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The oral mucosa is a membranous structure comprising epithelial and

connective tissue that covers the oral cavity. The oral mucosa is the first

immune barrier to protect the body against pathogens for systemic protection.

It is frequently exposed to mechanical abrasion, chemical erosion, and

pathogenic invasion, resulting in oral mucosal lesions, particularly

inflammatory diseases. Epithelial-mesenchymal transition (EMT) is a crucial

biological process in the pathogenesis of oral mucosal disorders, which are

classified into three types (types 1, 2, and 3) based on their physiological

consequences. Among these, type-2 EMT is crucial in wound repair, organ

fibrosis, and tissue regeneration. It causes infectious and dis-infectious

immunological diseases, such as oral lichen planus (OLP), oral leukoplakia, oral

submucosal fibrosis, and other precancerous lesions. However, the mechanism

and cognition between type-2 EMT and oral mucosal inflammatory disorders

remain unknown. This review first provides a comprehensive evaluation of type-

2 EMT in chronically inflammatory oral mucosal disorders. The aim is to lay a

foundation for future research and suggest potential treatments.

KEYWORDS

epithelial-mesenchymal transition, craniofacial embryogenesis, oral mucosa
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Introduction

In the 1980s, epithelial-mesenchymal transition (EMT) was identified as a feature of

embryogenesis (1). Under different stimuli, epithelial cells lose polarity and cell-cell

junctions and thus gain the ability to migrate, transforming into spindle-like

mesenchymal cells. The reverse process of EMT is known as a mesenchymal-epithelial

transition (MET). Both are crucial biological processes in embryonic development and

tissue genesis in the dynamic balance of alteration (2). (Figure 1) Whether EMT or MET

describes a process, quasi-mesenchymal cells are a type of transitional cell with
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characteristics of both epithelial and mesenchymal cells. Cancer

metastasis and invasion have been linked to hybrid cells. They

undergo partial EMT and have unique properties such as

collective cell migration (3).

EMT is classified into three types based on the biological

environment in which it occurs: types 1, 2, and 3. Types 1 and 2
Frontiers in Immunology 02
EMTs are associated with embryonic, regenerative, and

pathological processes, respectively, with no abnormal cell

proliferation (4, 5). Type-3 EMT is critical for tumor

development and metastasis because it allows cancerous cells to

generate, develop, and spread (6). (See Figure 2) Most current

research focuses on Type-3 EMT, which is responsible for tumor

genesis.However, types 1 and 2EMTshave received little attention.

Types 1 and 2 EMTs conclude the biological development of

craniofacial tissues and organs from birth and the pathological

processes of abnormal transition after the individual fully develops.

Fibrosis of the oral mucosa occurs in the inflammatory

microenvironment of type-2 EMT. The immune microenvironment

regulates cytokines andmolecules in some signaling pathways, and the

mechanisms are systematically generalized. Scientists have worked on

EMT to treat degenerative diseases, repair injuries, rebuild tissue and

organs, and delay senescence (7).

This review summarized the function and mechanism of

type-1 and type-2 EMTs in oral mucosal nonneoplastic diseases.

We proposed potential therapies for EMT-related diseases to lay

a foundation for future clinical use in stomatology.
Type-2 EMT in oral mucosa

The oral cavity is protected by oral mucosa, primarily

squamous epithelium, an immune system component. This

review highlighted the oral mucosa as the human body’s

immune barrier to defend against pathogens for systematic

protection. Innate and adaptive immunity combine to form

oral mucosal immunity. The former includes the physical

barrier of mucosal epithelium, which excretes defensin,

interleukin (IL)-8, and tumor necrosis factor-a (TNF-a); the
FIGURE 2

Oral mucosal non-neoplastic diseases were mediated by immune microenvironment.
FIGURE 1

Three types of EMT. (A) Type-1 EMT is related to the
embryogenesis of tissues and organs. (B) Type-2 EMT is related
to tissue regeneration and fibrosis. (C) Type-3 EMT is related to
tumor development and metastasis. They share a common
model of cell activities.
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normal flora, which alters the surrounding environment to

inhibit the growth of potential pathogens; and the innate

immune cells such as dendritic, Langerhans, and mast cells.

The latter is known as the Mucosal Immune System (MIS).

