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Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric

antigen receptor (CAR) T cells, have revolutionized the treatment of patients

with advanced and metastatic tumors resistant to traditional therapies.

However, the immunosuppressed tumor microenvironment (TME) results in a

weak response to immunotherapy. Therefore, to realize the full potential of

immunotherapy and obstacle barriers, it is essential to explore how to convert

cold TME to hot TME. Autophagy is a crucial cellular process that preserves

cellular stability in the cellular components of the TME, contributing to the

characterization of the immunosuppressive TME. Targeted autophagy ignites

immunosuppressive TME by influencing antigen release, antigen presentation,

antigen recognition, and immune cell trafficking, thereby enhancing the

effectiveness of cancer immunotherapy and overcoming resistance to

immunotherapy. In this review, we summarize the characteristics and

components of TME, explore the mechanisms and functions of autophagy in

the characterization and regulation of TME, and discuss autophagy-based

therapies as adjuvant enhancers of immunotherapy to improve the

effectiveness of immunotherapy.
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1 Introduction

Current prognoses for individuals with advanced cancer are

generally poor, making cancer the second most common cause

of global deaths (1). Immunotherapy has recently improved

survival advantages over traditional treatments for various

tumor types, especially advanced non-small cell lung cancer

(NSCLC) and melanoma. However, how to raise response rates

is still an urgent issue (2). Although immunotherapy combined

with chemotherapy, targeted medication, or radiotherapy has

been confirmed to finitely improve the anti-tumor effect, it is

more necessary to explore other safe and efficient

immunosensitizers or combination regimens (3, 4).

Tumor immunogenicity deficiency and immunosuppressive

tumor microenvironment (TME) formation are the major causes

of immunotherapy ineffectiveness or resistance (5). TME is a

complex ecosystem made up of extracellular soluble compounds,

stromal cells, immune cells, aberrant vascular networks, tumor cells,

and dynamic oxygen content (6). Died tumor cells release antigens,

triggering traditional antigen-presentation dendritic cells (DC) to

catch and present major histocompatibility complex (MHC) class I-

antigens to T cells, followed by immune activation mediated by the

activated CD8+T cells (7). Effector CD8+ T cells, also named

cytotoxic T lymphocytes (CTL), play the most significant adaptive

tumor-killing effects in TME by releasing cytotoxic perforins,
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granzymes, and cytokines such as interferon (IFN)-g and tumor

necrosis factor-a (8). Natural killer (NK) cells act as major MHC I-

independent tumor-killing immune cells and are the important

complement of T cell-mediated antitumor immunity (9). However,

the anti-tumor immunity will be weakened by immunosuppressive

TME formed by recruiting immunosuppressive cells, such as

Myeloid-derived suppressor cells (MDSC) and regulatory T cells

(Treg) (10, 11). Tumor-associated macrophages (TAMs),

accounting for 50% of infiltrating tumor stromal cells, are major

immune cells in TME with phenotypically heterogeneous and

functional ly diverse . M1 macrophages can secrete

proinflammatory cytokines, increase tumor antigen presentation

as well as directly kill tumor cells through phagocytosis, resulting in

immune activation (12). Moreover, M2 macrophages exert pro-

tumor function by producing cytokines, such as interleukin (IL)-10

and transforming growth factor (TGF)-b, and play an

immunosuppressive effect by the expression of programmed cell

death ligand (PD-L1) and PD-L2 directly inhibiting cytotoxic T cell

functions (12). As shown in Figure 1, TME could be shifted between

“Hot” and “Cold” TME by recruiting immunosuppressive or

immunostimulatory cells, which affect the response of tumors to

immunotherapy (13). “Hot” TME is characterized by a prominent

infiltration of CTLs, high expression of PD-L1 on tumor cells,

upregulation of antigen-presenting cells (APC) markers, and

activation of type 1IFN responses that all help to enhance the
FIGURE 1

Hot and cold TME. The tumor microenvironment (TME) is divided into the immune desert (cold) and immunoinflammatory (hot) phenotypes. In
the immune desert phenotype, the absence of T cells in the tumor may be due to the lack of tumor antigens and antigen-presenting cells
(APC), the secretion of immunosuppressive molecules such as TGF-b and IL-10, and the infiltration of immunosuppressive cells including MDSC,
M2 macrophages, and Treg. In addition, abnormal angiogenesis and excessive ECM also play an important role in the formation of cold TME.
The immunoinflammatory phenotype is thought to be a prominent infiltration of cytotoxic T lymphocytes (CTLs) in the core of the TME, with
activated antigen-presenting cell (APC) markers and type 1 interferon (IFN) responses.
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response to immunotherapy (13, 14). “Cold” TME is also known as

an “immune desert” or “immune rejection” TME, and is

characterized by rare CTLs infiltration, extensive fibrosis,

abnormal vessel structure, and redundant immunosuppressive

cells infiltrated, as well as low MHC I expression (14). The main

mechanisms of TME regulation include antigen release,

presentation, recognition of antigens, and recruitment and outflow

of immune cells. Reprogramming the immunosuppressive TME

into the immunostimulatory phenotype may enhance the response

sensitivity of tumors to immunotherapy (6, 14, 15).

Autophagy is a process by which either unfolded/misfolded/

damaged protein aggregates or organelles are eradicated for the

maintenance of cellular homeostasis (16). US Food and Drug

Administration (FDA)-approved autophagy inhibitors

hydroxychloroquine (HCQ) and chloroquine (CQ) have

recently shown clinical benefits in the treatment of cancer

patients when combined with chemotherapy, radiotherapy, or

monotherapy (17). Altered autophagy in cancer, immune or

stromal cells can regulate tumor-immune interactions to

remodel the TME (18). Some studies have manifested that

combination treatments of autophagy-targeted medicines and

immunotherapy boost anti-tumor immune efficacy and

enhance clinical benefits (18). Although autophagy-targeted

medicines combined with immunotherapy are potential

treatments, the precise mechanisms of which are still in the

exploratory phase.

This study provides a comprehensive and in-depth review of

the role of autophagy in TME and tumor immunotherapy. It

gives insights into the role of autophagy in TME regulation,

suggesting that immunotherapy will be improved through the

exploration of either autophagy-based immunosensitizers or

combination therapies.
2 TME remodeling is a critical
influencer in immunotherapy

Immunotherapies exhibit CTLs-dependent tumor-killing

effects and are popularly applied in clinical treatment. TME

without infiltration of T cells or with T cells exhaustion is the

biggest obstacle to response to immunotherapy for cancer

patients. Hypoxia, abnormal vasculature, and alteration in the

three-dimensional stromal environment are the three most

important characteristics of TME. These characteristics mainly

impair the priming and infiltration of T cells, resulting in the

exhaustion of T cells forming an immunosuppressive TME.
2.1 Current cancer immunotherapy

Currently, cancer immunotherapies fully utilize the immune

system to eradicate tumor cells. Two notable and successful
Frontiers in Immunology 03
immunotherapies are immune checkpoint inhibitors (ICIs) and

chimeric antigen receptor (CAR) T cells. Due to factors such as

the extracellular matrix (ECM), current CAR-T cells are only

effective against hematological tumors, toxic at high doses, and

cannot simultaneously target multiple antigens (19). The failure

of T cells to penetrate the TME and their concomitant

exhaustion significantly impact ICI therapies (20). Either the

innate or acquired immunosuppressive TME seriously impairs

the efficacies of immunotherapies (21).
2.2 Characteristics of TME

The TME comprises tumor cells, immune cells, stromal cells,

vascular endothelial cells (ECs), and their non-cellular

components such as the extracellular soluble molecules and

ECM, along with vascular networks (6). These complex

networks of cells and non-cellular components regulate the

functions of immune cells within the tumor, consequently

impacting the efficacy of immunotherapies (6). Furthermore,

the TME is a dynamic network structure that changes with either

cancer progression or the administration of various treatments

(6). Hypoxia-caused three-dimensional stromal environment

alteration and aberrant vascular construction affect the

communication among tumor, immune and stromal cells,

dynamically altering the TME into a cold state.

