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The senescence-associated secretory phenotype (SASP), which accumulates

over the course of normal aging and in age-related diseases, is a crucial driver

of chronic inflammation and aging phenotypes. It is also responsible for the

pathogenesis of multiple oral diseases. However, the pathogenic mechanism

underlying SASP has not yet been fully elucidated. Here, relevant articles on

SASP published over the last five years (2017–2022) were retrieved and used for

bibliometric analysis, for the first time, to examine SASP composition. More

than half of the relevant articles focus on various cytokines (27.5%), growth

factors (20.9%), and proteases (20.9%). In addition, lipid metabolites (13.1%) and

extracellular vesicles (6.5%) have received increasing attention over the past

five years, and have been recognized as novel SASP categories. Based on this,

we summarize the evidences demonstrating that SASP plays a pleiotropic role

in oral immunity and propose a four-step hypothetical framework for the

progression of SASP-related oral pathology—1) oral SASP development, 2)

SASP-related oral pathological alterations, 3) pathological changes leading to

oral immune homeostasis disruption, and 4) SASP-mediated immune

dysregulation escalating oral disease. By targeting specific SASP factors,

potential therapies can be developed to treat oral and age-related diseases.
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1 Introduction

Oral immune homeostasis is a delicate balance established

and shaped by the interaction between pathogen invasion and

host immune response (1). Any disruption to this balance results

in local or systemic diseases. Some pathophysiological changes

are attributed to the environmental impact of senescent cells (2).

The primary non-spontaneous effects of senescent cells appear

to be closely linked to the senescence-associated secretory

phenotype (SASP).

SASP, a product of senescent cells, is mainly classified into

the following categories: 1) pro-inflammatory cytokines (such as

interleukin (IL)-1a, IL-1b, IL-6, and IL-8); 2) chemokines (such

as CXCL-1/3 and CXCL-10); 3) proteases: including matrix

remodeling enzymes and plasminogen activators; 4) growth

factors (such as VEGF, TGF-b and GM-CSF); 5) bioactive

lipids (like oxidized lipid mediators); 6) extracellular vesicles

(EVs); and 7) others (2, 3). SASP profiles exhibit a significant cell

type-dependent heterogeneity, and SASP strength and

composition are spatially and temporally dependent (4). In

this paper, we summarize the different SASP categories, and

reveal the most relevant cell types via bibliometric analysis, and

propose a framework for the role of SASP in oral immune

homeostasis to provide insights into the potential of SASP as a

novel therapeutic target.
2 Methods

2.1 Data source and retrieval strategy

We searched the Web of Science Core Collection and

PubMed databases for articles related to SASP factors

published from 2017 to 2022. The retrieval strategy for the

Web of Science Core Collection database was as follows:

(((ALL=(cytokine) OR ALL=(chemokine) OR ALL=(protease)

OR ALL=(growth factor) OR ALL=(lipid) OR ALL=

(proinflammatory factor)) AND (ALL=(senescence associated

secretory phenotype) OR ALL=(sasp))) AND (DOP==(2017-01-

01:2022-04-01))) AND ((LA==(“ENGLISH”)) NOT (DT==

(“REVIEW”))). The retrieval strategy for the PubMed database

was as follows: (((((((cytokine) OR (chemokine)) OR (protease))

OR (growth factor)) OR (proinflammatory factor)) OR (lipid)

AND ((y_5[Filter]) AND (English[Filter]))) AND ((senescence

associated secretory phenotype) OR (sasp) AND ((y_5[Filter])

AND (English[Filter])))) NOT review[PT].

Inclusion criteria were as follows: Research articles 1. related

to SASP; 2. published between 2017-01-01 and 2022-04-01; and 3.

written in English. Exclusion criteria were as follows: 1. Literature

whose content is not closely related to SASP factors; 2. Studies

including guidance, consensus, industry standards, interviews,

comments, announcements, advertisements, or letters to the
Frontiers in Immunology 02
editor; and 3. informally published studies, such as

graduate theses.
2.2 Data processing and analysis

After retrieval, data screening and quality control were

performed. This was conducted by reading titles and abstracts

to remove literature that met the exclusion criteria. The data

from papers that met the inclusion criteria were downloaded and

merged. After removing duplicates, CiteSpace 6.1.R1 was used

for data analysis. Next, different words or phrases expressing the

same meaning were merged. For example, nuclear factor-kappa

b and nf kappa b were merged as NF-kappa B. To clearly

demonstrate the relationships among different type of SASP

factors clearly, we further merged the same type SASP factors.