It produces secretory IgA in the Waldeyer’s ring and connects

the inducer and effector sites via cell homing. MIS is involved in

the local adaptive immune response and can cause

mucosal cytotoxicity.

Type-2 EMT occurs in wound healing, tissue regeneration,

and organ fibrosis and may result in keloids in the repair of the

human epithelium in the inflammatory microenvironment. In

the oral mucosa, it has been reported that simple wound healing

causes no scar, which differs from the skin (8). However, certain

microbiomes and tobacco and alcohol use can cause the

pathological formation of fibrosis and keloids in the oral

mucosa via EMT, which may delay the ultimate healing of the

oral mucosa. There is ample space for further investigation in

this area, the details of which remain unknown.
EMT in oral mucosal wound repair
and regeneration

When a wound occurs, the skin and mucosa go through

hemostasis, inflammation, proliferation, and remodeling.

Granulation tissue forms in the inflammatory microenvironment

and then progresses to the proliferation stage, where keratinocytes

and fibroblasts migrate to the wound bed. The former is in charge of

barrier reconstruction, while the latter is in charge of secreting

extracellular matrix and remodeling granulation tissue (9).

Oral health has long been closely linked to systemic health

but has received little attention. The oral cavity, located at the

beginning of the human digestive tract, is critical for mastication,

digestion, pronunciation, and aesthetics. Even though the oral

mucosa is often exposed to mechanical abrasion and tension, it

heals much faster with less scarring than the skin (10). The

reason might be that oral mucosal fibroblasts and dermal

fibroblasts have different cell behaviors and responses to

growth factors. When exposed to transforming growth factor-

b (TGF-b1), oral mucosal fibroblasts have a higher average

proliferation rate, a lower shrinkage capacity, and synthesize

more collagen (11).

Type-2 EMT is an after-birth reactivation recognized as a

way to control inflammation and tissue regeneration. In recent

decades, scientists have committed to identifying the factors

initiating EMT. One explanation for the phenomenon is that in

acute and mild trauma, wounded epithelial cells differentiate

into fibroblast-like cells to reproduce tissues and organs, which is

a reparative biological process (6). However, in the case of long-

term continuing inflammation, the keloid is considered

pathological fibrosis. It ceases once the repair is completed

(12). The interaction between TGF-b1 and pro-inflammatory

cytokines can generate a microenvironment for autoregulatory
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loops to strengthen the EMT. Polyriboinosinic: polyribocytidylic

acid (Poly (I: C)) has been shown to accelerate collective HaCaT

cell migration via autocrine/paracrine IL-8 secretions and EMT

(13). It promotes leukocyte accumulation and improves

chemokine expression during wound healing (14). Poly I: C

induced IL-8 production by keratinocytes by stimulating Toll-

like receptor 3 (TLR3), and TLR3 is a component of wound

healing in regulating inflammation, during which NF-kB is

activated (15). Poly I: C can stimulate EMT and improve

wound healing (16). Interestingly, it has also been found that

excessive poly I: C stimulation contributes to delayed wound

healing (17). The complicated mechanisms of the double effect

of Poly I: C remain to be investigated further. Another

explanation for activating EMT during a wound in the mucosa

is that the loss of apical-basal polarity can initiate the transition.

It has been demonstrated that normal apical-basal cell polarity

inhibits EMT via SNAI1 degradation mediated by the PAR

complex (18). This points to the potential role of the cell-cell

junction in regulating EMT.
EMT with oral mucosal
dis-infectious diseases

Pathological processes associated with type 2 EMT include

abnormal metastasis, keloid formation, and fibrosis. Scientists

have reported the formation of keloids related to TGF-b1, EGF,
and fibroblast growth factor (FGF) signaling pathways (19).

Keratinocytes and fibroblasts influence the keloid and fibrosis

of abnormal tissue, causing oral leukoplakia (OLK) or oral

submucous fibrosis (20). Fibrosis has also been linked

to inflammation.

Oral leukoplakia (OLK) is the most common underlying

precancerous lesion and potentially malignant disorder (21).