2.2.1 Hypoxia
As the tumor grows, the pre-existing vasculature cannot

satisfy its perfusion, leading to declining oxygen levels and the

formation of a hypoxic environment (22). Hypoxia-inducible

factor-1 (HIF-1), produced by either tumor or TME-associated

cells, is a significant regulator of hypoxia. It then stimulates the

expression of numerous genes involved in establishing

immunosuppressive TME (22). Activated HIF-1 signaling

attenuates MHC-I antigen presentation and hampers the

infiltration and cytotoxic functions of the effector T cells and

NK cells (22, 23). And, enhanced HIF-1 promotes the

development and recruitment of immunosuppressive cells

including M2-type macrophages, MDSC, and Treg (22, 23).

Furthermore, HIF-1-mediated elevated expression of PD-L1 and

CD47 contributes to the exhaustion of CTL and inactivation of

phagocytosis (22, 23). Negative regulatory genes of the anti-

tumor immune were found to be largely elevated in hypoxia

TME, associated with the malignant phenotype of the tumors

and poor patient prognosis (24). Interestingly, HIF-1 signaling

stimulates angiogenesis by boosting pro-angiogenic factors,

influencing another significant characteristic of TME (25).

2.2.2 Abnormal vasculature
The harsh TME often results in disrupted blood flow and

oxygen-/nutrient-poor blood perfusion. Hypoxia demarcates the
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start of angiogenesis. HIF-1 is an upstream regulatory molecule

of vascular endothelial growth factor (VEGF), by which and its

receptor on Ecs, VEGFR2, regulates angiogenesis (25).

Therefore, cancer cells initiate VEGF-mediated angiogenesis to

satisfy their increased demand for oxygen and nutrients,

resulting in the proliferation of tumor Ecs (26). However, the

nascent blood vessels are often structurally and morphologically

abnormal and thus fail to adequately supply oxygen and

nutrients. This abnormal vasculature also curtails T cell

infiltration, whereas the VEGF-mediated pathways prevent the

maturation of DC and enhance the recruitment of

immunosuppressive cell populations —Treg, M2-TAMs, and

MDSC— into the tumor site, resulting in an immunosuppressive

TME (26, 27). And, blocking the VEGF-VEGFR axis may

promote the accumulation of effector T cells within TME to

fire up anti-tumor immunity (28).

2.2.3 Alteration in the three-dimensional
stromal environment

Rapidly growing tumors destabilize the structures and

functions of surrounding tissues, contributing to structural

alterations of the ECM (29). Stromal cells are connective tissue

cells of organs and cancer-associated fibroblasts (CAF) are the

most common stromal cells in the TME (30, 31). Cancer cells

release TGF-b that activates CAF, which then secretes various

immunomodulatory chemicals, including IL-11, IL-6, and TGF-

b, to not only inhibit anti-tumor immunity but also deposit

increasing amounts of ECM (30, 31). Thus, the rigid and dense

ECM of the tumor stroma, activated CAF, and pro-fibrotic

soluble substances are physical and functional barriers to the

infiltration of immune effector cells, ultimately impeding

immunotherapy (32).
3 Autophagy involved in TME

TME is a dynamic and changing process during cancer

development and anti-cancer treatment. Autophagy plays

important role in TME remodeling. Hypoxia-induced

autophagy in tumor cells or immune cells results in

various outcomes, contributing to the formation of the

immunosuppressive TME that fuels tumor growth. Autophagy

modulation in ECs and stromal cells can affect tumor vascular and

three-dimensional stromal environments to regulate immune cell

recruitment and function through complicated mechanisms.
3.1 Autophagy definition and
its related genes

Autophagy is a core intracellular degradation system that

transports cytoplasmic components to lysosomes for

degradation and renewal —this is a double-edged sword for
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tumor progression (16). Autophagy suppresses carcinogenesis in

the early stages of tumors by removing damaged organelles and

DNA. Interestingly, Autophagy is a cytoprotective mechanism

for tumors at advanced stages, which increases cancer cell

survival and resistance to stresses. This then sustains tumor

metabolism, growth, and survival to mediate tumor promotion

and development, ultimately promoting tumorigenesis (16).

Autophagy is induced by cellular or environmental stress and

participates in several intricate biological processes. Initiation,

nucleation, elongation, fusion with the lysosome, and

destruction are necessary steps of autophagy involving

more than thirteen autophagy-related genes (ATG)

and proteins (33). Briefly, inhibition of the mammalian target

of rapamycin (mTOR) and activation of AMP-activated

protein kinase (AMPK) can stimulate the unc-51-like

autophagy-activated kinase 1(ULK1) complex, and the class III

phosphatidylinositol 3-kinase (PtdIns3K) complex in order,

followed by the formation of the phagophore (33). ULK 1

complex includes ULK1, ATG13, FIP200, and ATG101. And

PtdIns3K complex contains Beclin1, VPS 34/PIK3C3, VPS 15,

ATG 14, and AMBRA-1. In addition, two ubiquitin-like

coupling cascades, including autophagy-related 5 (ATG5)-

ATG12 and microtubule-associated light chain 3 (MAP-LC3/

ATG8/LC3) coupling systems, are required for phagophore

elongation. Then, the phagophore grows and fuses on its own

to form a double-membrane autophagosome with the LC3-II.

And portions of the cytoplasm are gradually engulfed in the

autophagosome. Finally, the unions of autophagosomes with

lysosomes degrade the cargo and release decomposition

products into the cytoplasm for reuse. In addition, substrates

can be selectively degraded by various selective autophagy

receptors, such as p62/SQSTM1(sequestosome-1) and NBR1.

LC3-II acts as a docking site for cargo adaptors that enable cargo

loading into autophagosomes (16, 33).

Moreover, cancer cells can communicate with neighboring

cells via secretory autophagy. This autophagy-dependent secretion

system affects immune cell function and accelerates tumor growth

(34, 35). Although secretory and degradative autophagy both

utilize various chemicals and activities (e.g., autophagosome

formation, ubiquitin), secretory autophagy does not degrade its

cargo via lysosomes. Multivesicular bodies and autophagosomes

combine to form amphiboles, which then fuse either with

secretory lysosomes or directly with the plasma membrane to

secrete proteins (34, 36). Autophagosome trafficking depends on

outer membrane proteins. For example, LC3-II identifies the

secretory and degradative routes, STX17 fuses degradative

autophagosomes to lysosomes, and TRIM16 and SEC22B

control autophagosome secretion (36). Despite secretory

autophagy mediating the secretion of IL-1, IL-8, CXCL6,

CXCL8, TGF-b, high-mobility group box 1 (HMGB1), and

autophagic vacuoles, its regulation remains unclear (36, 37).

These suggest that selectively targeting specific stage of

autophagy profoundly affects its accompanied secretory
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pathways. Furthermore, late and early autophagy inhibitors have

contrasting effects on secretion —for example, Spautin-1 and CQ

are both autophagy inhibitors but have opposing secretory effects

(37). The stage appliance of autophagy inhibitors during the

autophagy process was elicited in Figure 2.
3.2 Autophagy regulates the
characteristics of TME

Hypoxic, alteration in the three-dimensional stromal

environment, and abnormal angiogenesis are characteristics of

TME, which can induce autophagy in various constituent cells.

Autophagy then promotes reshaping of the ECM, remodeling of

the cellular composition, and reprogramming of interactions

between tumor and stromal cells —this ultimately redefines the

TME and thus alters the efficacious of immunotherapies (18, 38).

We now review the relationships between some characteristics of

TME and autophagy (Figure 3).

3.2.1 Autophagy and hypoxia
Hypoxia is the widely accepted stimulator of autophagy

induction via HIF-1-mediated expression regulation of key
Frontiers in Immunology 05
genes associated with autophagy, including adenovirus E1B

19 kDa-interacting protein 3 (BNIP3), BNIP3-like (BNIP3L),

ATG9A, PIK3C3, Beclin 1, ATG5 and ATG7 (39–43).

