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cell: A crucial player in
autoimmune diseases
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Myeloid-derived suppressor cells (MDSCs) are identified as a highly

heterogeneous group of immature cells derived from bone marrow and play

critical immunosuppressive functions in autoimmune diseases. Accumulating

evidence indicates that the pathophysiology of autoimmune diseases was

closely related to genetic mutations and epigenetic modifications, with the

latter more common. Epigenetic modifications, which involve DNA

methylation, covalent histone modification, and non-coding RNA-mediated

regulation, refer to inheritable and potentially reversible changes in DNA and

chromatin that regulate gene expression without altering the DNA sequence.

Recently, numerous reports have shown that epigenetic modifications in

MDSCs play important roles in the differentiation and development of MDSCs

and their suppressive functions. The molecular mechanisms of differentiation

and development of MDSCs and their regulatory roles in the initiation and

progression of autoimmune diseases have been extensively studied, but the

exact function of MDSCs remains controversial. Therefore, the biological and

epigenetic regulation of MDSCs in autoimmune diseases still needs to be

further characterized. This review provides a detailed summary of the current

research on the regulatory roles of DNA methylation, histone modifications,

and non-coding RNAs in the development and immunosuppressive activity of

MDSCs, and further summarizes the distinct role of MDSCs in the pathogenesis

of autoimmune diseases, in order to provide help for the diagnosis and

treatment of diseases from the perspective of epigenetic regulation of MDSCs.
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Introduction

Numerous diseases concerning chronic inflammation,

autoimmunity, and different types of cancers can lead to

abnormal and persistent accumulation of myeloid cells that

deviate from the standard track of differentiation (1).

Compared with physiologically differentiated myeloid cells,

these mesenchymal stem cells have distinct characteristics,

such as immature phenotype and morphology, relatively weak

phagocytic function, as well as immunosuppressive function.

Based on their function and myeloid origin, this heterogeneous

population of myeloid cells is now collectively referred to as

myeloid-derived suppressor cells (MDSCs) (2). Initially, studies

on MDSCs mainly focused on tumor-bearing mice or cancer

patients to study their regulatory mechanisms in tumor

pathogenesis. Meanwhile, therapeutic strategies targeting

MDSCs have proven to be a well-tolerated and hugely

promising therapeutic approach in cancer therapy (1–3).

Autoimmune diseases are characterized by the loss of

immunological tolerance to self-antigens, leading to the

overproduction of autoreactive immune cells and/or

autoantibodies and self-tissue damage ultimately (4, 5).

However, the pathological mechanism of autoimmune diseases

has not been adequately studied (6). Recently, MDSCs have been

frequently studied for its immunomodulatory role and identified

their therapeutic potential in multiple autoimmune diseases,

such as multiple sclerosis (MS), rheumatoid arthritis (RA),

systemic lupus erythematosus (SLE) and inflammatory bowel

disease (IBD), but with limited clinical application caused by

poor understanding of the mechanism (7–10). Meanwhile, there

are conflicting findings on the regulatory mechanisms of MDSCs

in autoimmune diseases. Some studies believe that MDSCs can

alleviate disease because of its anti-inflammatory function. In

contrast, others believe that MDSCs have pro-inflammatory and

disease-promoting effects in the inflammatory state in vivo (11).

Therefore, it is quite necessary to identify the regulatory role of

MDSCs in the pathogenesis of autoimmune disorders.

Epigenetic modifications refer to reversible and heritable

alterations occurring in genomic DNA but do not change the

DNA sequence, mainly including DNA methylation, histone

modification, and non-coding RNA regulation (7). Epigenetic

mechanisms play a significant regulatory role in mediating gene

expression that affects the differentiation and development of

immune cells (4). Epigenetic modifications combined with

transcriptional factors also participate in the development of

MDSCs and affect their immunosuppressive functions (12, 13).