For example, NF-kappa B, CCN1, and cyclin d1 were merged as

proinflammatory factors, and stem cells, mesenchymal stem

cells, and cancer stem cells were merged as pluripotent stem

cells. Finally, a keyword co-occurrence network was built to

visualize the relationships among knowledge domains and

identify important SASP factors that have attracted attention

in recent years.
3 Results

3.1 Analysis of the proportion of reported
SASP factors

In total, 564 articles were included in the bibliometric

analysis. In the last 5 years, the most cited SASP factors

have been cytokines, including IL-6, IL-1, IL-8, CXCL-8;

tumor necrosis factors (TNFs); and interferons. These

proinflammatory cytokines account for 27.5% of the reported

SASP factors. Among them, interleukins were determined to be

the most important SASP factors, accounting for nearly half of

these proinflammatory cytokines. The second-most cited SASP

factors are growth factors and proteases. These two types of

SASP factors account for 20.9% of variations in the SASP factors.

IGF-1, TGF-b, and VEGF are the most frequently cited growth

factors. Matrix metalloproteinases (MMPs) are the most cited

proteases. In the past five years, more than half of the articles

related to SASP have focused on various cytokines, growth

factors, and proteases (Figure 1A).
3.2 Analysis of relevant cell type

As shown in Figure 1B, a tight and complex network of

interactions is formed among different types of SASP factors and

between SASP factors and different types of cells. The main cell
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FIGURE 1

Keyword co-occurrence network visualization. (A) The proportion of different SASP factors in articles published in recent 5 years. Demonstrated as a pie
plot. The inner are different types of SASP factors. The outer are most cited SASP factors of each type. (B) The keyword co-occurrence network shows
the relationship between different types of SASP factors and different types of cells. Each node is a concentric circle, and the thickness of each layer of
the concentric circle represents the frequency of use of this keyword in a certain year. The color of each line represents the year of the first
co-occurrence between the two keywords. The thickness of each line represents the frequency of co-occurrence between the two keywords.
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types of interest in recent studies of SASP were pluripotent stem

cells, fibroblasts, epithelial or endothelial cells, and

immunocytes. The cell types in which the different SASP

factors mainly act are listed in Table 1. The results of

bibliometric analysis demonstrated that different SASP factors

tend to affect different cell types. For example, cytokines mainly

act on pluripotent stem cells, whereas proteases mainly act on

tumor cells. Pluripotent stem cells, fibroblasts, and epithelial or

endothelial cells are often affected by SASP factors.
4 Discussion

4.1 Main components of SASP

4.1.1 Cytokines
The most prominent cytokines are members of the IL-1, IL-

6, and TNF families. The membrane-binding IL-1a is an

upstream regulator of age-related cytokine networks (5). The

secreted IL-1b is excreted from cells in the early stages of the

inflammatory process and then binds to the IL-1 receptor to

trigger an inflammatory response (6). IL-6 initiates intracellular

signaling by binding to its membrane-binding receptor, IL-6Ra,
or its soluble receptor, sIL-6R (7). An enhanced TNF signaling is

considered pertinent to immune system defects (8).
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4.1.2 Chemokines
Chemokines act as local sensors of infection and

inflammation (9). The most-studied chemokines in the field of

aging in the past 5 years are the CXCL family members IL-8,

CXCL-1, -2, and -3 and CCL family members like MCP-1, -2,

and -4 and MIP-3a and-1a.

4.1.3 Growth factors
The diffusion of growth factors into the surrounding

environment induces cell activation and proliferation,

s t imulates granulat ion ti ssue formation, regulates

inflammatory responses, induces angiogenesis, and participates

in matrix remodeling and re-epithelialization (10).

4.1.4 Extracellular proteases
Matrix metalloproteinases (MMPs) and tissue inhibitors of

metalloproteinases (TIMPs) The MMP family is capable of

degrading various components of extracellular matrix (ECM)

proteins. TIMPs abrogate the proteolytic activity of MMPs by

competing with them (11).

Serineproteasesandtheir inhibitorsUrokinase-typeplasminogen

activator (uPA) and tissue-type plasminogen activator (tPA) can

modulate immune responses by activating MMPs to alter ECM

composition, thus promoting the migration of macrophages and

dendritic cells and modulating cytokine activity (12).
TABLE 1 Varies cell types where different SASP factors mainly act on.