Increased BNIP3 and BNIP3L expression induced by HIF-1,

can disrupt the Bcl-2-Beclin1 complex to initiate autophagy

(41). In addition, hypoxia activates the AMP/AMPK/mTOR

pathway and inhibits the PI3K/AKT/mTOR pathway to

initiate autophagy (44, 45). Through intrinsic cytoprotective

pathways, hypoxia-induced autophagy enhances tumor cell

surv iva l and contr ibutes to the format ion of the

immunosuppressive TME that fuels tumor growth (39, 40,

46, 47). For example, HIF-1-dependent autophagy was crucial

in inhibiting CTL and NK cell-mediated anti-tumor immune

responses (47, 48). In head and neck squamous cell

carcinomas, defective autophagy led to increased tumor

sensitivity to treatments and lower tolerance to hypoxia

(49). In addition, it is noteworthy that autophagy is found

to induce HIF-1degradation (50). Further study will be

needed to confirm whether autophagy-mediated HIF-1

degradation can consequently affect TME and immune

cells. Hypoxia-induced autophagy plays a key role in tumor

progression and immunotherapy resistance. How to reduce

hypoxia-induced autophagy may be the future research point.
FIGURE 2

The different types of autophagy. Proteins, organelles, and other cellular components are sequestered in a newly formed isolation membrane.
This isolation membrane then swells and seals to form a double membrane-bound vesicle, the autophagosome. Degradation of the
autophagosome occurs when the autophagosome fuses with the lysosome. In secretory autophagy, Autophagosomes fuse with multivesicular
bodies to produce double-membrane bodies that can fuse with the plasma membrane and secrete cargo into the extracellular space.
Furthermore, late and early autophagy inhibitors have different effects on secretion.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1018903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2022.1018903
3.2.2 Autophagy and abnormal vasculature
Recent studies demonstrate that autophagy is essential for

endothelial differentiation and survival of ECs. Abnormal

angiogenesis causes hypoxia, which promotes autophagy in

tumor-associated ECs and possibly mediates resistance to

hypoxia-induced cell death (51). In addition, autophagy was

required for VEGF-mediated endothelial differentiation in breast

cancer stem-like cells (52). VEGF treatment activated AMPK-ULK1

axis in breast cancer stem-like cells initiating autophagy (52). In

addition, autophagy was a key process for immune sensing and

vascular normalization of ECs resulting in governing immune cell

recruitment in tumors (53, 54). Autophagy activation in tumor cells

may adversely affect numerous angiogenic proteins (such as

VEGFR2 and HIF-1) and impede the tumor angiogenic vascular

system (55). Soluble decorin, as a partial agonist of VEGFR2,

induced autophagic degradation of intracellular VEGFA in ECs to

suppress angiogenesis via VEGFR2/AMPK/PEG3 axis (56).

Administration of autophagic inhibitors such as chloroquine or

bafilomycin A1, or depletion of ATG5, results in the accumulation

of intracellular VEGFA (56). Furthermore, CQ, an autophagy

inhibitor, induces tumor vascular normalization by inhibiting

VEGF-A mediated phosphorylation of VEGFR 2 (57). In

addition, TME angiogenesis modifies pre-existing vascular
Frontiers in Immunology 06
characteristics and restricts endogenous T cell migration,

impacting both the efficacy and utility of CAR T cell therapy for

solid tumors (58). Some studies support that modulation of

autophagy in tumor ECs can sensitize immunotherapy. For

instance, Endostar prevents angiogenesis by blocking the VEGF-

related signaling pathway. In a murine model, anti-PD-1, in

combination with Endostar, dramatically enhance PI3K/AKT/

mTOR-mediated autophagy, leading to the reversing of

immunosuppressive TME (59). And, autophagy in tumor cells

impairs T cell survival and function to maintain an

immunosuppressive TME. Thus, targeting autophagy may reverse

the abnormal vasculature and fire up the immunosuppressive TME,

which may enhance the immunotherapy response.

3.2.3 Autophagy affects the three-dimensional
stromal environment

Altering the autophagic activity of stromal cells —mainly

fibroblasts—, can recreate the three-dimensional stromal

environment and induce reprogramming in the TME.

Previous reports suggest that autophagy in fibroblasts is

upregulated in the TME and plays a role in promoting tumor

progression. Firstly, the hypoxic TME induces differentiation of

normal fibroblasts into CAF via the p62/SQSTM1-autophagy-
FIGURE 3

Crosstalk between autophagy and TME features. Hypoxic stress is a typical feature of TME, which triggers the abnormal vasculature and the
alteration of the three-dimensional stromal environment. In response to these stresses, autophagy can be induced by HIF-1, VEGF, and TGF-b
to promote tumor cell survival, enhance differentiation of normal fibroblasts to CAF, promote dense ECM formation, inhibit immune cells
infiltration and vascular normalization, impair CTL and NK cell-mediated anti-tumor immune responses, and convert hot TME to cold.
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Nrf2-ATF6 axis (60). Hypoxia-induced TGF-b regulates the

activation and function of CAF. And, CAF secretes TGF-b and

promotes dense ECM formation, boosting T-cell exclusion via

the chemical and physical barriers (31). Secondly, autophagy in

CAF support pro-fibroproliferative responses, including type 1

collagen deposition and tissue stiffness, resulting in a rigid

desmoplastic stroma that impedes CTL infiltration and

activation (61). Furthermore, autophagy in CAF regulates

immune cel l recruitment through the secret ion of

inflammatory factors such as IL-6 (61). In addition, autophagy

activated by TGF-b1 was necessary for the development of

myofibroblast and CAF phenotypes, which was associated with

enhanced migration and invasion of oral squamous cell

carcinomas (62).
4 Altered autophagy burns up the
immunosuppressive TME to
promote anti-tumor immune

Altered autophagy can recreate the immunostimulating

TME to promote anti-tumor immune by enhanced

immunogenic cell death (ICD), tumor antigen releasement,

antigen presentation, promoted antigen recognization, effector
Frontiers in Immunology 07
immune cells infiltration, and immunosuppressive cell outflow,

which may be applied to improve the efficacy of immunotherapy

for tumors. With few exceptions, autophagy inhibition is favor

influence for burning up “cold” TME. To gain an efficient

prospective benefit, we should focus on the targeted cells,

targeting autophagy type, effective stages in the autophagy

process, and the immune-signal regulatory point of the

autophagy modulators. Figure 4 showed the main process and

mechanisms involved in autophagy-mediated TME remodeling.

These mechanisms are explicated in Table 1.
4.1 Autophagy regulates immunogenic
cell death

By releasing damage-associated molecular patterns (DAMPs)

such as HMGB1, calreticulin, and adenosine triphosphate (ATP)

into the TME, systemic chemotherapy, localized radiotherapy, and

oncolytic viruses enhance the immunogenicity of tumor cells.

These DAMPs aid development of DC, activate cytotoxic T cells,

produce inflammatory chemokines and cytokines, and polarize

TAMs into M1 states, leading to tumor cell death (95). This

regulated cell death type is called ICD and contributes to

reprogramming immunostimulatory TME (95). Unconventional
FIGURE 4

Targeting autophagy burns the cold TME. TME regulation mechanism includes antigen signal release, antigen presentation, antigen
recognization, as well as immune cell infiltration. Autophagy plays a key role in these processes. (A) Secretory autophagy promotes ICD to burn
the cold TME. (B) Autophagy inhibits the MHC-I expression on the surface of tumor cells and DC to inhibit antigen presentation. (C) Autophagy
inhibits PD-L1 expression on the surfaces of tumor cells. (D) Autophagy inhibits CD8+ T cells and NK cells infiltration and tumor-killing effect
and promotes the survival and development of Treg and MDSC. Autophagy promotes TAM polarize to M2 and enhances the
immunosuppressive function of macrophages.
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autophagy−based secretions such as secretory autophagy

participated in the release of ICD-related DAMPs, and this could

be impaired by ATG5 knockdown (63, 96). Autophagy enables

ICD-associated ATP secretion by the preservation of lysosomal

ATP pools and secretory autophagy pathway-mediated releases

(97). Upon autophagic activation, an ATP-loaded amphisome
Frontiers in Immunology 08
fused with the plasma membrane via the VAMP7-SNARE

complex, releasing ATP into the extracellular medium (98). The

release of HMGB1 is similar (63). Upon entry into the outer cell

membrane, ATP and HMGB1 bind to P2RX7 and TLR4 receptors

on the DC (96). However, autophagy also results in antigen

damage, which impairs the immune response. DAMPs and
TABLE 1 The role of autophagy in the transformation of hot TME to cold TME.