EMT can cause OLK to progress into oral squamous cell

carcinoma (OSCC), linked to smoking (22) and chewing tobacco

(23). It has been observed that in non-smokers, OLK occurs in

conjunction with an immunosuppressive microenvironment

established by activation of the PD-1/PD-L1 pathway and

recruitment of CD163+ tumor-associated macrophages (TAMs),

which may function in the early and transforming stages of oral

tumorigenesis. The findings demonstrate that EGFR and WNT

pathway proteins are overexpressed in all OLK samples, triggered

by chewing tobacco, and may be a risk factor for the type of

proliferation. Remarkably, the lncRNA oral leukoplakia progressed

associated 1(LOLA1) has been found to promote oral mucosa

epithelial migration, invasion, and EMT via the AKT/GSK‐3b
pathway, thereby accelerating the progression of OLK (24).

Elevated levels of some novel biomarkers, such as Snail and

Axin2, with a high correlation to OLK malignant

transformation, can predict oral tumorigenesis (25).

Oral submucous fibrosis (OSF) develops in a constant pro-

inflammatory environment and has the characteristics of tissue
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fibrosis and degeneration diseases in various tissues and organs

(26). Patients with OSF have difficulty opening their mouths and

have stiff oral mucosa. It is caused by EMT, which causes oral

submucous fibrosis (27). Arecoline is known as the pathogenic

factor of OSF and has been shown to increase Twist expression

(28).Chewing areca causes microtrauma and activates a

protective inflammatory response, releasing many growth

factors such as TGF-b, platelet-derived growth factor, basic

FGF, and cytokines such as IL-6 and TNF-a, which promote

fibrosis (29). Hinokitiol has been shown to downregulate Snail,

lowering a-SMA expression and myofibroblast properties as an

anti-fibrosis agent (30).

The World Health Organization classifies OLP as a

premalignant chronic inflammatory disease mediated by T-

lymphocytes. Smad 3 expression in OLP is higher and

statistically significant than in normal oral mucosa, consistent

with apoptosis, inflammation, and EMT functions (31, 32). It

has also been reported that in OLP, claudin‐1, claudin‐4, and E‐

cadherin are downregulated, disrupting the epithelial barrier and

causing T‐lymphocytes to migrate into epithelial cells (33).

Furthermore, OLP liquefaction degeneration is an EMT result

primarily induced by IFN-g, which can improve the malignant

transition (34). The current studies also illustrated that the

submucosal infiltration of T and B lymphocytes is more

distinct in OLP than in OLK, and the immunological response

is also stronger in OLP (35).
EMT with oral mucosal
infectious diseases

The oral cavity is a huge reservoir for microorganisms to

grow, develop and manipulate. Millions of viruses, bacteria, and

fungi colonize the mucosa epithelium forming a balanced

biofilm. Once the equilibrium is disrupted, opportunistic

pathogens take over and cause continuous inflammatory

reactions. Oral microbiota has been found to manipulate cell

migration by modulating the EMT process in such an

inflammatory microenvironment. Microbiota degrades

epithelial tight junction proteins, improves mesenchymal

properties, and induces partial or complete EMT (36). It is

frequently associated with oral mucosa infectious diseases such

as gingivitis, oral candidiasis, herpes, and others. Pathogens in

the oral cavity cause disease via different regulatory mechanisms

of the EMT.

Porphyromonas gingivalis (P. gingivalis) degrades E-

cadherin to regulate the epithelial function of the barrier (37).

NNMT, CCAT1, and GAS6 genes are involved in cell migration

and invasion. These gene’s messenger RNA (mRNA) levels are

high in P. gingivalis-infected oral epithelial cells (38). It also

modulates the b-catenin pathway and uncouples the b-catenin
destruction complex in gingival epithelial cells, facilitating
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nuclear translocation to activate TCF/LEF promoter elements

in the following step (39).

Streptococcus gordonii suppresses FOXO1 and activates the

TAK1-NLK negative regulatory pathway for ZEB2 induction

resistance (40). Upregulation of partial EMT genes has been

observed in Fusobacterium nucleatum-infected OSCC cells (41).

The signal transducer and activator of the transcription-3

signaling pathway is activated, increasing the expression of

EMT-associated genes such as E-cadherin, Snail, and Twist.