SASP factors Cell types Rank

Cytokines Pluripotent stem cells 1st

Immunocytes 2nd

Fibroblasts 3rd

Growth factors Pluripotent stem cells 1st

Fibroblast 2nd

Other cells 3rd

Proteases Tumor cells 1st

Pluripotent stem cells 2nd

Immunocytes 3rd

Lipid metabolites Epithelial or endothelial cells 1st

Other cells 2nd

Immunocytes 3rd

Extracellular vesicles Other cells 1st

Epithelial or endothelial cells 2nd

Fibroblasts 3rd

Chemokines Tumor cells 1st

Osteocytes 2nd

Pluripotent stem cells 3rd

Others Pluripotent stem cells 1st

Tumor cells 2nd

Fibroblasts 3rd
frontier
This table shows the top 3 cell types that are most strongly affected by each type of SASP.
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Cathepsin An increased expression of cathepsin B and its

nuclear translocation contribute to proinflammatory responses

(13). Cathepsin D, an acidic protease active in intracellular

protein breakdown, is significantly overexpressed during

aging (14).
4.1.5 Lipid metabolites
Abnormal lipid accumulation induces pro-inflammatory genes

activation and senescence phenotype (15). Ni et al. suggested that

oxidized lipid mediators may serve as novel components of the

SASP (16). Moreover, the levels of cyclooxygenase and its major

product, prostaglandin E2 (PGE2), are increased in both replicative

and premature senescence (17). Leukotriene D4 plays a role in

cellular senescence (18).

4.1.6 Extracellular vesicles
EVs are small vesicles that contain proteins, lipids, and

noncoding RNAs (19). An increased EV production is a

common feature of senescence and senescent cells (20).

Secreted EVs interact with or are internalized by recipient cells

to transmit pro-senescence signals between cells and organs, and

partially induce immune and inflammatory activation (21, 22).

4.1.7 Others
Additionally, the contributions of small molecules, such as

ECM, miRNAs, and ROS, to SASP function remain

understudied and may be considered an important future target.
Frontiers in Immunology 05
4.2 Molecular mechanisms of
SASP induction

Given the complexity and pleiotropic functionality of the

SASP, we generalized the underlying mechanisms regulating it

(Figure 2). The DNA damage response (DDR) is associated with

SASP expression (23). The expression of some inflammatory

SASP is regulated by NF-kB and C/EBPb transcription cofactors

by binding to SASP factor promoters. GATA-binding protein 4

transcription factor is responsible for upstream NF-kB signaling

and, thus, regulates SASP factor expression (24).

Furthermore, many signaling pathways regulate SASP

expression at the transcriptional level. For example, the Janus

kinase signal transducer and activator of the transcription

pathway participate in regulating SASP expression (25).

Activation of p38 signaling also promotes SASP expression

(26). More recently, the antiviral cyclic GMP-AMP synthase

(cGAS)-stimulator of interferon genes (STING) pathway has

been found to be important for SASP expression (27).

Additionally, NOTCH signaling regulates the dynamic SASP

transition (28).

SASP expression is transcriptionally regulated. mTOR

pathway activation promotes the translation of SASP factors

such as IL-1a. mTOR also stabilizes SASP mRNA transcripts by

regulating MAPKAPK2 translation (29). Inflammasomes are

key mediators of SASP induction; inflammasomes upstream of

caspase-1 can activate the IL-1 inflammatory cascade during

senescence (30).
FIGURE 2

The molecular mechanism of senescence-associated secretory phenotype production. The formation of senescence-associated secretory
phenotype (SASP) networks in cells is regulated by a complex molecular mechanism. The DNA damage response is related to senescence
activation and SASP expression. SASP protein expression is regulated at both the transcription and post-transcriptional levels. Additionally,
epigenetic changes regulate SASP gene expression.
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The expression of SASP also correlates with epigenetic

changes. Recruitment of chromatin reader bromodomain-

containing protein 4 (BRD4) leads to the remodeling of super-

enhancer elements adjacent to SASP genes (31). Several ncRNAs

can also affect SASP production at transcriptional and post-

translational levels.
4.3 Source of oral SASP

4.3.1 Oral senescent cells with locally
secreted SASP

Dental tissue-derived cells Long-term stress on teeth may

induce the human dental pulp cells senescence and up-

regulation of SASP factors in human dental pulp cells (32). In

aging patients, dental pulp stem cells exhibit elevated expression

of SASP factors (33). Dental follicle cells are positive for SA-b-
gal staining in later stages of cell culture (34). Dental follicle stem

cells secrete TGF-b3, TSP-1, and TGF-b2 to promote and relieve

inflammation (35–37).