Modulation
of autophagy

Source of
autophagy

The effect of autophagy
on immune response

Tumor types Related mechanisms Outcome Ref.

Autophagy
induction

Tumor cells Antigen signal release Glioblastoma Secretory autophagy promotes ICD Immune
activation

(63)

Antigen presentation Endometrial cancer Reduce MHC-I expression Immune
inhibition

(64)

Antigen presentation Pancreatic ductal adenocarcinoma Promote MHC-I degradation Immune
inhibition

(65)

Antigen recognization Gastric cancer, Bladder cancer, Reduce PD-L1 expression Immune
activation

(66,
67)

Antigen recognization Triple-negative breast cancer,
Intrahepatic cholangiocarcinoma,
NSCLC

Promote PD-L1 degradation Immune
activation

(68–
70)

Impair CD8+ T cell-mediated
killing

NSCLC, PyMT-driven mammary
tumor

Reduce T-cell recruitment and
activation

Immune
inhibition

(71,
72)

Impair CD8+ T cell-mediated
killing

NANOG+ tumor Impair sensitivity of NANOG+
tumor cells to T-mediated killing

Immune
inhibition

(73)

Impair NK cell-mediated
killing

Melanoma, Breast cancer, Renal cell
carcinomas, NSCLC

Impair cancer lysis of NK cells Immune
inhibition

(74–
77)

Impair NK cell-mediated
killing

Melanoma Impair NK cells infiltration Immune
inhibition

(78)

Enhance MDSC-mediated
immune suppression

Triple-negative breast cancer, Promote MDSC development Immune
inhibition

(79)

Enhance Treg-mediated
immune suppression

NSCLC Promote Treg infiltration Immune
inhibition

(80)

Enhance TAM-mediated
immune suppression

Multiple murine tumor cell lines Promote M2-like macrophage
polarization

Immune
inhibition

(81)

Macrophages Enhance TAM-mediated
immune suppression

Hepatoma, Glioma, Lung caner Promote M2-like macrophage
polarization

Immune
inhibition

(82–
84)

Enhance TAM-mediated
immune suppression

Hepatocellular carcinoma Promote pro-tumor Gal-1 secretion Immune
inhibition

(85)

Enhance TAM-mediated
immune suppression

Colorectal cancer Inhibit inflammasome Immune
inhibition

(86)

Treg Enhance Treg-mediated
immune suppression

Colon adenocarcinoma Enhance lineage and survival of Treg Immune
inhibition

(87)

MDSC Enhance MDSC-mediated
immune suppression

Breast cancer Enhance the survival and viability of
MDSC

Immune
inhibition

(88)

Enhance MDSC-mediated
immune suppression

Melanoma, Breast cancer Inhibit anti-tumor immunity Immune
inhibition

(89,
90)

Autophagy
inhibition

Tumor cells Impair CTL-mediated tumor-
killing

Breast cancer, Triple-negative breast
cancer,

Increase immunosuppressive
molecular expression on the tumor
surface

Immune
inhibition

(72,
91)

Impair NK-mediated killing Uterine corpus endometrial
carcinoma

Downregulate co-stimulatory
receptors in NK cell

Immune
inhibition

(92)

CD8+ T cells Impair CTL-mediated killing Melanoma Impair CTL proliferation and IFN-g
secretion

Immune
inhibition

(93)

Macrophages Enhance TAM-mediated
immune suppression

Hepatoma Stimulate the expression of PD-L1 Immune
inhibition

(94)
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pathogen-associated molecular patterns can initiate autophagy,

then autophagosomes will eradicate these molecules to maintain

immunological homeostasis (99). Based on its role in the

phagocytosis of antigens, autophagy is a potential protective

mechanism for tumor cells against ICD-induced immune

responses (99). HMGB1 secretion was inhibited by early

autophagy inhibitors. Conversely, the late autophagy inhibitors

CQ and Bafilomycin A1 increased HMGB1 secretion (37).

Therefore, a current research focus is on how to regulate this

pathway to attenuate degradative autophagy and enhance secretory

autophagy, thereby promoting ICD and igniting cold TMEs.

Combining late autophagy inhibitors with ICD inducers to

potentiate cancer immunotherapy is a current innovative strategy.
4.2 Autophagy regulates tumor
antigen releasement

Autophagy degrades proteins of tumor cells such as tumor-

specific and tumor-associated antigens. When proteasomes and

lysosomes are both inhibited, SLiPs, DRiPs, and misfolded

proteins form protein aggregates (ALIS/aggresomes), activating

autophagy via interactions between p62/SQSTM1 and ATG8/

LC3. Peptide intermediates linked to HSP90 are in

autophagosomes and through secretory autophagy, they are

secreted from tumor cells as cross-presenting immunogenic

substrates. These tumor cell-derived autophagosomes are

called Defective Ribosomal Products-containing Blebs

(DRibbles). As demonstrated in clinical and experimental

models, DRibbles are efficient carriers of tumor antigens that

induced robust cross-presentation by APCs (100, 101).

DRibbles-pulsed-bone marrow cells or DC were peri-tumorally

titrated with GITR agonists and PD-1 blocking antibodies,

increasing the cytotoxicity activity of CD8+ T cells via an

antigen-presenting independent mechanism (102). In addition,

tumor cell-released autophagosomes (TRAPs) converted

macrophages to an immunosuppressive M2-like phenotype

that is defined by PD-L1 and IL-10 expression, resulting in T

cell inactivation and cold TME formation (81). Thus, secretory

autophagy plays a key role in tumor antigen releasement,

evoking the CD8+ T cells priming.
4.3 Autophagy impairs antigen
presentation

Endogenous antigens of tumor cells are presented to the

anti-tumor immune response in two distinct ways. First, the

antigens are directly presented by MHC-I of the tumor cells for

recognition and elimination by CD8+ T cells. Second, DC

recognize tumor antigens via pattern recognition receptors,

process them, and cross-present antigens to T cells, resulting

in the activation of anti-tumor CD8+ T-cell immunity (7). Some
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researches demonstrate the role of autophagy in antigen

presentation. Autophagosome membranes are possibly

produced by the endoplasmic reticulum, and thus peptide-

sensitive MHC class I molecules may be present therein (7).

Furthermore, autophagy inhibition possibly enhances MHC-I

expression on the surface of DC and tumor cells for reducing

endocytosis and degradative function, thereby promoting

activation and migration of DC, and attraction of CD8+ T

cells. Ultimately, these ignite the immunosuppressive TME

and overcome resistance to the immune checkpoint blockade

(ICB) (99, 103). Inhibiting the selective autophagy of MHC-I —

this was mediated by the autophagic cargo receptor NBR1—

increased MHC-I expression in tumor cells (65). In endometrial

cancer, overexpression of LC3 constrained the MHC-I

transactivator nucleotide-binding oligomerization domain-like

receptor family caspase-containing recruitment domain 5

(NLRC5), a transcriptional regulator of the MHC-I gene,

which then decreased the expression of MHC-I (99). Blocking

tumor-derived progranulin destroys autophagosomes, restoring

MHC-I expression. Then, progranulin antibody therapy

increases levels of granzyme B, TNF, IFN-g, and CD8+ T cells,

reviving CD8+ T cell anti-tumor cytotoxicity (64). Adaptor-

associated kinase 1 (AAK1) mediated endocytosis and

autophagic degradation of MHC-1 in DC, leading to

inhibition of antigen presentation and CD8+ T cell initiation.

However, DC with ATG5/ATG7 deficiency showed increased

MHC-I expression (103). DC are the most efficient specialized

APCs. DC may store antigen in endolysosomal compartments

for extended periods, and this preserves MHC-I antigen cross-

presentation to CD8+ T cells. However, autophagic processes

compromise DC antigen storage and presentation. For example,

DC from ATG5-deficient mice stored antigen in storage

compartments for prolonged periods, consequently curtailing

late MHC-I cross-presentation and boosting antigen cross-

presentation into CD8+ T cells (104). DC from VPS34-

deficient animals had homeostatic maintenance along with a

partially activated phenotype, spontaneously generated

cytokines, and displayed the increased activity of conventional

MHC class I and class II antigen-presentation pathways (105).