The EMT has been widely debated over the years, particularly

its role in cancer progression. However, the significance of EMT

in embryogenesis, tissue regeneration, and fibrosis is rarely

discussed. This review discusses the types 1 and 2 EMTs in

craniofacial tissues and organs. Related disorders such as palatal

cleft, dental defect, OLK, and OSF are also evaluated. There

remains a long way to go to reduce the negative effects of EMT,

such as the formation of keloid and fibrosis and the facilitation of

neoplasm to provide theoretical support for the following

research and applications of types 1 and 2 EMTs so that

experimental trials of EMT can be used in the clinic and

theoretical knowledge can transform from bench to bedside.

Certain bacteria, lower PH, signaling molecules, loss of apical-

basal polarity, and other approaches have been used to activate

EMT. The EMT process, particularly type-2 EMT, strongly

correlates with inflammation regulated by the immunological

microenvironment. However, there remains a long way to go

before determining the complete blueprint of the crosstalk

among various cytokines and signaling pathways. As

previously stated, we have concluded complicated mechanisms

of types 1 and 2 EMTs. Many details of regulation and alteration

remain unknown. It may be important for researchers to

investigate the differential expression of cytokines and

signaling pathways during both biological and pathological

processes of EMT activities (Table 1).
EMT with immune regulation of the
oral mucosa

Oral mucosal disease, particularly oral mucosal

precancerous lesions, has been linked to changes in the

immune microenvironment. The infiltration of high-grade

CD8+ lymphocytes within the epithelium was linked to

increased in remission rates (43). Intraepithelial CD8+

lymphocytes are likely to serve as a biomarker of remission

and a potential area of biomedical research regarding OLP’s

etiology and premalignant potential. The host immune system

may bypass PD-L1-expressing dysplastic epithelial and recruited

subepithelial cells in oral precancerous lesions. Furthermore, by

inhibiting the PD-1/PD-L1 pathways, oral precancerous lesions

can be prevented from transforming into cancer, and advanced

cancer can be treated (44). According to previous research, OLP
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lesions are caused by IL-4, which is produced by several factors.

It also affects various cells, resulting in OLP lesions (45).

Immune mediators are not only directly linked to

precancerous lesions, but they are also indirectly mediated by

EMT. It has been reported that activated oncogenic Ras post-

transcriptionally enhances premalignant cell mutations,

intensifying malignancy and cell invasion. There is a

significant change in mRNA levels, which correlates with

protein abundance and is consistent with EMT. These proteins

also changed following Ras transformation, suggesting that

premalignant cells were primed to become malignant.

Therefore, Ras-induced EMT-associated invasion in primed

premalignant cells via post-transcriptional mechanisms (46).

SCC-4 cells synthesize and release IL-6 independently, a

process aided by TLR2/TLR6 agonists. In contrast to

precancerous human tongue DOK cells, cancerous tongue

SCC-4 cells exhibit a classic EMT profile (47). Beyond their

immune function, CD4+ T cells are abundant in the dense

stroma surrounding ductal epithelium in CP tissues associated

with EMT. CD4+ T cells can induce EMT in premalignant cells

(48). EMT is also facilitated by abnormal immune mediator

expression in precancerous lesions. T cell dysfunction (49) or

genetic changes (50) also contributes to developing

immunosuppressive microenvironments during the malignant

transformation of the oral mucosa by inducing EMT. The TGF-

b (51) and PI3K-AKT (19) signaling pathways are critical in

this transformation.
Prospect

EMT is a common physiological process during

embryogenesis, wound healing, fibrosis, tumorigenesis, and

cancer metastasis. It has been artificially divided into three types

based on different biological backgrounds, but the boundaries are

not always clear. It is recommended to command the differential
Frontiers in Immunology 05
expressions of EMT in various situations to regulate the

microenvironment to maintain equilibrium. EMT has

applications in tissue regeneration and fibrosis inhibition, and

we propose prospects. Concerning tooth tissue regeneration, two

types of cells are indispensable: epithelial stem cells and

mesenchymal stem cells (MSCs). They interact with and

transform into one another under certain conditions. In dental

tissue engineering, epithelial stem cells are primarily derived from

embryonic tooth epithelium, while MSCs are derived from tooth

germ and bone marrow stem cells.
EMT and traditional approaches to
tissue engineering

The interaction between seed cells, scaffold materials, and

the microenvironment is central to current tissue engineering.

