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Background: The tumor immune microenvironment could provide prognostic

and predictive information. It is necessary to develop a noninvasive radiomics-

based biomarker of a previously validated tumor immune microenvironment

signature of gastric cancer (GC) with immunohistochemistry staining.

Methods: A total of 230 patients (training (n = 153) or validation (n = 77) cohort)

with gastric cancer were subjected to (Positron Emission Tomography-

Computed Tomography) radiomics feature extraction (80 features). A

radiomics tumor immune microenvironment score (RTIMS) was developed to

predict the tumor immune microenvironment signature with LASSO logistic

regression. Furthermore, we evaluated its relation with prognosis and

chemotherapy benefits.

Results: A 8-feature radiomics signature was established and validated (area

under the curve=0.692 and 0.713). The RTIMS signature was significantly

associated with disease-free survival and overall survival both in the training

and validation cohort (all P<0.001). RTIMS was an independent prognostic

factor in the Multivariate analysis. Further analysis revealed that high RTIMS

patients benefitted from adjuvant chemotherapy (for DFS, stage II: HR 0.208
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(95% CI 0.061-0.711), p=0.012; stage III: HR 0.321(0.180-0.570), p<0.001,

respectively); while there were no benefits from chemotherapy in a low

RTIMS patients.

Conclusion: This PET/CT radiomics model provided a promising way to assess

the tumor immune microenvironment and to predict clinical outcomes and

chemotherapy response. The RTIMS signature could be useful in estimating

tumor immune microenvironment and predicting survival and chemotherapy

benefit for patients with gastric cancer, when validated by further prospective

randomized trials.
KEYWORDS

Gastric cancer, tumor immune microenvironment, chemotherapy, predictive,
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Introduction

Extensive studies have suggested tumor immune

microenvironment are of clinical importance in cancer

progression, metastasis, therapeutic response (1–4). The type,

density, and location of immune cells in multiple cancers had a

prognostic value that was superior to and independent of those of

the TNM stage (1, 5, 6). An international consortium of 14 centers

in 13 countries assessed the Immunoscore assay in patients with

TNM stage I-III colon cancer, and the results supported the

implementation of the consensus Immunoscore as a new

component of a TNM-Immune classification of cancer (1).

For gastric cancer (GC), a tumor immune microenvironment

(TME) signature (7) of gastric cancer based on seven features,

including CD3 invasive margin (IM), CD8 IM, CD45RO center of tumor

(CT), CD66b IM, CD34, periostin, and cyclooxygenase-2, which

could be important for predicting survival and selecting

appropriate patients for chemotherapy. However, the TME

signature was mainly determined on postoperative tissue

specimens, it is necessary to develop a noninvasive pretreatment

tools for prediction of immune infiltrates.

Computational medical imaging, known as radiomics, is an

emerging field that converts medical images into a high

dimensional quantitative feature space using a large number of

automatically extracted data-characterization algorithms (8–10).

These imaging features may capture in-depth characterization of

tumor distinct phenotypes, with the underlying hypothesis that

imaging reflects not only macroscopic but also the cellular and

molecular properties of tissues. The goal of radiomics is to

develop image-driven biomarkers that serve as instruments

that generate a further understanding of cancer biology to

facilitate better clinical decision-making (10–12). Radiomics

features are complementary to biopsies and have the

advantages of being non-invasive and repeated during
02
treatment in routine practice, contrary to genomics or

proteomics, which are still challenging to apply in clinical

routine (12, 13). Connecting radiomics features to the

molecular biological processes active in a tumor could provide

deeper information that may complement the molecular data

(14). Hence, in some circumstances, the radiomics features could

be apply to infer the molecular biological underpinnings of

tumor in individual patients.

The association between imaging features and tumor

infiltrating immune cell density has been explored (13, 15–17).

Many image features extracted by radiomics, not visually observed,

were closely related to specific microscopic features at the molecular

level and could characterize the tumor and its tumor

microenvironment (13, 18–20). Several studies also found that

pre-existing tumor immune infiltration correlates with patient

response to anti-programmed cell death protein (PD)-1 and anti-

programmed cell death ligand 1 (PD-L1) immunotherapy (21, 22).