Autophagy inhibition combined with anti-PD-1 therapy

increase tumor neoantigen presentation in LKB1-inactivated

high-TMB tumor and achieve a greater anti-tumor effect

(106). Thus, autophagy inhibition may enhance antigen

presentation through elevated MHC-1 expression and

activated DC phenotypes, leading to the priming of T cells and

enhancement of the immunotherapy effect.
4.4 Autophagy promotes
antigen recognization

Immune checkpoints are pathways with inhibitory or

stimulatory properties, modifying immune cell activity. The most
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well-known inhibitory checkpoints are PD-1 and PD-L1, which

inhibit T cell activation, proliferation, and function (107). ICIs are a

breakthrough in treating tumors and applied to block the binding

between PD-L1 and PD-1, which can re-activate CTLs and NK cells

(107). Links between autophagy and immune checkpoints have

recently been established. For example, ROS generated by

andrographolide inhibits the JAK2/STAT3 pathway in NSCLC,

leading to the activation of p62-dependent selective autophagy and

promoting the degradation of PD-L1 (68). Sigma1 is a ligand-

operated integral membrane chaperone—scaffolding protein— that

is abundant in endoplasmic reticulums of various cancer cell lines

and generally binds to glycosylated PD-L1 to preserve protein

stability (69). Pharmacological suppression or deletion of the

Sigma1 decreases PD-L1 expression on the tumor surface via

selective autophagy (69). KRAS-mutated intrahepatic

cholangiocarcinoma cells had activated ERK signaling. Blocking

of ERK signaling induced autophagy to degrade PD-L1, while

genetically silencing the ATG7 expression partially reversed

degradation (70). Furthermore, ATG7 overexpression enhanced

the steadiness and expression of PD-L1 mRNA by autophagy-

induced FOXO3a/miR-145 degradation in bladder cancer models

(66). In gastric cancer cells, inhibiting autophagy causes the buildup

of p62/SQSTM1 and the activation of nuclear factor (NF)- kB,
resulting in the induction of PD-L1 (67). Controversially, another

study showed that 5-HT activated p-STAT3/autophagy axis via 5-

HT1aR, leading to upregulated PD-L1 expression and an

immunosuppressive environment, which remains to be confirmed

in the further steps (108). Taken together, autophagy modulators

may be a new immunosensitizer, for it directly or indirectly

downregulates PD-L1 expression.

Another newly discovered immunological checkpoint

CD155 expressing on tumor cells functions as a ligand for the

costimulatory receptor CD226 and the co-inhibitory receptor

TIGIT of natural killer cells and T cells. ATG5-dependent

autophagy induced by artesunate could enhance CD155

overexpression on uterine somatic endometrial carcinoma

(UCEC) cells. CD155 overexpression upregulated CD226 and

downregulated TIGIT, hence enhancing the cytotoxicity of NK

cells (109). However, the precise mechanism is unknown. Other

immune checkpoints SIRPa and CD47 release a “don’t eat me”

signal to prevent the recognization and phagocytosis of cancer

cells by immune cells. The interaction of CD47 on cancer cells

with SIRPa on macrophages could suppress the phagocytosis of

macrophages (110). By blocking the CD47/SIRPa axis,

SIRPaD1-Fc selectively targets NSCLC cells and activated

macrophages to recognize and phagocytose tumor cells (110).

But it also causes protective autophagy in cancer cells, which

may be a reaction to cellular stress. Concurrently targeting CD47

and autophagy improves macrophage-mediated phagocytosis

and cytotoxicity against NSCLC cells (110). Zhang et al.

discovered that autophagy in glioblastoma cells could impair

the immunotherapeutic benefits of anti-CD47-SIRPa therapy
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through decreased phagocytosis of macrophages and decreased

cytotoxicity of CD8+ T cells (111).

Thus, autophagy regulates antigen recognization mainly by

the degradation of immune checkpoint proteins and the

regulation of intracellular signaling pathways thereby

influencing antitumor immune responses and immunotherapy

efficacy. Combining autophagy modulators with ICIs may be a

promising anti-tumor therapy to improve the effectiveness of

ICIs and need to be further explored in clinical application.
4.5 Autophagy regulates the recruitment
of immune cells

4.5.1 Autophagy regulates CTL- and NK-
mediated tumor killing

Tumor cell eradication depends on the attraction and

subsequent infiltration of CTLs and NK cells into the TME,

the absence of which contributes to immunotherapy resistance

and tumor progression (38). Relatedly, autophagy affects CTL

activity and infiltration (112). For example, FIP200, an essential

autophagy gene, is responsible for restricting T cell recruitment

and activation in the TBK1/IRF/IFN signaling axis. In

immunocompetent breast cancer models, impairment of this

noncanonical autophagic function of FIP200, in combination

with immune checkpoint blockade therapy, yielded good

responses (71). SKIL promoted the growth of tumors and

prevented the entry of CD8+ T cells into NSCLC cells by

upregulating the TAZ/autophagy axis and downregulating the

STING pathway (72). In addition, alteration of autophagy can

increase tumor cell sensitivity to T cell-mediated tumor killing.

For instance, NANOG was a major transcription factor that

enhances secretory autophagy in tumor cells via promoting

LC3B expression, leading to EGF autocrine (73). EGF

subsequently upregulated the EGFR-AKT signaling pathway

and then led to tumor cell resistance to CTL killing (73). Early

autophagy inhibitors combined with ICI can reverse tumor

refractory phenotype (73). However, ATG7/ATG5 deficient

triple-negative breast cancer cells were less vulnerable to T

cell-mediated death due to the p62-mediated selective

autophagy of Tenascin-C, a candidate immunosuppressor

(113). Similarily, B7H3 expressed on tumor cell surface

inhibited not only activation and proliferation of T cells but

also the production of immunostimulation cytokine (114). And,

autophagy has been affirmed to participate in the degradation of

B3H7 (91). In breast cancer models, V9302 decreased B7H3

expression and increases CD8+ T cell activation by the

autophagy-lysosome pathway (91). In addition, anti-PD-1/PD-

L1 mAb combined with B7H3 blockers (anti-B7H3 mAb or

V9302) could transform “immune desert” tumors into “hot”,

improve the curative benefits in metastatic or advanced breast

cancer (91). Furthermore, autophagy is also involved in
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regulating T-cell immune activity. ATG3-, ATG7-, or ATG5- T

cells cannot proliferate efficiently (115). DeVorkin et al. showed

that loss of autophagy triggered T cells into a glycolytic

phenotype along with reduced S-adenosylmethionine levels.

Thus, ATG5-/- CD8+T cells gained an effector memory state

that promoted CD8+ T cell-mediated tumor rejection and INF-g
release (116). In brief, autophagy plays a “double-edged”

regulation in CTL cell-dependent immunotherapy. It is

required to consider that autophagy modulators affect which

target cells in the combination of immunotherapy.

NK cells express a range of stimulatory and inhibitory

receptors that determine whether to kill tumor cells by

binding to specific ligands on tumor cells (9). Autophagy

involves the cytolytic activities, and memory responses of NK

cells and essentially participates in the downregulation and

activation of effector molecules and receptors respectively

(117). Activated NK cells form synapses with the tumor cells

and release two cytotoxic effectors (perforin and granzyme) to

mediate the death of tumor cells. The gap-junctional connexin

43 is required for the synapse (74). Hypoxia-induced connexin

43 overexpression could selectively induce autophagy to hinder

its localization on the immunological synapse to promote tumor

cells’ evasion of NK cell-mediated death. However, ATG5

siRNA-mediated autophagy inhibition can reverse these

processes (74). Moreover, connexin 43 channel is also an

essential component of CTL cytotoxic immunosynaptic-

mediated tumor cell death (118). In addition, autophagy

selectively destroys the NK-derived granzyme B in cancer cells,

reducing tumor cell sensitivity to natural killer-mediated lysis.

Targeting BECN1/Beclin1 and ULK1 can revive the cytotoxicity

of granzyme B (75–77). Likewise, the dysfunctional autophagy of

cancer cells enhances the recruitment of NK cells to the tumor

periphery. Becn1/Beclin1-deficient melanoma cells in the TME

expressed high levels of CCL5 via the activation of the MAPK8/

JNK-JUN/c-Jun signaling pathway, which boosted the

infiltration of functional NK cells into the TME and curtailed

tumor progression (119). Furthermore, when autophagy was

inhibited in melanoma cells by either ATG5 or p62/SQSTM1

deficiency or CQ treatment, melanoma cells could recruit NK

cells into the tumor site by CCL5 releasing (119). Blocking

autophagy of tumor cells promote NK cell-mediated aggregation

and killing, converting TMEs from cold to hot. Autophagy

inhibitors possibly potentiate CTL-based or NK cell-

based immunotherapies.