Meanwhile, gene dysregulation caused by epigenetic changes can

lead to a variety of pathological conditions such as autoimmune/

inflammatory disorders and/or cancers (14–16). How epigenetic

modifications affect the occurrence and progression of

autoimmune diseases has attracted researchers’ attention to

widely explore (17–19).
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In the review, we not only summarize the characteristic and

immunomodulatory function of MDSCs, but also discuss the

effects of epigenetic modifications on the development and

function of MDSCs and their roles in the progression of

autoimmune diseases, aiming to further provide novel insights

into the treatment for autoimmune disorders.
Characteristic of MDSCs

MDSCs originate from hematopoietic stem cells (HSCs) as a

result of altered myelopoiesis (20–22). At steady-state, bone

marrow-derived hematopoietic stem cells can differentiate into

immature myeloid cells (IMCs) and eventually into mature

monocytes and granulocytes. Various pathological conditions,

such as infection or tissue damage, can initiate emergency

hematopoiesis to protect the host from pathogenic factors.

Under these conditions, myeloid cells are rapidly mobilized

from the bone marrow (BM) and activated in response to

pathogenic signals such as toll-like receptor (TLR) ligands,

damage-associated molecular patterns (DAMPs), and

pathogen-associated molecular patterns (PAMPs), causing the

upregulation of various inflammatory cytokines. This transient

myelopoiesis is terminated after the stimulus is removed, and

myeloid cell homeostasis is then reestablished. However, some

pathological conditions, such as chronic inflammation,

autoimmune diseases and tumor, may cause abnormal and

persistent myelopoiesis to deter widespread tissue damage in

the host due to unresolved inflammation. Under these

conditions, IMCs deviate from normal differentiation and

become patho log i ca l l y ac t iva ted . Compared wi th

physiologically differentiated myeloid cells, these mesenchymal

stem cells have distinct characteristics, such as immature

phenotype and morphology, relatively weak phagocytic

function, as well as immunosuppressive function. Based on

their function and myeloid origin, this heterogeneous

population of cells is now collectively referred to as MDSCs

(23–25). Depending on the origin and anatomical location,

MDSCs are divided into different subsets in both humans and

mice (Table 1). According to the morphological and phenotypic

similarity to monocytes or neutrophils, MDSCs were originally

al located into monocytic MDSCs (M-MDSCs) and

polymorphonuclear or granulocytic MDSCs (PMN-MDSCs or

G-MDSCs) respectively (26). M-MDSCs in mice are

characterized by the expression of CD11b+Gr-1+Ly6ChiLy6G-

and PMN-MDSCs are featured with the expression of

CD11b+Gr-1+Ly6C-Ly6Ghion their cell surfaces (27).

Furthermore, there is a novelty identified subset of mice

MDSCs named early-staged MDSCs (e-MDSCs), and the

phenotype is CD11b+Gr1+CCR2+Sca1+CD31+ or CD11b+Gr-1-

MHC-II-F4/80- (28, 29). In addition, certain molecules, such as

CD49, CD115 CD16l, CD124 and CD31, were also used as
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surface markers to identify the functional properties of different

MDSCs subtypes (30–32). The phenotype of MDSCs is more

diverse in different diseases in human than that in mice. In

human, there are three mainly subpopulations of MDSCs

according to the expression of various surface markers:

CD33+HLA-DR−/low Lin- is defined as the phenotype of early-

staged or immature MDSCs (e-MDSCs/i-MDSCs), containing

myeloid progenitors that are not yet mature (28); The phenotype

of CD33+HLA-DR−/lowCD14+CD15− represents inhibitory

monocytes, namely monocytic MDSCs (M-MDSCs); The

phenotype of CD33+HLA-DR−/lowCD14−CD15+/CD66b+

represents PMN-MDSCs, which is phenotypically distinct

f rom mature neutrophi l s and possesses power fu l

immunosuppressive activity (20, 26, 27). In addition, a novel

subpopulation of MDSCs has been identified and defined as

fibrocytoid MDSCs (F-MDSCs) with the phenotype of

CD11blowCD11clowCD33+ IL-4Ra+ in cord blood or peripheral

blood of patients with metastatic pediatric sarcoma (32).

Although F-MDSCs show powerful immunosuppressive

function by producing indoleamine 2, 3 dioxygenase (IDO) to

induce the differentiation of regulatory T cells (Treg), but this

subpopulation has not been identified in mouse tumor models or

in patients with other tumors, and further studies are needed

(32, 33). Furthermore, other markers, such as S100A9, CD84,

and CD49, that are not specifically expressed on MDSCs have

also been used as surface markers to identify MDSCs (34–36).