Gastric cancer is one of the most common cancer and

leading cause of cancer death worldwide (23). Imaging with

fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission

tomography (PET) was used to detect of distant and lymph

nodes metastases, which could stage GC accurately (24). PET/

CT could reflect the tumor metabolically active. Chemotherapy

have improved survival of GC patients (25, 26). However, for

most of GC patients the survival rates were still limited despite

initial high response rates (26, 27). Therefore, precise

classification of GC that could be necessary to predict patient

survival and chemotherapy responses. Radiomics could allow

evaluation of a tumor and its microenvironment, thus, may lead

to the identification of novel predictors for prognosis and

treatment efficiency. We aimed to develop a PET/CT image

based radiomics signature of tumor immune microenvironment

and to assess the ability of this signature to predict survival and

adjuvant chemotherapy benefits.
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Patients and methods

Study design and patients

Inclusion criteria were pathology-confirmed gastric cancer,

18 to 80 years old, PET/CT performed before surgery, complete

follow-up data and clinicopathologic characteristics, no

treatment cancer, and patient informed consent. Excluded

criteria was received any anticancer therapy previous. Under

approval from the institutional ethics committee, we

retrospectively collected patient data and PET/CT images in

the training cohort of 153 patients with GC as the inclusion

criteria at Henan Provincial People’s Hospital (Zhengzhou,

China) between January 2012 and December 2020. As the

same inclusion criteria, we included 77 patients in the

independent validation cohort at the First Affiliated Hospital

of Zhengzhou University (Zhengzhou, China) between July 2010

to December 2020 (Figure 1). Tumor staging was reclassified

with the American Joint Committee on Cancer (AJCC) TNM

Staging Manual, 8th Edition. All of the included patients

accepted standard gastrectomy and D2 lymph node dissection

accordance with the No.5 version guideline of the Japanese

Gastric Cancer Association (JGCA). Disease-free survival

(DFS) was defined as the time from the time of surgery until

either the date of disease progression, which refers to tumor

relapse, distal metastasis, or death, or until the date that the

patient was last known to be free of progression. Overall survival

(OS) was defined as the time to death from any cause.

Clinicopathologic information for each patient with GC,

including age, sex, TNM stage, tumor size, location,

differentiation, lauren type, CEA, CA199, postoperative
Frontiers in Immunology 03
chemotherapy and follow-up data (follow-up duration and

survival), and time of baseline PET/CT imaging and surgery,

were collected from the clinical medical records (Table 1). The

two institutional ethics committees approved the retrospective

study respectively.
Immunohistochemistry (IHC) staining
and classification of tumor
microenvironment (TME) signature

An support vector machine (SVM) based tumor

microenvironment signature integrating seven features, including

CD3 invasive margin (IM), CD8 IM, CD45RO center of tumor (CT),

CD66b IM, CD34, periostin, and cyclooxygenase-2, was previously

developed and validated (7). Formalin-fixed paraffin-embedded

(FFPE) samples were processed for IHC staining as previously

described (7, 28–30). Following incubation with an antibody against

human CD3 (pan T lymphocytes; NeoMarker, clone SP7), CD34

(Abcam, ab81289), CD8 (cytotoxic T lymphocytes; NeoMarker,

clone SP16), CD45RO (memory T lymphocytes; Invitrogen, clone

UCHL1) and CD66b (neutrophils; BD Pharmingen), periostin

(Abcam,ab92460), and cyclooxygenase-2 (Abcam, Cambridge,

MA), the sections were stained in an EnVision System (Dako)

(Table S1). Two pathologists who were blinded to clinical outcomes

independently scored all samples. If there was a difference opinion

between the two primary pathologists, the third pathologist was

consulted to give the final decision. As the previously described (7)

and the result of IHC, every patient was classified into a high-SVM

group and a low-SVM group. Detailed information is provided in

the Supplementary Materials.
FIGURE 1

Study design for the discovery and validation of a PET/CT radiomic signature for the tumor immune microenvironment signature in gastric
cancer. PET/CT image: positron emission tomography/computer tomography image. IH,: immunohistochemistry. Training cohort (n=153);
Validation cohort (n=77).
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PET/CT imaging