4.5.2 Autophagy promotes the recruitment and
function of immunosuppressive cells

Malignant tumors recruit immunosuppressive cells —such

as TAM with an anti-inflammatory M2 phenotype, MDSCs, and

Tregs— to suppress T cell functions and form the

immunosuppressive TME. Conversely, effective T and NK cells

are rare in “cold” TME. Autophagy essentially contributes to the

activation and infiltration of these immunosuppressive cells,
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which may impair T-mediated tumor killing, reshaping the

TME into a cold state and ultimately causing resistance to

immunotherapy (92).

Tumor cells can actively attract circulating monocytes to the

tumor site by secreting CCL2, and then the recruited monocytes

developed into TAMs through granulocyte-macrophage colony-

stimulating factor (GM-CSF) and macrophage colony-

stimulating factor (MCSF) (120, 121). These chemokines and

cytokines induced autophagy of monocytes to keep them alive

and allow them to differentiate into TAM (120, 121). In response

to stimuli from TMEs, various TAMs are polarized to M2-like

phenotypes and this results in immunosuppression and tumor

progression. Macrophages took up Beclin1-dependent tumor

cell-released autophagosomes and activated MyD88-p38-STAT3

axis via TLR4. This resulted in overexpression of PD-L1 and IL-

10, which limited CD8+ T cell recruitment and promoted tumor

formation (81). In addition, hepatocellular carcinoma-derived

HMGB1 triggered M2 macrophage polarization via a TLR2/

NOX2/autophagy axis (82, 83). Furthermore, Inhibition of

autophagy in macrophages reprogrammed pro-tumor M2-like

TAMs to a tumor-suppressing M1 phenotype that exerted anti-

tumor effects by regulating not only NF-kB p65 protein

homeostasis but also an IL-6-pSTAT3-miR-155-3p-autophagy-

pSTAT3 positive feedback loop (82, 83). In addition, Galectin-1

was a soluble tumor-promoting factor secreted by TAMs

through TLR2-dependent secretory autophagy, —it was

associated with poor outcomes (85). However, a recent study

suggested that autophagy invalidation in macrophages induces

an immunosuppressive phenotype to alter the antitumoral

immune response, leading to hepatocarcinogenesis (94). The

phagocytosis of TAMs is efficient in the early stages of tumor-

specific antigen processing and innate tumor killing. Autophagy

is a requirement for TAMs phagocytosis (122). Through IDO1

expression and kynurenine metabolism, IFN-g promoted

autophagy and macrophage phagocytosis in cervical cancer

cells (122). In summary, autophagy functions as a regulatory

process in macrophages, maintaining cellular homeostasis and

regulating specific immune functions such as recruitment,

differentiation, polarization, phagocytosis, and pro-tumor

factors production. Targeting autophagy in macrophages may

thus be a novel and practical anti-cancer approach.

Tumor-infiltrating Tregs suppress anti-tumor immune

responses and promote tumor immune escape (11).

Autophagy in tumor cells linked to Treg infiltration and

immunosuppressive activities of TME. Results from the

NSCLC xenograft model showed that tissue-specific

knockdown of ATG5 attracted Treg migration to the TME

(80). Except for this, the autophagy pathway also participated

in Treg cell lineage differentiation and function. As the

transcription factor FOXP3 is required for the differentiation

and immunosuppressive activity of Treg cells, Treg cells with the

autophagy-related genes AMBRA1 and ATG7 deletion fail to

express FOXP3, leading to the malfunction of Treg cells (123).
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In addition, ATG5-/ATG7- Treg cells displayed functional

deficiency via increasing mTORC1 expression, c-Myc

expression, and glycolytic activity (87).

MDSCs are immunosuppressive cells derived from bone

marrow progenitor cells and immature bone marrow cells

(12). To meet their bioenergetics and biosynthesis

requirements, tumor cells reroute metabolic pathways one of

which, is glycolysis, a hallmark of cancer (79). Glycolysis

enhanced granulocyte colony-stimulating factor (G-CSF) and

granulocyte-macrophage colony-stimulating factor (GM-CSF)

expression via the AMPK-ULK1 and autophagic pathways,

which then promote MDSC development (79). MDSCs

activate autophagy to survive in the harsh TME induced by

cellular stresses such as nutrition and hypoxia. Under these

stressful conditions, MDSCs released HMGB1 to maintain their

viability via initiating autophagy (88). Autophagy-deficient

MDSCs displayed reduced lysosomal degradation, which

promoted the surface expression of MHC class II molecules

and resulted in the effective activation of tumor-specific CD4+ T

cells (89). In addition, tumor growth increased b2-AR
expression in MDSC leading to enhanced autophagy and

activation of arachidonic acid via pressure-activated signals.

These increased the release of PGE2, an immunosuppressive

mediator (90). Taken together, autophagy promotes the

immunosuppressive function of MDSC, thereby facilitating the

formation of an immunosuppressive TME.
5 Autophagy-targeting strategy
assists in immunotherapy

The effectiveness of immunotherapy is significantly

influenced by the cold TME, which is also regulated by

autophagy. Therefore, strategies targeting autophagy should be

exploited to develop efficient immunotherapy sensitizers.

However, the physiological processes involved in autophagy

are complex and there is no consensus on whether autophagy

should be activated or suppressed. Almost all stages of

autophagy, including vesicle nucleation, maturation, fusion,

and lysosomal destruction, have been identified as potential

therapeutic targets. Understanding these regulatory pathways

may lead to the development of new cancer treatment options.
5.1 Targeting autophagy

Autophagy acts as a guardian to promote tumor cell survival

in response to stress in the TME. Nowadays, various autophagy

inhibitors are accessible drugs being applied to target autophagy,

being cataloged as early-stage inhibitors (SAR405, 3MA, and

SBI-0206965) and late-stage inhibitors (CQ, HCQ) (124). Early-

stage inhibitors regulate the nucleation of the autophagy process
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by targeting ULK1/ULK2 or VPS34, while late-stage inhibitors

target lysosome disorder the degradation stage of the autophagy

process (124). So far, secretory autophagy-based clinical studies

are in the preliminary stage, and late and early-stage inhibitors of

autophagy have diverse effects on secretory autophagy (37). In

addition, mTOR inhibitors also play an important role in

antitumor therapy as enhancers of autophagy initiation (125).

Autophagy targeting compounds used for cancer treatment are

listed in Table 2.

Evidence from preclinical studies suggests that targeting

autophagy can improve the efficacy of numerous cancer

treatments. Several US Food and Drug Administration (FDA)-

approved medications, including the inhibitor CQ and its

derivative HCQ, as well as inducers like rapamycin, have been

identified as effective autophagy modulators (125, 130). A

previous meta-analysis reported that autophagy inhibitors,

such as CQ and HCQ alone or combined with other anti-

cancer drugs were well tolerant and significantly improved

cancer patients’ overall response (133). Rapamycin exerts anti-

tumor effects by promoting autophagy in glioma cells, which was

dependent on the miR-26a-5p/DAPK1 pathway activation

(125). Although many small molecule therapeutics have been

identified as effective anti-cancer drugs, further clinical

investigations are being carried out. The compound GNS561

inhibits the enzyme palmitoyl protein thioesterase 1 (PPT1),

causing Zn2+ accumulation in the lysosomes and reducing

autophagic flux. Therefore, it is regarded as a promising anti-

cancer therapy (131). By activating cytotoxic autophagy in

tumor cells, the autophagy inducer ABTL0812 increases the

death of cancerous cells. The first human Phase I/Ib dose-

escalation clinical trial demonstrated that ABTL0812 was safe,

tolerable, and has powerful anti-cancer properties (134).
5.2 Combination in targeting autophagy
and TME components for
immunotherapy

Immunotherapy is widely used to treat advanced tumor

patients. However, the efficacy of immunotherapy is impeded

by cold TME. Autophagy regulates intracellular homeostasis, cell

survival, cell activation, cell proliferation, and differentiation.