Recently, lectin-type oxidized LDL receptor 1 (LOX-1) and

lysosomal-associated membrane protein 2 (LAMP-2) have

been specifically detected and served as a novel marker

molecule in PMN-MDSCs to identify these cells in the

peripheral blood of cancer patients, while further confirmation

is needed for a unifying concept in mouse (37).
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Immunomodulatory functions
of MDSCs

Multiple different signals are required for the expansion and

activation of MDSCs (6, 38). For instance, granulocyte/

macrophage colony-stimulating factor (GM-CSF), IL-6, IL-1ß

and prostaglandin E2 (PGE2) are involved in the expansion of

MDSCs. IL-13, IL-4, IFN-g and vascular endothelial growth

factor (VEGF) are associated with the activation of MDSCs (39,

40). Through trigger different signal transducers in MDSCs, such

as signal transducers and activators of transcription (STATs),

nuclear factor kappa-B (NF-kB), and CCAAT enhancer-binding

protein beta (C/EBPb) (17), these factors either induce the

expansion of MDSCs and inhibit the differentiation of mature

myeloid cells, or directly activate MDSCs and maintain the

survival of MDSCs, thereby participating in the regulation of

MDSC differentiation, proliferation and apoptosis during

hematopoiesis. Many studies have disclosed that MDSCs join

distinct immune cells like T cells, B cells, and natural killer (NK)

cells to participate in various immune responses and induce

immune tolerance (6, 20). Therefore, MDSCs exploit the

following four main mechanisms to exert immunomodulatory

effectors on immune effector cells: i. MDSCs deplete amino acids

needed for T lymphocyte metabolism, such as L-arginine, thus

inducing T cells proliferation stagnation. Promoted by highly

active arginase-1 secreted by MDSCs, L-arginine depletion

induces the loss of the CD3z chain, thus causing T cells

proliferation stagnation and altering T cells immune response.

MDSCs promote regulatory T (Treg) cells differentiation and

indirectly inhibit the immune response under the synergistic

effect of IDO, a rate-limiting enzyme in tryptophan metabolism.

Kynurenine, a product of L-tryptophan catabolized by IDO, can
TABLE 1 Classification and phenotype of MDSCs.

Characteristic M-MDSCs PMN-MDSCs e-MDSCs F-MDSCs

Origin IMC and
monocytic precursors

IMC
granulocytic precursors
monocytic-like
precursors

IMC Fibroblasts

Characteristic
phenotype in mice

CD11b+Gr-1+

Ly6ChiLy6G-
CD11b + Gr-1 +

Ly6C- Ly6Ghi
CD11b+Gr1+CCR2+

Sca1+CD31+ / CD11b+Gr-1-

MHC-II-F4/80-

–

Characteristic
phenotype in
humans

CD33+HLA-DR−/low

CD14+CD15−
CD33+HLA-DR−/low

CD14−CD15+/CD66b+
CD33+HLA-DR−/lowLin- CD11blowCD11clow

CD33+IL-4Ra+

Novel markers
in mice

CD49, CD115 CD16l, CD124, CD31 – –

Novel markers
in humans

S100A9, CD84, LOX-1, PD-1 – –

Main regulators
of suppressive
functions

iNOS↑↑↑, ROS↑, Arg-1↑;
An antigen non-specific
manner

ROS↑↑↑, iNOS↑, Arg-1↑;
An antigen-specific
manner

Exerte more potent immunosuppressive
capacity

Indoleamine 2,3-dioxygenase
(IDO) pathway
MDSCs, Myeloid-derived suppressor cells; M-MDSCs, monocytic MDSCs; PMN-MDSCs, polymorphonuclear MDSCs; e-MDSCs, early-stage MDSCs; F-MDSCs, fibrocystic MDSCs; IMC,
immature myeloid cells; ROS, reactive oxygen species; iNOS, inducible nitric oxide synthase; Arg-1,arginase 1; ↑↑↑, greatly increased in quantity and activity; ↑, increased in quantity and activity.
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prevent NK cells from activation and proliferation, and further

restrain their functions. ii. MDSCs generate ROS and RNS.