All patients underwent contrast-enhanced 18F fluorodeoxyglucose

(FDG) PET/CT scans before surgery. Details about image acquisition

and processing procedures are presented in the Supplementary

Materials. Tumor segmentation was then performed based on

agreement reached by two expert radiology physicians, and checked

by authors Yang You and Huihui Guo on the PET/CT images with

ITK-SNAP software (www.itksnap.org) (31, 32).
Image feature extraction

We calculated a total of 80 quantitative features from each

volume of interest (VOI) of each patient’s PET/CT image to

characterize intratumor heterogeneity and complexity. The

feature pool included 14 first-order intensity features, 9 shape

features, and 57 second- and higher-order textural features. In

this work, we investigated four types of texture features on the

basis of gray-level co-occurrence matrices (GLCM), gray-level

run length matrix (GLRLM), gray-level size zone matrix

(GLSZM), and neighborhood gray-tone difference matrix

wavelet decompositions (NGTDM). 26, 13, 13 and 5 features

were extracted from GLCM, GLRLM, GLSZM and NGTDM,

respectively. The detailed mathematical definitions of all

imaging features listed in Supplementary Materials. All

radiomic features were extracted in Matlab R2012a (The

MathWorks Inc.) using an available radiomic analysis package

(https://github.com/mvallieres/radiomics/).

The SUV image was discretized by 0.1 SUV unit bin width

according to the following equation (33): SUVDis(x) = | SUV(x)/

0.1| –min(|SUV(x)/0.1|) + 1, where SUV(x) is the SUV of voxel x

and SUVDis(x) is the discretized value of voxel x. The

discretization step is necessary to generate matrices whose size

(defined by the maximum SUVDis(x)) highly impacts

computation, and is used to reduce image noise and generate a

constant intensity resolution so that textural features from

different patients are comparable.
Construction of a radiomics tumor
immune microenvironment score

We developed a logistic regression model to predict the

IHC-based tumor immune microenvironment score (radiomics

tumor immune microenvironment score, RTIMS) via a linear

combination of selected image features weighted by their

respective coefficients. We used the least absolute shrinkage

and selection operator (LASSO) method to select the most

useful predictive features from the training cohort. The

diagnostic ability of the model was assessed with the area

under the characteristics operating curves (AUC). The optimal

cutoff value for RTIMS was determined using Youden’s index in
Frontiers in Immunology 04
the training cohort, which maximizes the sum of sensitivity and

specificity. This cutoff value was fixed and then applied to the

validation cohort. The “glmnet” package was used to perform

the LASSO regression model analysis (34, 35). Complete details

are provided in Supplementary Materials.

Association with prognosis and
chemotherapy benefits

The potential association of the RTIMS with DFS and OS was first

assessed in the training cohort and then validated in the validation

cohorts by using Kaplan-Meier survival analysis. Stratified analyses

were performed to explore the potential association of RTIMS with

DFS and OS using subgroups within TNM stage. The association

between RTIMS and adjuvant chemotherapy response was assessed in

patients with stage II and III GC.

Statistical analysis

We compared two groups using the t-test for continuous

variables and the chi-square test or Fisher exact test for

categorical variables, as appropriate. Survival curves were

generated using the Kaplan-Meier method and compared using

the log-rank test. Univariate and multivariate analyses were

performed using the Cox proportional hazards model. Variables

that achieved statistical significance at P < 0.05 were entered into the

multivariate Cox regression analyses. Interactions between the

RTIMS and chemotherapy were detected using the Cox model as

well. All the statistical tests were done with the SPSS software

(version 21.0) and R software (version 3.5.1). A two-sided P value <

0.05 was considered significant.

Results

Clinical characteristics

Table 1 list the detailed clinicopathological characteristics of

the patients in the training (n=153) and validation (n=77) cohorts.