Therefore, modulating autophagy can remodel the

immunosuppressive TME into immunostimulatory TME. The

accumulated evidence of clinical trials demonstrated that an

autophagy-targeting strategy can improve the efficacy of

immunotherapy. Table 3 describes the ongoing trials about the

combination of autophagy inhibitors and immunotherapy for

cancer treatment registered on ClinicalTrials.gov (https://

clinicaltrials.gov/). Due to their positive effects on tumor cells

and animal models, PD-L1 inhibitors and autophagy inhibitors

CQ are the focus of most ongoing clinical trials. Other

combination therapies including TME targeting are also being
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investigated in preclinical studies , and the results

are encouraging.

5.2.1 Targeting autophagy to enhance ICD
In recent research, researchers have focused on developing

strategies to increase autophagy to improve ICD effects. Local

administration of low-dose chemotherapeutic medicines plus

the autophagy enhancer rapamycin (CAER) led to systemic anti-

tumor T-cell immunity in vivo. In addition to enhancing the

mortality of B16F10 and 4T1 tumor cells and increasing the

levels of autophagy in vitro, the low-dose CAER treatment

promoted neoantigen-specific T-cell responses. It also

modified the TME by lowering systemic toxicity (135). In

MDA-MB-231 and CT26 cancer cells, brucine enhanced the

effects of ICD, such as CRT exposure and HMGB1 release, and

inhibited autophagy by hindering the destruction of

autolysosomes. However, ATG5 knockdown significantly

decreased the release of HMGB1 and CRT exposure caused by

brucine (136). And, early autophagy inhibition can reduce ICD

but late autophagy inhibition can increase it, which is dependent

on the secretory autophagy response generated by the autophagy

inhibitor (137). In contrast, an optimal dose of combined

LipSHK (ICD inducer) and LipHCQa (autophagy inhibitor)
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could maximize ICD-based antitumor immunity in colon

cancer (138). Thus, combining ICD inducers with autophagy

targeting drugs may be an innovative strategy to improve cancer

immunotherapy. Moreover, the secretion of HMGB1 and ATP

may be effective markers for treatment response prediction.

5.2.2 Targeting autophagy to assist immune
checkpoints inhibitors

The absence of tumor-infiltrating T cells and recruitment of

diverse immunosuppressive cells are the significant features of

“cold” TME, causing resistance to ICls. And, targeting

autophagy has been found to regulate anti-tumor immune

response by remodeling the immune TME. Therefore,

combination treatment approaches may enhance the response

to ICIs in cancer patients. For example, the autophagic cargo

receptor NBR1 plays a key role in the targeting of MHC-I

molecules for lysosomal degradation. In pancreatic ductal

adenocarcinoma cells, MHC-I is less visible on the cell surface

but is more pronounced in autophagosomes and lysosomes. CQ

and dual ICB treatment (anti-PD1 and anti-CTLA4 antibodies)

synergize to enhance the immune system’s ability to fight tumors

(139). Researchers demonstrated that combined SIRPa-Fc and

CQ treatment interrupted the CD47/SIRPa axis and disrupted
TABLE 3 The ongoing clinical trials about the combinations of immunotherapy with autophagy targeted drugs.

Clinical trial identifier Treatment Cancer types Phase

NCT03057340 Dribble vaccine NSCLC I

NCT04841148 Avelumab/Hydroxychloroquine + Palbociclib Breast Cancer II

NCT04214418 Cobimetinib + HCQ + Atezolizumab KRAS-mutated Advanced cancer I/II

NCT04787991 HCQ/Nivolumab + Ipilimumab + nP/gem Metastatic Pancreatic adenocarcinoma I/II

NCT04464759 Nivolumab/Ipilimumab + HCQ Advanced Melanoma I/II

NCT03344172 HCQ + Gemcitabine + Nab-paclitaxel + avelumab Pancreatic cancer II

NCT01550367 HCQ + Aldesleukin (IL-2) Metastatic renal cell carcinoma I
frontie
TABLE 2 The applied autophagy targeting agents in treatments in vivo and vitro.

Compound Molecular
Target

Stage of
autophagy

Type of cancer Effect on
autophagy

Outcomes Ref.

SBI-0206965/
MRT67307

ULK1/2 Initiation Triple-negative breast cancer Inhibition Reduce the viability of triple-negative breast
cancer cells

(126)

SAR405 PIK3C3/Vps34 Nucleation Melanoma and Colorectal
cancer tumors

Inhibition Induce an infiltration of NK, CD8+ T cells,
and CD4+ T cells

(127)

3-MA PIK3C3/Vps34 Nucleation Colon carcinoma Inhibition Increase tumor cell sensitivity to
chemotherapy

(128)

CQ Lysosome Fusion Melanoma Inhibition Remodel TMA toward the M1 phenotype (129)

HCQ Lysosome Fusion Gastric cancer Inhibition Remodel blood vessel (130)

GNS561 PPT1 Degradation Hepatocellular carcinoma Inhibition Promote tumor cell death (131)

Rapamycin MiR-26a-5p/
DAPK1

Initiation Glioma Activation Have anti-tumor effects (125)

ABTL0812 Akt/mTOR Initiation Pancreatic cancer Activation Transform cold tumors into hot tumors (132)
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the protective autophagy in tumor cells, enhanced phagocytosis

of macrophages, and then activated CD8+ T cell-mediated anti-

tumor immune (111). In addition, HCQ and rapamycin

treatment reduced autophagic flux and expression levels of

CD47 and SIRPa, thereby enhancing the phagocytosis of

TAM, which has strong phagocytic activity (140). HCQ and

rapamycin treatment could also improve anti-PD-1 therapy by

reprogramming M2-like TAM to M1-like phenotype and

enhancing T cell-mediated cytotoxicity (141). Combined with

the anti-PD-1 therapy, CQ/HCQ targeting palmitoyl protein

thioesterase 1 (PPT1), a novel regulator of cancer cell autophagy,

enhances the anti-tumor immune response by switching the

macrophage M2 to M1 phenotype, lowering MDSCs, and

increasing T cell-mediated cytotoxicity (142). In addition,

silencing the autophagy-associated protein BECLIN1 or VPS34

promotes the release of pro-inflammatory CCL5 and CXCL10 in

the TME of melanoma and CRC tumor cells via activation of

STAT1/IRF7 axis, resulting in increased infiltration of central

immune effector cells (NK, CD8+ and CD4+ T cells, DC, and M1

macrophages). And, SB02024 or SAR405 (VPS34 inhibitors)

converts cold immune deserts to hot immune TMEs and

reverses anti-PD-1/PD-L1 treatment resistance in melanoma

and CRC tumor models (78, 143). ESK981, a novel autophagy

inhibitor, was identified to increase the susceptibility of cold

tumors to ICIs by producing CXC10 that draws T cells by

targeting the autophagy-associated protein Pikfyve in prostate

cancer cells (144, 145). Although Pemetrexed and cisplatin

(PEM/CDDP) chemotherapy combined with ICIs did not have

the synergic effect in patients with metastatic NSCLC, the

combination regimen with MEK inhibitors (MEKi) blocking

autophagy could trigger the CXCL10 secretion and CD8+ T cell

recruitment to enhance the tumor-killing effect (146).

Furthermore, in LKB1 mutant tumor models, ULK1

suppression and PD-1 antibody inhibition act as co-promoters

of the effector T cell growth and tumor regression.

Mechanistically, LKB1 deficiency inhibits the production of

immune peptides by reducing the expression of the

immunoproteasome component. This state can be changed by

inhibiting the autophagy regulator ULK1, which increases the

level of immunoproteasome expression and then increases lung

tumor infiltration in CD4+ and CD8+ T cells (106). By

modulation of immune recognition, immune effector cell

chemotaxis, immune suppressor cell reduction, and antigen

presentation in the TME, autophagy inhibitors can increase

the infiltration of CTL cells in the TME, contributing to

enhancing ICIs treatment.