Periodontal-derived cells Senescent periodontal ligament

cells express high levels of MMP2 (38). The induction of

senescent periodontal ligament stem cell by TGF-b is

accompanied by increased levels of certain SASP factors (39).

In vitro experiments have shown that p16, p21, IL-6, and IL-8

mRNA expression in human gingival fibroblasts is upregulated

after replicative senescence (40–42). Researchers have observed

that liposaccharide (LPS) exposure causes osteocyte senescence

and SASP expression by activating p53 (43).

Oral mucosa cells SASP secretion is significantly increased in

senescent human oral keratinocytes (44–47), and IL-6, TNF-a,
and IFN-g levels are increased in the oral tongue tissues of the

elderly (48). Tongue muscle stem cells and epithelial cells have

been shown to degenerate with age, but the relevant SASP profile

has not been tested (49, 50).

Cancer cells In head and neck squamous cell carcinoma, the

number of SA-b-gal-positive aged cells and SASP factor levels

are significantly increased after LY2835219 treatment (51).

Moreover, an increased secretion of SASP has been observed

in senescent cancer-associated fibroblasts (CAF). The senescent

CAFs co-cultured with oral squamous cell carcinoma (OSCC)

cells also exhibit higher levels of IL-6 and CXCL1 (52). In

precancerous lesions, senescent oral submucosal fibroblasts

accumulate and upregulate MMPs (53).

Immunocytes High-glucose induces macrophage senescence

and increases IL-1, IL-6, TNF-a, MMP-2, and MMP-8 secretion

(54). Periodontal pathogens induce monocyte activation and the

up-regulation of multiple cytokines (55). Overactive neutrophils

can release inflammatory molecules and MMPs (56). The SASP

profile of B cells and plasma cells in the aging gingival tissue

changes (57). The SASP profile varies with cell type; factors

inducing senescence are shown in Table 2.
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4.3.2 ARDs with increased circulating SASP
Circulating SASP is associated with aging and age-related

diseases (ARDs) (64). Compared to that in young individuals,

the proportion of senescent cells is increased in aging

individuals; additionally, the levels of some SASP proteins

(age-related SASP) increase significantly (65). Concurrently,

the premature cells induced by ARDs can accelerate this

process (ARD-related SASP) (66). Age-related versus ARD-

related SASP and their effects on oral health are shown

in Table 3.
4.4 Pleiotropic effects of SASP on
oral immune homeostasis

The heterogeneity of SASP may partly account for its

pleiotropic effects. Based on the mechanisms of SASP, we

propose a four-step hypothetical framework by which oral

disease progresses from the pathologic role of SASP to the

destabilization of oral immune homeostasis. The pleiotropic

effects of the SASP can be interpreted using the model

depicted in Figure 3.

4.4.1 Step 1: Induction of cellular senescence
in oral microenvironment

Replicative- and stress-induced senescence are the main

patterns of cellular senescence in the oral microenvironment.

4.4.1.1 Replicative senescence

Serial cultivation of human diploid cells leads to indefinite

cell division, which is currently defined as replicative senescence

(72). Senescent cells arising from this physiological phenomenon

are defined as primary senescent cells (73), which have a series of

typical morphologies and biomarker alterations, including DDR

(g-H2AX and p53), cell cycle arrest (p16INK4A and p21CDKN1A),

anti-apoptotic genes (BCL-proteins), lysosomal content (SA-b-
gal), and heterochromatin markers (H3K9me3 and HP1g)
(2, 74).

4.4.1.2 Stress-induced senescence

Due to various stressors, the stress in senescing cells can be

classified as secondary senescent cells as follows: 1) DNA

damage-induced senescence, which can lead to cellular

senescence by inducing DNA damage (35, 75); 2)

chemotherapy-induced senescence, in which chemotherapy

and anti-resorptive agents have been shown to induce

senescence in oral cells (76); 3) oxidative stress–induced

senescence whereby H2O2 treatment increases the positive rate

of SA-b-gal staining in human dental pulp cells; 4) oncogene-

induced senescence wherein senescence markers are upregulated

in oral premalignant lesions (77). 5) epigenetically induced

senescence, which is characterized by the blockade of DNA
frontiersin.org
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TABLE 3 Age-related versus ARD-related circulating SASP and effects on oral health.