All of the 230 patients included in the study, 163 (70.87%) were

men, and the median (interquartile range, IQR) age was 58.0

(51.0-68.0) years. The number of patients with stage II or stage III

GC who received adjuvant chemotherapy was 92 (60.1%) in the

training cohort, 39 (50.6%) in the validation cohort.
Development and validation of
Radiomics Tumor Immune
Microenvironment Score (RTIMS)

In the training cohort, a LASSO logistic regression model

was built. The final radiomics signature (RTIMS, Radiomics

Tumor Immune Microenvironment Score) included 8 features
frontiersin.org
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(Figure S1). The RTIMS calculation formula is RTIMS = -0.006 *

SUV_SD - 0.134 * Hist_Energy + 0.152 * InVar_GLCM + 0.132

* LRHGE_GLRLM + 0.019 * SZLGE_GLSZM + 0.005 *

ZSV_GLSZM + 0.195 * Complexity_NGTDM + 0.003

*Contrast_NGTDM. The ability of the radiomics signature to

classify high versus low-SVM was shown to have an AUC of

0.692 (95% CI 0.6077-0.777) in the training cohort (Figure 2A).

The radiomics signature showed similar accuracy in the

validation cohort with AUC: 0.713 (95% CI 0.594-0.833)

(Figure 2A). We further confirmed that the RTIMS score was

significantly higher in the high TME group than the RTIMS in

the low TME group in the training cohort and validation cohort,

respectively (Figure 2B). The optimum cutoff of RTIMS

determined by the ROC curve analysis in the training cohort

was -0.069 (Figure 2A). Accordingly, patients were classified into

a low-RTIMS group (RTIMS < -0.069) and a high-RTIMS group

(RTIMS ≥-0.069). Table 1 lists the relationships between the

RTIMS and clinicopathological characteristics.
Prognostic value of RTIMS

We first assessed the prognostic value of the RTIMS in the

training cohort. For the low- RTIMS group, the 5-year DFS and

OS were 16.39% and 22.73%; for the high- RTIMS group, the 5-

year DFS and OS were 51.67% and 57.58% (hazard ratios (HRs)

0.361 (95%CI 0.239-0.547) and 0.291 (0.164-0.517), all P<

0.0001; Figure 3A). We then performed the same analyses in

the validation cohort and found similar results. The 5-year DFS

and OS were 7.8% and 13.74% for the low-RTIMS group

compared with 50.94% and 59.53% for the high-RTIMS group

(HRs 0.339(0.219-0.525) and 0.232 (0.129-0.419), all P< 0.0001;

Figure 3B).

Univariate Cox regression analysis and multivariate Cox

regress ion analys i s were per formed adjust ing for

clinicopathological variables. The RTIMS remained a powerful

and independent prognostic factor for predicting DFS and OS in

the training and validation cohorts (Table 2 and Table S2).

Finally, we performed additional analyses within subgroups of

GC patients who are stratified by stage. High-RTIMS patients

had a longer DFS and OS than patients with low-RTIMS within

each stage II or III (Figure 4).
Predictive value of RTIMS for
chemotherapy benefits

Then, we evaluated the relationship between RTIMS status

and survival among stage II and III patients who either received or

did not receive postoperative chemotherapy. The characteristics of

patients who received adjuvant chemotherapy were similar to

those of patients who did not receive adjuvant chemotherapy
Frontiers in Immunology 05
(Table S3). The results showed that adjuvant chemotherapy was

associated with an improved prognosis in the high-RTIMS group

for both stage II and III disease, e.g., for DFS, stage II: HR 0.208

(95% CI 0.061-0.711), p=0.005; stage III: HR 0.321(0.180-0.570),

p<0.001 (Figure 5). However, for patients in the low-RTIMS

group, chemotherapy did not affect survival in either stage II or

III disease: for DFS, stage II: HR 1.799(0.646-5.009), p=0.240;

stage III: HR 1.302(0.744-2.277), p=0.340. Then, a formal

interaction test was performed between the RTIMS signature

and chemotherapy, which confirmed a significant interaction

regarding the impact on DFS and OS in stage II disease (p for

interaction: DFS, p=0.008; OS, p=0.034) as well as in stage III

disease (p for interaction: DFS, p=0.001; OS, p=0.004). This

analysis suggests a predictive effect of RTIMS for the benefit of

adjuvant chemotherapy.
Discussion

Radiomics approaches, when combined with tumor biopsies

and genomics, could improve treatment selection. Radiomic

features from tumor can provide information on both the

tumor and its microenvironment (18, 36). In our study, we

developed and validated a radiomic signature (RTIMS) of the

tumor immune microenvironment, and the RTIMS signature

was able to predict survival. Moreover, the RTIMS signature

might help to identify stage II and III patients who could benefit

from adjuvant chemotherapy.