Wang et al. invented the new concept of bio-root and saw it

through to completion (52). Fruitful research on tooth

regeneration has been published in the last few decades (53),

and it is attractive to realize the clinical transformation of bio-

root. However, common cell culture approaches are somewhat

complicated for incorporating both epithelial stem cells and

MSCs into the regenerative system, and increasing the workload.

As a result, an EMT-induced culture system might be

advantageous. Only one type of seed cell is added, and another

type can be transferred from the original one via the regulation

of cytokines and other signaling pathways. This method

simplifies the operation and may provide a solution to the cell

source shortage.

Recent studies on EMT have demonstrated that three-

dimensional models can better simulate the extracellular

matrix microenvironment, improve cell vitality, and reduce

mortality than two-dimensional models, particularly for

cartilage formation (54). The hydrogel is a porous, jelly-like

structure that provides a biocompatible and non-toxic
TABLE 1 The mechanisms of Type-2 EMT in biological and pathological processes.

Type-2 EMT Relative Cytokines Signaling Pathways

Wound repair and tissue
regeneration

TGF-b1 (11), pro-inflammatory cytokines (13),IL-8 (13),SNAI1 (18) NF-kB (15), TGF-b (11)

Dis-infectious
diseases

OLK CD163+ TAMs (22, 23),
lncRNA LOLA1 (24),Snail (25),Axin2 (25)

TGF-b1, EGF (19), FGF (19), PD-1/PD-L1 (22, 23), WNT
(42), AKT/GSK‐3b (24)

OSF Twist (28),TGF-b (29), TNF-a (29),PDGF (29),bFGF (29), IL-6 (29),Snail
(30),a-SMA (30)

OLP IFN-g (34),Smad3 (31, 32),claudin‐1 (33), claudin‐4 (33),E‐cadherin (33)

Infectious
diseases

P.
gingivalis

NNMT (38),CCAT1 and GAS6 (38), TCF/LEF promoter (39),E‐cadherin
(41),Snail (41), Twist (41)

b-catenin (39)

S.
gordonii

FOXO1 (40), TAK1-NLK negative regulatory pathway (40)

F.
nucleatum

STAT3 (41)
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environment for cell growth, differentiation, and proliferation. It

creates an environment for EMT/MET to occur by containing

specific biomarkers and nutrient materials. The biocompatibility

and histocompatibility of the ECM-derived hydrogel are higher

(55). TGF-b1 induces EMT within the three-dimensional system

for the decreased epithelial markers (E-cadherin), increased

mesenchymal markers (Vimentin and a-SMA), and enhanced

migratory and invasion capacity (56). (Figure 3) Furthermore,

the treated dentin matrix, hyaluronic acid, PCL, and ceramics

are widely used; they can be chosen during various tissue

engineering study processes involving EMT (57–61).

However, the use of EMT in traditional tissue engineering is

restricted by a lack of experimental conditions, unknown

mechanisms, and operating techniques. Moreover, the

condition of unclear regulation can contribute to tumor

genesis and make the process uncontrollable. There remains

much work to be done before we can put these considerations

into practice.
EMT in developmental
biological regeneration

Unlike traditional tissue engineering, biological regeneration

eliminates exogenous scaffolds and stimulates the organism’s

regrowth. It is safer, easier, and has fewer side effects (62). On the

other hand, the high demands for immunological

microenvironments pose challenges. Bacterial pathogens, acid

microenvironment, growth factors, proteins of primary signaling

pathways, loss of apical-basal polarity, hypoxia, and other factors
Frontiers in Immunology 06
have all been implicated in the activation of EMT (18, 63–65).

For instance, during long-term infection with the opportunistic

pathogen P. gingivalis, human primary epithelial cells develop an

EMT phenotype (66). Anaerobic periodontal pathogens have

been shown to induce EMT in primary oral keratinocytes,

destroying the periodontal barrier and contributing to

periodontitis (63). EMT-associated transcription factors such

as Slug, Snail, and Zeb1 showed significant increases in response

to pathogen exposure. The treatment of EMT-related oral

diseases may benefit from focusing on critical factors. The key

to successful regeneration is determining how to precisely

control these variables.