Age-related or
ARD-related

Study type Circulating increased SASP factors Effects on oral health

Age-related Cross-sectional study
(65)

IL-6, TNF-a,
CCL3, CCL4,
GDF15, ACTIVIN A, TNFR1, FAS

1. Recruitment of immune cells: chemokines (CCL3, CCL4)
2. Matrix remodeling: MMPs (MMP9)
3. Fibrosis: growth factors (TGF-b)
4. Senescence re-enforcement: cytokines (IL-6, TNF-a, IL-
10)

ARDs Diabetes Case-control study (67) IL-6

Cohort study (68) IL-6, TNF-a

Cancer Systematic review (69) IL-6, TGF-b, IL-10

Cardiovascular
disease

Case-control study (70) MMP9

Systematic review (71) IL-6
Frontiers in Immunology
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ARD, age-related disease; SASP, senescence-associated secretory phenotype; GDF, Growth/differentiation factor; TNFR, tumor necrosis factor receptor; CCL, CC chemokine ligand; TNF,
tumor necrosis factor; TGF, transforming growth factor; MMP, matrix metalloproteinase.
TABLE 2 Cellular senescence and SASP involved in the oral cavity.

Cell type Senescence trigger SASP factors involved Ref.

Dental-derived cells Human dental pulp cells H2O2-induced ICAM-1, VCAM-1, PPAR-g (58)

Human dental pulp stem cells p-cresol-induced IL-6 (33)

Dental follicle stem cells LPS-induced TGF-b2, IL-6, IL-8, IL-1b (37)

Periodontal -derived
cells

Human periodontal ligament
fibroblasts

Replicative and radiation-induced MMP2 (38)

human periodontal ligament stem
cell

TGF-b-induced IL-8, IL-18, IL-6 (39)

Human gingival fibroblast Replicative IL-6, IL-8 (40)

Replicative IL-6, IL-8, TNF, TIMP-1 (41)

Replicative MMP3, MMP12, IL-1a (42)

Alveolar osteocyte LPS-induced ICAM-1, IL-1b, IL-6, IL-8, MCP-1, MMP12, MMP13 (43)

Oral mucosa cells Human oral keratinocytes Bisphosphonates-induced IL-8, IL-6, MMP3 (59)

Replicative IL-1b, IL-1a, IL-8, IL-6 (46)

Replicative IL-1b, MMP3, PGF, CTGF, VEGF, MMP1, TIMP2, IL-8,
MMP9,

(44)

Replicative IL-1b, IL-1a, IL-8, IL-6, TNF-a, G-CSF, GM-CSF, GROa (47)

High glucose-induced IL-1b, IL-6, TNF-a (60)

Cancer cells Cal27, HSC3 and HSC6 cell lines LY2835219-induced IL6, IL8, MCP1, CXCL1, CXCL2, CXCL3 (51)

CAF from OSCC Cisplatin-induced MCP-1, IL-6 (61)

H2O2-induced TGF-b, MMP2 (62)

Co-culture with OSCC cells IL-6, CXCL1 (52)

The progression of oral submucous
fibrosis

MMP1, MMP2 (53)

Oral submucous fibroblasts High glucose-induced IL-1, IL-6, TNF-a, MMP-2, and MMP-8 (54)

Immunocytes Macrophage Pg and Aa-induced IL-1b, TNF-a, IL-6, IL-23 (55)

Monocytes LPS, Pg, Aa and zymosan A-induced IL-8, MMP-9 (56)

Neutrophils Replicative
And Periodontal pathogens-induced

MMP2, MMP9, CTSK, TNF-a (57)

