytotoxic function of NK cells

(54, 55). ZAP70 is one of the intracellular kinases that transmit

signals upon NK cell binding to target cells, ultimately leading to
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NK cell activation. It has been shown that in vitro NK cell

populations with high levels of ZAP70 are more cytolytic

compared to those with low levels of ZAZ70 (56). It has been

shown that CD244 induces overexpression of SH3BP2,

accompanied by increased cytotoxicity in NK cells (57).

SH3BP2 may mobilize key downstream signaling effectors to

regulate NK cell-mediated cytotoxicity (58). KLRK1 is a receptor

expressed by NK cells and cytotoxic T lymphocytes; binds non-

covalently to DAP10 signaling protein to provide co-stimulatory

or activation signals to T and NK cells (59, 60). Both FASLG and

KLRC4-KLRK1 are involved in the apoptosis of NK and T cells

and cytotoxicity (61, 62). SLAMF7 homologous interactions

regulate NK cell cytolytic activity. SLAMF7 on NK cells can

bind to elotuzumab, thereby inducing NK cell activation and

enhancing cytolytic function against myeloma cells (63). PVR

can be bound by TIGIT and DNAM-1 thereby inhibiting NK

cytotoxicity to prevent NK cell self-destruction of normal cells

(64). Recombination-activated genes (RAGs) confer the ability

to assemble diverse antigen receptor genes by adaptive immune

cells. Mutant NK cells lacking RAG (or RAG activity) are more

differentiated and cytolytic than NK cells with RAG expression

(65). In 2012, the first case of autosomal recessive

immunodeficiency caused by a mutation in the WIPF1 gene

(resulting in WIP deficiency) was reported in an infant with

reduced NK cell function (66). However, the effect of WIPF1 on

NK cells remains unclear as to the mechanism of action of

WIPF1 on NK cells.

However, significant intra- and inter-tumor heterogeneity is

one of the strongest features of HNSCC and hinders the

identification of specific biomarkers and the establishment of

targeted therapies for the disease (46). Therefore, an “ideal”

preclinical cancer model should consider both TME and tumor

heterogeneity. Since immune cells are the cellular basis of

immunotherapy, an in-depth understanding of immune

infiltration in TME is essential to unravel the underlying

molecular mechanisms and provide new immunotherapeutic

strategies to improve clinical outcomes (67). Therefore, we

analyzed immune cell infiltration and immune function

expression in high and low-risk groups. In addition, CD8+ T

cells were also highly infiltrated in the low-risk group, resulting

in a better prognosis for HNSCC patients. Interestingly,

cetuximab-activated NK cells were able to promote CD8+ T-

cell activation and thus the antitumor immune response in

HNSCC (68). Therefore, the use of cetuximab in the low-risk

group may have unexpected therapeutic effects by further

activating CD8+ T cells.

Immune checkpoints are of interest as one of the important

features of TME. Among them, programmed death ligand 1

(PD-L1), an immune checkpoint protein in the cancer-immune

cycle, is expressed on the surface of tumor cells (TC) and tumor-

infiltrating immune cells (IC) to downregulate T cell function
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(69). The high expression in the low-risk group may indicate

that tumor cells in low-risk patients rely on the PD-1/PD-L1

signaling pathway to evade immune surveillance, and the risk

group patients with PD-1 monoclonal antibodies may have good

efficacy. In addition, we found that PVR and CD276 expression

was higher in the high-risk group, and both have been found to

be associated with poor prognosis. PVR modulates NK cells and

regulates T-cell activity leading to immunosuppression (70, 71),

whi le CD276 enables HNSCC stem cel ls to evade

immunosurveillance (72). Therefore, patients in the high-risk

group need to practice combinations of immunotherapies will

become important (73) with the potential to further improve the

efficacy of immune checkpoint blockade therapies and expand

the population benefiting from immunotherapy. Targeted

therapy against immune checkpoints with elevated expression

may achieve better results.

Although our study has greater clinical implications for the

prognostic assessment and selection of treatment options for

patients with HNSCC, our study still has some limitations. First,

our study is a retrospective study that needs to be validated in

future prospective studies. The potential of this signature to

predict the response to immunotherapy was indirectly assessed

because mRNA expression profile data were not available for

HNSCC patients receiving immunotherapy, which may lead to

deviations from the actual situation. Therefore, future validation

should be performed in combination with data from HNSCC

patients receiving immunotherapy.
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