Coffee and EMT research has also received widespread

attention. Coffee components can reverse EMT transitions or

even rescue the functions of EMT inducers. For instance,

Trigonelline extracted from natural coffee beans reduces renal

fibrosis by inhibiting EMT (67). Chlorogenic acid derived from

coffee has antitumor and anti-metastatic properties by

interfering with the NF-kB/EMT signaling pathway (68). They

exert pharmacological functions as EMT inhibitors, but more

studies for clinical transformation are needed. Furthermore,

because low PH promotes EMT, an alkaline diet and anti-acid

drugs may effectively prevent EMT in the craniofacial tissues and

organs (64).

Different signaling pathways and molecules regulate EMT in

various biological or pathological processes. As a result,

additional research into the individual mechanisms of each

process is required to achieve precise control. Otherwise, it is

considering how to find a balance between promoting practical

functions and maintaining cell vitality. We are now at tipping in
A B

FIGURE 3

Traditional 2D cell culture system and advanced 3D cell culture system. (A) The schematic diagram of the traditional 2D culturing method,
which contains stem cells and necessary cytokines in a culture medium. (B) The schematic diagram of a novel 3D culturing method in which
the culture medium is replaced by the biomaterial hydrogel.
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combining EMT and tissue engineering. They mutually aid in

the advancement of regenerative medicine. The multi-discipline

study is now the mainstream of research and has a promising

future (69).
Methods of preventing dysfibrosis

It is challenging to reduce the negative effects of dysfibrosis

and keloids. As previously elucidated, oral mucosa has less

keloid and fibrosis and heals wounds faster than the skin. The

mechanisms of improved mucosal quality are primarily

concluded as follows (9, 10): 1. Fewer pro-inflammatory

factors and less inflammatory response; 2. Reduced

recruitment of neutrophils, macrophages, and T cells after

injury; 3. Certain microorganisms activate the immune system

for wound healing cascade; 4. the suitable environment of saliva,

which provides a biomimetic idea of hydrogel, applies to skin

healing to accelerate the process (70). By inhibiting EMT, we

may be able to design a type of epithelium with high regenerative

capacity and self-repair without many keloids in the future.

The anti-EMT mainstream of reducing fibrosis during tissue

regeneration or OSF (71). One solution is to improve EMT

inhibitors such as phosphatase and tensin homolog, which

inhibits the PI3K/AKT pathway to reduce hypertrophic scar

fibroblast proliferation and eliminate keloid and fibrotic

scars (72).

Another option is to use MSCs, which have anti-fibrotic,

anti-oxidative, and angiogenesis properties, indicating that the

cell is an ideal anti-fibrotic target.26 The functioning mechanism

is attributed to inhibiting the TGF-b1 pathway via N-cadherin

and vimentin downregulation (73, 74). MSCs are produced from

epithelial cells through the continuous process of EMT. They

have significantly higher levels of expression of several

biomarkers, including CD105, CD73, and CD90 (75). Specific

induction causes MSCs to differentiate into osteoblasts,

adipocytes, and chondrocytes, differentiating into dental pulp

stem cells (DPSCs), dental follicle stem cells (DFSCs),

periodontal ligament stem cells (PDLSCs), and others. As a

result, EMT serves as a unique source of seed cells for

tissue regeneration.

MSCs are also critical in halting the process of OSF for

immunomodulatory, anti-fibrotic, anti-oxidative, and

angiogenic functions. Areca chewing can increase pro-

inflammatory cytokines such as TNF-a and IL-6 in response

to the microtrauma it causes, thereby promoting fibrosis

progression (29). MSCs also suppress TNF-a expression via

IL-10 secretion and downregulate TNF- a and IL-6 by inhibiting

IFN-g expression (76). MSCs also suppress the TGF-b pathway

by secreting hepatocyte growth factor and TNF-stimulated gene

6 protein, which restores the TGF-b1/TGF-b3 balance for anti-

fibrotic microenvironment production (77).
Frontiers in Immunology 07
In this review, we present our expectations that in the future,

we can apply EMT to regenerative medicine with or without

scaffolding materials for profound progress in the following

research. We owe the huge leap in the basic study of EMT to

the progress made in the past few years. EMT significantly

impact on scientific research and clinical transformation once

the functional mechanisms are identified. We anticipate

developing novel medicines for the treatment of EMT-related

diseases in stomatology such as developmental malformation,

wound repair, keloid and fibrosis, and other oral mucosa

pathological alterations in the future.
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