B cells/plasmacytes Pg-induced IL-17A, IFN-g (63)
frontiersi
CAF, cancer-associated fibroblast; OSCC, oral squamous cell carcinoma; LPS, lipopolysaccharide; ICAM, intercellular adhesion molecule; VCAM, vascular cell adhesion molecule; PPAR,
peroxisome proliferator-activated receptor; IL, interleukin; MCP, monocyte chemoattractant protein; MMP, matrix metalloproteinase; TNF, tumor necrosis factor; PGF, placental growth
factor; CTGF, connective tissue growth factor; VEGF, vascular endothelial-derived growth factor; TIMP, tissue inhibitor of metalloproteinases; G-CSF, granulocyte colony-stimulating
factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; GROa(CXCL1), C-X-C motif chemokine ligand 1; Pg, Porphyromonas gingivalis; Aa, Aggregatibacter
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Methyltransferase 1 (DNMT1) and activation of histone

acetylation in oral cells (78); and 6) paracrine senescence

wherein the SASP produced by primary senescent cells

initiates senescence in surrounding cells.

4.4.1.3 Distinguishing senescence and inflammation

The inflammatory cytokines secreted by activated immune

cells overlap with SASP factors. Some cytokines are unique to

inflammation (such as IL-22), while others are unique to

senescence (such as TIMP). By definition, SASP is

downstream of cellular senescence. Notably, the senescence

process is generally accompanied by sterile, chronic, low-level

inflammation, termed inflamm-aging (79). Chronic

inflammation may occur due to age-related immune
Frontiers in Immunology 08
dysregulation or decreased resistance to challenges, which can

induce tissue pathology. The frameworks for aging,

inflammation, and cellular senescence are shown in Figure 4.

4.4.2 Step 2: SASP accelerates oral
pathologic alterations

The SASP is beneficial for maintaining homeostasis and

regeneration at a moderate level. However, when SASP is

expressed continuously, it induces pathological alterations and

disrupts the immune homeostasis of the oral microenvironment.

4.4.2.1 Amplifying the immune cascade

Secreted SASP activates proximal and distant immunocytes

in autocrine and paracrine manners. IL-1b is known to induce
FIGURE 3

The four proposed layers of how senescence-associated secretory phenotype impacts oral diseases. Senescence-associated secretory
phenotype (SASP) (including cytokines, chemokines, growth factors, and proteases) secreted by oral senescent cells, as well as circulating SASP,
constitute the aging microenvironment of oral cavity. As an important mediator, SASP accelerates oral pathological alterations including
senescence re-enforcement, recruitment of immune cells, matrix remodeling and fibrosis. Then, the SASP-induced dysregulation of immune
homeostasis can be divided into three categories: mucosal immunity, bone immunity, and tumor immunity. These destroy the structure and
function of different oral tissues. When age-related tissue damage accumulates, it manifests as age-related diseases.
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CD4+ T cell proliferation in response to challenges associated

with cognate antigens (80). IL-8 induces the migration of

activated immune cells to gingival tissue and promotes tissue

remodeling and angiogenesis (81). Elevated CCL2 and CCL4

levels are responsible for macrophage recruitment in periodontal

lesions (82). The CXCL1 secreted by tumor cells promotes

tumor growth by recruiting tumor-associated neutrophils (83).

4.4.2.2 Supporting senescence reinforcement

Certain key SASP factors, such as IL-6, IL-8, GROa, and
IGFBP-7, act in an autocrine feedback loop. Non-senescent

human oral epithelial keratinocytes cultured with senescent

cell supernatants exhibit increased SA-b-gal activity and SASP

expression (84). The IL-1b expressed by tumor cells can

significantly increase CXCL1 production in CAFs via

paracrine signaling (85). Moreover, IL-1b induces significant
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IL-6 production in human gingival fibroblasts and promotes

cellular responsiveness to IL-6 through an autocrine loop (86).

IL-6 induces normal fibroblast senescence by establishing a

senescence induction circuit (87).
4.4.2.3 Remodeling the extracellular matrix

MMPs constitute an important proteolytic pathway that

affects tissue remodeling and ECM structure. MMP expression

reduces the ability of tissues to maintain homeostasis (88).

Specifically, MMP-1 destroys the periodontal connective tissue

by directly degrading collagen or activating the fibrinolytic

protease cascade , leading to tooth loss (89) . The

proinflammatory factors IL-1b and IL-6 aggravate tissue

destruction by increasing MMP-1 in periodontal tissue (90,

91). Furthermore, TNF-a is important for osteoclast formation
FIGURE 4

The central role of senescence-associated secretory phenotype in natural aging, inflammation, and cellular senescence. With natural aging,
there is a progressive loss in tissue and organ functions, and accumulated senescence-associated secretory phenotype (SASP) can contribute to
this process. Depending on the triggers, including infection or injury, the inflammatory response has different pathological consequences. The
inflammatory response can be amplified via the secretion of inflammatory cytokines. Various cells (such as epithelial cells, dental pulp cells,
fibroblasts, and macrophages) in the oral cavity undergoing senescence release SASP to the local microenvironment under the induction of
natural aging and stress.
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and bone resorption in mice and suppresses ECM protein

expression (92, 93).