The importance of radiomics is shown by the increasing

number of oncological clinical trials being done that use

radiomics. To date, more than 30 clinical studies are registered

in ClinicalTrials.gov, including one prospective study of

pembrolizumab (NCT02644369). Notably, Braman et al. (18)

that evaluated radiomic features in the context of neoadjuvant

chemotherapy for breast cancer found radiomics features could

strongly predict pCR independent of choice of classifier,

suggesting their robustness as response predictors. Moreover,

pathological complete response was associated with infiltration

of lymphocytes into tumors (18) Jiang et al. measure immune

score based on the radiomics features from CT image (17). And,

the CT image signature could predict survival and treatment

response, which is concordant with our results.

Notably, several points strengthening the biological and

clinical relevance of this radiomic signature have been

identified. Grossmann et al. discovered a connection between

the radiomic phenotype of a tumor, the signaling pathways

inside cells that drive how cancer develops, and clinical

treatment outcomes (14). They also did IHC staining of CD3

in 22 tumors that were predicted to show relatively high or low

immune response based on one radiomic feature, and they found

agreement between radiomic features and pathology. Thus, they

deemed that radiomic approaches permit noninvasive

assessment of both molecular and clinical characteristics of
frontiersin.org
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TABLE 1 Clinical characteristics of patients according to the radiomics signature in the training and external validation cohorts.

Variables Training cohort (n =152) Validation cohort (n = 77)

low RTIMS (%) high RTIMS (%) P lowRTIMS (%) high RTIMS (%) P

Gender 0.772 0.93

Female 18 (38.3%) 29 (61.7%) 9 (45.0%) 11 (55.0%)

Male 38 (35.8%) 68 (64.2%) 25 (43.9%) 32 (56.1%)

Age (years), median (IQR) 61 (56-68) 57 (48-66) 57.5 (49.5-70.25) 58 (54-69)

Age (years) 0.02 0.962

<60 22 (27.8%) 57 (72.2%) 18 (43.9%) 23 (56.1%)

≧60 34 (45.9%) 40 (54.1%) 16 (44.4%) 20 (55.6%)

Tumor size (cm) 0.518 0.072

<4 19 (33.3%) 38 (66.7%) 9 (31.0%) 20 (69.0%)

≧4 37 (38.5%) 59 (61.5%) 25 (52.1%) 23 (47.9%)

Tumor location 0.023 0.442

Cardia 26 (48.1%) 28 (51.9%) 14 (48.3%) 15 (51.7%)

Body 6 (22.2%) 21 (77.8%) 2 (25.0%) 6 (75.0%)

Antrum 15 (27.3%) 40 (72.7%) 10 (38.5%) 16 (61.5%)

Whole 9 (52.9%) 8 (47.1%) 8 (57.1%) 6 (42.9%)

Differentiation status 0.459 0.297

Well 11 (47.8%) 12 (52.2%) 5 (33.3%) 10 (66.7%)

Moderate 10 (37.0%) 17 (63.0%) 7 (63.6%) 4 (36.4%)

Poor and undifferentiated 35 (34.0%) 68 (66.0%) 22 (43.1%) 29 (56.9%)

Lauren type 0.24 0.842

Intestinal type 28 (41.8%) 39 (58.2%) 15 (45.5%) 18 (54.5%)

Diffuse or mixed type 28 (32.6%) 58 (67.4%) 19 (43.2%) 25 (56.8%)

CEA 0.615 0.971

Normal 49 (37.4%) 82 (62.6%) 27 (40.3%) 34 (55.7%)

Elevated 7 (31.8%) 15 (68.2%) 7 (43.8%) 9 (56.3%)

CA199 0.232 0.638

Normal 43 (34.4%) 82 (65.6%) 22 (42.3%) 30 (57.7%)

Elevated 13 (46.4%) 15 (53.6%) 12 (48.0%) 13 (52.0%)

Depth of invasion 0.007 0.103

T1 1 (6.7%) 14 (93.3%) 0 (0.0%) 4 (100.0%)

T2 6 (28.6%) 15 (71.4%) 3 (27.3%) 8 (72.7%)