5.2.3 Targeting autophagy is a potential
adjuvant of CAR-agents

Current ly , the most advanced forms of cancer

immunotherapy are CAR-T cell therapy. Immunotherapy
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known as CAR T cells uses T cells taken from patients, and

genetically altered to express receptors that identify cancer-

specific antigens, and then transfused (147). Due to the hostile

solid TME, which acts as a barrier to CAR T cell infiltration and

activity, CAR T cell treatment has been clinically successful in

treating hematologic tumors but unsuccessful in treating solid

malignancy (147). Because autophagy can effectively control the

immunosuppressive TME, it may be beneficial in patients with

solid tumors receiving CAR T cells. In mice with gliomas,

autophagy significantly alerts the persistence of CAR-T and

acts as an antagonist to CAR-induced trogocytosis and

immune checkpoint activation (148). This suggests that

autophagy stimulation may promote CAR T cell tumor fitness

and survival in TME (148).

Because of the elevated levels of the tumor-secreting

chemokines CCL5 and CXCL10, autophagy inhibition

increases the formation of NK cells in glioblastoma in vivo.

Furthermore, suppression of autophagy alters NK cell

phenotypes to improve NK cell function and promotes NK

cell-mediated cytotoxicity against glioblastoma cells. In one

study, the combination of CQ and multifunctional genetically

engineered NK cells outperformed multifunctional genetically

engineered NK cells alone, inhibiting the growth of GBM

tumors (149).

5.2.4 Autophagy and vaccine
Some cancer vaccines have been suggested to be effective

immunotherapy for several malignancies, including glioma,

breast cancer, and liver cancer. They deliver high-quality

antigens to active APCs and induce strong CD4+ T helper cell

and cytotoxic T lymphocyte responses (150). Inducing

autophagy in DC promotes peptide presentation to CD4 T

cells, which is a novel strategy for increasing vaccine efficacy

(151). Professional APCs transmit tumor proteins to T

lymphocytes for activation via the MHC-I after consuming

and degrading them with proteases during cross-presentation.

Defective ribosome products (DRiPs) and short-lived proteins

(SLiPs), two putative tumor-associated proteins, are produced in

large amounts by tumor cells but are intrinsically uns` and only

momentarily expressed under physiological conditions before

being polyubiquitinated and broken down by tumor cell

proteasomes. Inhibiting proteasomal degradation and altering

the cellular autophagic pathway results in the production of the

DRibbles vaccine product, which stabilizes the DRiPs/SLiPs

proteins and induces the formation of autophagosomes that

contain the proteins mentioned above as well as other protein

products that are known to facilitate cross-presentation (152). A

previous study use proteasome and lysosome inhibitors to

prepare CMV-autophagosomes (DRibbles) (150). They show

that IFN-DC loaded with DRibbles activated CMV-specific T

cells (150).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1018903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2022.1018903
6 Conclusions and future
perspectives

It has been acknowledged that by boosting the anti-tumor

immune response, immunotherapy improves the prognosis of

patients with advanced cancer. However, only a tiny percentage

of individuals with advanced disease have a satisfactory and

sustained response to immunotherapy. Immunotherapy fosters

further development of the TME. All TME components either

negat ively or posi t ive ly influence the response to

immunotherapy. By regulating antigen release, antigen

presentation, antigen recognition, and immune cell trafficking,

targeted autophagy therapy can create hot TME to improve the

efficacy of cancer immunotherapy. In addition, immunological

characteristics of TME are important factors to be considered in

the strategies for immunotherapies improvement.

Even though several methods have been developed to

influence the immune system and improve clinical outcomes,

further investigation is needed to determine the mechanisms

involved. Although few clinical studies have been conducted,

several cellular and animal experiments combining autophagy

targeting with immunotherapy have been conducted. Even

though the majority of cellular and animal trial outcomes

demonstrate that combination therapies are superior to

immunotherapy alone, it is not clear whether the efficacy is

similar across species. Notably, only CQ or HCQ are used as

autophagy inhibitors in cancer therapy. However, their

therapeutic outcomes are limited by their high toxicity and

poor selectivity. Consequently, further research should be

carried out to explore the target genes associated with

autophagy. From a clinician’s standpoint, autophagy-targeted

medicines should be customized to treat specific stages and

grades of cancer.

Currently, there is no consensus on the best time to

administer autophagy-targeted medications—before, during, or

after immunotherapy. Autophagy-targeting drugs can alter the

tumor’s immune milieu, hence influencing immunotherapy. To

promote the effectiveness of immune-oncology medications,

effective dosing schedules of autophagy modulators alone or in

combination should be explored to modify the immunologic

activity of TME in time and make a balance between side effects

and tumor response benefits. Moreover, research is needed to

determine multiple modality-sensitive indicators for predicting

the patients’ future responses to anti-tumor alone or

combination therapies. For improving clinical appliance, we

can also focus on the affecting process, stage, and sequence of

autophagy in TME remodeling, and how to conduct precise

modulation of autophagy in the appropriate target cells of TME.

Although suppressing tumors by targeting autophagy is

currently thought to be a good therapeutic strategy, further

research is required to determine how the host will be affected in
Frontiers in Immunology 15
the long run. Future studies are also needed to explain the

“occasionality” interaction between autophagy modulators and

immunological response. Additionally, the distinct cell

populations that control autophagy and hence remodel the

immune milieu should be explored, as well as whether the

association is causative or accidental.

Given that both autophagy activation and inhibition have been

found to increase the effectiveness of anti-cancermedications, the role

of autophagy in cancer therapy requires further clarification.

Therefore, the key question is whether we should strive to increase

or decrease autophagy while treating cancer. Additionally, exploring

the regulatory mechanisms of autophagy needs to consider that

degradative autophagy blocking is followed by induction and

regulation of secretory autophagy. These investigations may help to

coordinate the effect of autophagy modulators better. To maximize

patient benefit and enhance cancer treatment, precision-targeted

medications should be further studied. Of note, the currently

utilized autophagy inhibitors are not especially effective at

enhancing anti-tumor immunity. Thus, research is needed to

clarify the appropriate dose, target, time, marker, and tumor type

to maximize their anti-tumor activity and sensitize immunotherapy.
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3-MA 3-methyladenine

AAK1 Adaptor-associated kinase 1

AMPK AMP-activated protein kinase

APC antigen-presenting cell

ATG autophagy-related gene

ATP adenosine triphosphate

BNIP3 adenovirus E1B 19 kDa-interacting protein 3

BNIP3L adenovirus E1B 19 kDa-interacting protein 3-like

CAF cancer-associated fibroblasts

CAR chimeric antigen recepter

CAER chemotherapeutic medicines plus the autophagy enhancer rapamycin

CDDP cisplatin

CQ chloroquine

CTL cytotoxic T lymphocyte

CTLA4 Cytotoxic T lymphocyte–associated protein 4

DAMP damage-associated molecular pattern

DC dendritic cells

DRiPs Defective ribosome products

DRibbles defective ribosomal products in blebs

EC endothelial cell

ECM extracellular matrix

ER Endoplasmic

FDA The US Food and Drug Administration

G-CSF granulocyte colony-stimulating factor

GM-CSF granulocyte-macrophage colony-stimulating factor

HCQ hydroxychloroquine

HMGB1 high-mobility group box 1

HIF-1 hypoxia-inducible factor-1

ICIs immune checkpoint inhibitors

ICD immunogenic cell death

IFN interferon

IL interleukin

MAP microtubule-associated

MDSC myeloid-derived suppressor cells

MHC major histocompatibility complex

mTOR mammalian target of rapamycin

MVB Multivesicular body

NF-kb nuclear factor kb

NK natural killer

NSCLC non-small cell lung cancer

PD-1 programmed cell death 1

PD-L1 programmed cell death ligand 1

Peg3 paternally expressed gene 3

PEM Pemetrexed

PI3K Phosphoinositide 3-kinase

PtdIns3K class III phosphatidylinositol 3-kinase complex

SLiPs short-lived proteins

SQSTM1 sequestosome-1

(Continued)
Frontiers i
n Immunology 20
Continued

TAM tumor-associated macrophages

TGF transforming growth factor

TME tumor microenvironment

TNFa Tumor necrosis factor alpha

Treg regulatory T cells

TRAP Tumor cell-released autophagosomes

ULK1 unc-51-like autophagy-activated kinase 1

VEGF(R) vascular endothelial growth factor (receptor)
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