4.4.2.4 Promoting fibrosis

TGF-b is the primary factor driving fibrosis. TGF-b
activation in epithelial cells can interact with fibroblast cells

and induce the expression of other profibrotic cytokines (e.g.,

endothelin and CTGF) (94). Areca nut alkaloids induce

senescence in oral fibroblasts and TGF-b production, which is

favorable for the development of oral submucosal fibrosis (95).

TIMP-1 and -2 have also been proven to be early indicators of

oral submucous fibrosis and aging (96). Additionally, the MMP-

1 andMMP-3 secreted by senescent cells during oral submucosal

fibrosis have been shown to promote fibrosis in the advanced

stages (97).

4.4.3 Step 3: SASP disrupts oral immune
homeostasis
4.4.3.1 Effects on mucosal immunity

SASP challenges mucosal epithelial homeostasis by

undermining the physical barrier. MMP-2 cleaves cell–cell

adhesion molecules, thus disrupting epithelial adhesion (62).

An increased MMP-1 expression in inflamed tissues directly

leads to the degradation of collagen, thereby causing tissue

destruction (89). TNF modulates the apoptosis of epithelial

cells and fibroblasts and suppresses ECM proteins. These

results indicate that TNF—in the senescence process—can

damage the epithelial barrier (93). Some SASP factors

participate in the recruitment and activation of immune cells.

IL-1b greatly induces the proliferation and activation of Th1 and

Th2 cells (80). IL-8 regulates neutrophil activation and

migration in inflamed tissues (98). Additionally, IL-6

significantly increases the production of VEGF, bFGF, and

cathepsin B in human gingival fibroblasts and synergistically

induces angiogenesis in periodontitis lesions (86, 99). Senescent

macrophages in the gingiva contribute to SASP release and

inflammatory response, which indicates that senescence may

also play an important role.

4.4.3.2 Effect on osteoimmunity

The secretome produced via innate host responses facilitates

communication between immune cells and bone cells. Senescent

immune cells regulate bone homeostasis through immune

mediators that involve the SASP. For instance, IL-17, IL-1, and

IL-6, as well as low levels of IFN-g secreted by Th17 cells, promote

osteoclastogenesis (100, 101). TNF-a has also been shown to

strengthen osteoclastogenesis by synergizing with RANKL (102).

In contrast, the bone-senescent microenvironment further

enhances alveolar bone ageing. SASP factors released

extracellularly from osteocytes accelerate the senescence of bone

marrow (BM) (103). Selected SASP markers secreted by senescent
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osteocytes from alveolar bones promote inflammation and alveolar

bone loss (43). In senescent fibroblasts, IL-1b increases the

production of chemokines, including PGE2, an important

chemical mediator of alveolar bone resorption (104). Additionally,

senescent osteocytes develop a unique SASP signature composed of

upregulated MMPs (105). MMPs can degrade ECM proteins,

including sulfated proteoglycans, collagen, and fibronectin, in

cartilage. Moreover, insulin-like growth factor-binding protein 4

(IGFBP-4) are upregulated in senescent osteocytes and myeloid

cells, leading to deficiency in bone formation (22, 106).
4.4.3.3 Effect on oncoimmunity

Senescent cells in the tumor microenvironment (TME) may

play roles in tumor progression and metastasis. CAFs are the

most prominent stromal cells in TME. CAFs are senescent cells

that actively communicate with other cells in the TME by

secreting the SASP. TGF-b levels are upregulated by senescent

oral CAFs and synergize with MMP-2 to reduce the expression

of cell adhesion molecules and promote epithelial invasion (107).