T3 2 (14.3%) 12 (85.7%) 2 (40.0%) 3 (60.0%)

T4a 35 (43.2%) 46 (26.8%) 23 (46.9%) 26 (53.1%)

T4b 12 (54.5%) 10 (45.5%) 6 (75.0%) 2 (25.0%)

Lymph node metastasis 0.285 0.263

N0 12 (26.1%) 34 (73.9%) 8 (36.4%) 14 (63.6%)

N1 10 (45.5%) 12 (54.5%) 7 (77.8%) 2 (22.2%)

N2 11 (39.3%) 17 (60.7%) 5 (35.7%) 9 (64.3%)

N3a 14 (35.0%) 26 (65.0%) 10 (41.7%) 14 (58.3%)

N3b 9 (52.9%) 8 (47.1%) 4 (50.0%) 4 (50.0%)

Stage 0.017 0.075

II 15 (25.0%) 45 (75.0%) 7 (29.2%) 17 (70.8%)

III 41 (44.1%) 52 (55.9%) 27 (50.9%) 26 (49.1%)

Chemotherapy 0.022 0.919

No 16 (25.8%) 46 (74.2%) 17 (44.7%) 21 (55.3%)

Yes 41 (44.0%) 51 (56.0%) 　 17 (43.6%) 22 (56.4%) 　
Frontiers in Immunology
 06
 frontiersi
RTIMS, radiomics tumor immune microenvironment score.
n.org

https://doi.org/10.3389/fimmu.2022.1019386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1019386
tumors, however, the results still should be interpreted with

caution. Ferté et al. also developed a radiomic signature for the

gene expression signature of CD8 cells, which could predict

clinical outcomes in patients treated with anti-PD-1 or anti-PD-

L1 immunotherapy (15).

At present, the standard treatment for advanced gastric

cancer includes adjuvant chemotherapy after surgery to

prevent disease recurrence and improve survival, however,

many studies have reported that a subgroup of patients could

not benefit from adjuvant chemotherapy (25, 26, 28). Moreover,

the criteria for the selection of candidates who are more likely to

benefit from adjuvant chemotherapy remain controversial.

Thus, the accurate identification of subgroups of patients will

improve the prognostic system and lead to more personalized

therapy. Recently, several studies reported that radiomics
Frontiers in Immunology 07
signatures based on CT/MRI/PET images were associated with

chemotherapy response in several types of cancers (37–39).

Besides, Ferté et al. and Jiang et al. previous study showed that

imaging biomarkers could be used to estimate tumor-infiltrating

lymphocytes (15, 16), which were associated with chemotherapy

response (28, 40). In this study, we found that adjuvant

chemotherapy provided a better survival benefit to patients

with stage II and III GC patients classified as high-RTIMS,

whereas low-RTIMS patients did not obtain benefits from

adjuvant chemotherapy; further use of the radiomics signature

might allow for better identification of patients who are most

likely to benefit from adjuvant therapy. Thus, we suggest that

patients with low-RTIMS should be treated with new

combinations of more tolerable medication as an adjunct to

potentiate the efficacy of systemic approaches. Therefore, our
B

A

FIGURE 2

(A) AUC of the receiver operator characteristic of RTIMS predicting the tumor immune microenvironment signature in the training cohort and
validation cohort. (B) RTIMS by high and low IHC signature. RTIMS, radiomics tumor immune microenvironment score. AUC, area under the
curves.
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B

A

FIGURE 3

Kaplan-Meier analyses of disease-free survival (DFS) and overall survival (OS) according to dichotomized RTIMS signature in patients with gastric
cancer. (A) Training cohort (n=153), (B) Validation cohort (n=77). Left panel: DFS; right panel: OS.
TABLE 2 Multivariate Cox Regression analyses for disease-free survival and overall survival in the training cohort of patients with gastric cancer.