CAFs also modulate the epithelial-mesenchymal transition

(EMT) by secreting TGF-b (108). Moreover, activated CAFs

secrete proinflammatory factors that recruit and activate

infiltrating immune cells (IICs). IICs provide mitogenic

growth factors that stimulate the proliferation of tumor cells

and other nearby stromal cells (109). IICs also express multiple

proteolytic enzymes that selectively modify ECM structure and

composition (110). Additionally, Park et al. proposed that the

serum levels of IL-6 may be a serum biomarker for OSCC

diagnosis (111). IL-6 promotes the invasion of cancer cells

through the epithelial–mesenchymal transition (112).

However, the immune cell subtype and its mechanism in the

TME require further elucidation; further research is necessary to

determine the specific roles of these factors in oral cancer.
4.4.4 Step 4: Aging and SASP in oral diseases
4.4.4.1 SASP in oral inflammatory disease

The SASP may be responsible for chronic oral inflammation,

as it disrupts mucosal homeostasis through matrix degradation,

senescence reinforcement, and immune cell recruitment.

Compared to their young counterparts, old mice suffer

frequent spontaneous periodontitis, and the expression of IL-

1b and TNF-a in the gingiva is significantly elevated (113).

Increased levels of IL-6 and MMP-8 have been observed in the

saliva of patients with chronic periodontitis (114). Enhanced

senescence and increased SASP are observed after ligation and P.

gingivalis infection–induced periodontitis in vivo (115, 116).

Additionally, hyperglycemia can increase the burden of

senescence in the gingival tissue (54). Senescent cells

accumulate in aged and diseased oral tissues, and this

accumulation is associated with severe tissue destruction.
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4.4.4.2 SASP in alveolar bone loss

Bone integrity and quality undergo differential changes in

various oral diseases (117). Animal studies have shown that

aging is positively correlated with alveolar bone loss. Old mice

have poorer alveolar bone quality, lower alveolar bone crest

height, and more active bone resorption (118). Senescence-

associated distension of satellites (an early and consistent

marker of senescence) and p16 mRNA expression are

increased in old alveolar bone samples (119). Moreover,

senescent osteocytes show changes in cell phenotype and

diminished osteocyte density during age-related skeletal

changes. This may further damage the mechanical conduction,

impair nutrient access, influence signal transduction, and

ultimately result in significant bone loss (120). Senescent bone

cells exacerbate chronic inflammation through SASP

accumulation, leading to deterioration of the periodontal

environment (119). The SASP factor secreted by LPS-induced

senescent osteocytes promotes the proliferation of some oral

pathogens. These pathogens produce more LPS, thereby

exacerbating the senescence of alveolar osteocytes and

resulting in alveolar bone loss (43).

4.4.4.3 SASP in oral cancer

Cell senescence occurs throughout life and plays dual roles

in modulating the progression and suppression of oral cancers

(121). The number of SA-b-Gal-positive cells is higher in OSCC

specimens than in tumor-free marginal tissues (52). Senescent

fibroblasts also accumulate in precancerous lesions in vivo (53).

Senescent cells secrete many SASP factors into the TME, which

may support cell proliferation, EMT, and angiogenesis, thereby

promoting tumor growth and invasion. MMP-1, -2, -10, and-12

levels in the saliva of OSCC patients increase significantly (122).

In OSCC, the expression of MMP-11 is associated with an

increased lymph node metastasis and a low survival rate (123).

MMP-7 is mainly expressed in the invasive portion of oral

cancer, whereas MMP-8 and MMP-9 are mainly detected in

peritumoral inflammatory cells (124). This evidence suggests

that senescent cells and the SASP are key factors in the onset and

progression of oral cancer.
5 Concluding remarks

SASP, derived from senescent cells, includes secreted factors

that may alter the extracellular environment (proteases),

mediators that transmit and amplify senescence signals

(cytokines, chemokines, bioactive lipids, and EVs), and

proteins that influence cancer behavior (growth factors). The

composition of SASP in the oral environment consists of two

parts: local SASP and circulating SASP. Local SASP is secreted by
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oral senescent cells undergoing primary or secondary senescent

patterns while the circulating SASP is closely associated with

chronological age and ARD. As an important bridge for

intercellular communication, the SASP communicates with

different immune cells and is the key to securing oral

homeostasis. Conversely, the SASP-induced dysregulation of

immune homeostasis leads to intrinsically complex phenotypes

in oral pathology. A better understanding of the relationship

between SASP and the immune system is necessary for

developing therapies to prevent or treat various ARDs in the

oral cavity.
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77. Bascones-Martıńez A, López-Durán M, Cano-Sánchez J, Sánchez-Verde L,
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