Variables Disease-free survival Overall survival

HR (95%CI) p HR (95%CI) p

Training cohort

RTIMS(High vs. low) 0.404(0.266-0.615) <0.0001 0.336(0.215-0.526) <0.0001

Stage(III vs. II) 2.145(1.346-3.420) 0.001 2.036(1.219-3.403) 0.007

Differentiation / / 1.413(1.009-1.979) 0.044

Validation cohort

RTIMS (High vs. low) 0.275(0.150-0.506) <0.0001 0.198(0.107-0.367) <0.0001

Stage(III vs. II) 2.066(1.020-4.184) 0.044 / /

CEA 2.103(1.072-4.124) 0.031 2.446(1.264-4.731) 0.008
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PET/CT image-based RTIMS signature for patients with stage II

and III gastric cancer is both a prognostic and predictive

method, in that patients with a high- RTIMS have a clear

benefit from adjuvant chemotherapy.

Interpretation of complex images by radio-pathology/

genomic approaches is currently changing several fields in

medical imaging, but clinical application of this method is still

in its infancy. Validating this approach in a separate cohort, we

confirmed the prognostic power of this approach. Thus, A novel

biomarker that can be incorporated into existing clinical

workflows because it only relies on PET/CT images, which are

non-invasive and widely available. Compared to the gene-based

signatures, a major advantage of our radiomics method is the
Frontiers in Immunology 09
ubiquitous availability of PET/CT images, which are available for

every cancer patient, and analyzing them is not very costly.

Besides, abdominal PET/CT scans are effective tools to diagnose

and guide treatment for patients with gastric cancer. Whereas,

those gene-based signatures have not been widely led into

clinical application as initially expected owing to the variability

of measurements in microarray and sequencing assays,

inconsistencies in assay platforms, and the requirement for

analytical expertise (41–43). In addition, our radiomic

approach of the TME signature is reproducible: If presented

with the same image twice, the algorithm will export the same

result. These points make this new approach well suited for a

clinical application.
B

A

FIGURE 4

Kaplan-Meier survival analysis of disease-free survival and overall survival according to the RTIMS signature in subgroups of stage II and III GC
patients. Disease-free survival (left pane) and overall survival (right pane): (A) Stage II (n = 84), (B) Stage III (n = 146).
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According to the molecular classification of The Cancer

Genome Atlas (TCGA) project, gastric cancer was divided into

four subtypes: Epstein-Barr virus (EBV)-positive, microsatellite

instability (MSI), genomic stability, and chromosomal instability

(44). High lymphocytes infiltration were frequently observed in

certain molecular subtypes of GC, such as EBV-positive and MSI

subtypes (45, 46). According to a phase II study, mismatch repair

deficiency or MSI-high renders different solid tumors highly

sensitive to immune checkpoint blockade with the PD-1

inhibitor pembrolizumab, and these tumors contain prominent

lymphocytes infiltration (47, 48). Recently, several studies

showed that the tumor imaging biomarkers could provide a

promising way to predict the immune phenotype of tumors and

to infer clinical outcomes for patients with cancer who had been

treated with PD-1 and PD-L1 inhibitor (15, 16). Therefore,

future studies should investigate the association between the
Frontiers in Immunology 10
radiomic signature of tumor immune microenvironment and

molecular classification, and explore whether the radiomic

signature could predict the responses of patients with gastric

cancer to immunotherapy.

There are some limitations to this study. First, the study was

conducted retrospectively, which was susceptible to the inherent

biases of such a study format. Secondly, the decision to accept

postoperative chemotherapy or not was made by the patients

and clinicians together, that was not within a randomized

assignment. Thirdly, the model was developed and validated

using data from East Asian patients, and its generalizability in

western populations remains to be determined. Therefore, a

prospective, international, multicenter clinical trial will be

needed to further validate our findings.

In conclusion, we developed a PET/CT image based

radiomic signature that allows the noninvasive evaluation of
B

C

D

E

F

A

FIGURE 5

Relationship between the RTIMS signature and survival benefit from adjuvant chemotherapy in patients with stage II and III gastric cancer. In
stage II, stage III and stage II+III patients, adjuvant chemotherapy improved DFS (A–C) and OS (D–F) for patients with high RTIMS, whereas no
effect on survival was observed in patients with low RTIMS. RTIMS, radiomics tumor immune microenvironment score.
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tumor immune microenvironment. Moreover, the RTIMS might

be a useful predictive tool to identify stage II and III patients

benefit from adjuvant chemotherapy. Thus, the RTIMS

potentially may offer clinical value in directing individualized

therapeutic regimen selection for patients with stage II and III

gastric cancer.
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