NADPH oxidase in MDSC is the main source of ROS, which

transfer electrons from NADPH to oxygen to produce

superoxide radicals. Accumulated ROS reduces cytokine

secretion from T cells. through disrupting CD3z chains. The

release of RNS also restrains the recruitment and proliferation of

T cells through nitration/nitrosylation of TCR and chemokines.

MDSCs directly repress the proliferation and activation of B cells

through multiple mechanisms such as prostaglandin E2 (PGE2),

inducible nitric oxide synthase (iNOS), and arginase. For NK

cells, MDSCs can suppress their immune effect functions by

releasing NO to inhibit the FC-receptor-mediated antibody-

dependent cell-medicated cytotoxicity (ADCC). iii. MDSCs

exert immunomodulatory effects through direct contact.

MDSCs induce T cells apoptosis by expressing Galectin 9, PD-

L1 and FAS-L that binds to corresponding receptors on the

surface of T cells. Moreover, MDSCs hamper naïve T cells
Frontiers in Immunology 04
homing through CD62L-TACE interaction and promote NK

cells anergy through TGF-b-NKp30L interaction.MDSCs induce

Treg cells amplification and inhibit B cells proliferation through

CD40-CD40L interactions. iv: MDSCs affect the release of soluble

mediators. High levels of adenosine not only affect NK cells

maturation but also NK and T-cells effector functions. In

addition, by releasing IFN-g, TGF-b and IL-10, MDSCs not

only restrain the proliferation and cytotoxicity of T cells but

also induce Treg cells amplification, and reduce IFN-g, TNF-a,
and GRZ released by NK cells (21, 40–45) (Figure 1). In addition,

as different subsets of MDSCs have unique phenotypic

characteristics, the mechanism to regulate immune response is

also distinct. Many previous studies shown that e-MDSCs have a

unique immature phenotype and potent immunosuppressive

capacity leading to a crucial role in promoting tumor

progression. Nonetheless, the underlying mechanisms of how

e-MDSCs regulate cancer and autoimmunity remain unclear

(Table 1) (29).M-MDSCs mainly mediate inflammatory
FIGURE 1

Immune regulatory functions of MDSCs on adaptive immune. Immune effector cells are suppressed by MDSCs undergoing the four main
strategies: (A) MDSCs depletes amino acids needed for T lymphocyte metabolism. (B) MDSCs generate ROS and RNS. (C) MDSCs suppress T
cells, NK cells, and B cells, as well as induce Treg cells amplification by direct contact. (D) MDSCs involve in releasing numerous soluble factors
to induce immunosuppression.
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response by secreting relatively high iNOS and relatively low

ROS, while PMN-MDSCs primarily regulate tumors by secreting

relatively high ROS and relatively low levels of iNOS (20). M-

MDSCs mainly inhibit immune responses in an antigen-non-

specific manner, while PMN-MDSCs mainly repress immune

responses in an antigen-specific manner, and possess more

powerful immunosuppressive functions (46). In addition, F-

MDSCs are hypothesized to induce expansion of Treg cells and

M2 macrophage populations through IDO pathway (47).
Frontiers in Immunology 05
Epigenetic modification on MDSCs

Epigenetic modification mainly includes DNA methylation,

histone modification, and non-coding RNA regulation. As is

known, MDSCs are a heterogeneous population of semi-

differentiated rather than terminally differentiated immature

myeloid cells derived from the bone marrow. Therefore, it

gives us a slight clue about how epigenetic reprogramming on

MDSCs causes the alteration of its features. Recently, emerging
TABLE 2 The epigenetic regulation in the development and function of MDSCs.

Epigenetic modulation Target gene/pathway Effect on MDSCs References

DNA modifications

THC STAT3/S100A8 Promote differentiation and immunosuppressive activity (53)

DAC IRF8/TNFa Sustain survival and accumulation (48)

Histone acetylation

TSA NOS−/HO- Promote differentiation/expansion (49)

HDAC2 Retinoblastoma Promoted the phenotype conversion (50)

HDAC11 C/EBPb Prevented MDSCs differentiation and function (51, 52)

miRNAs regulation

miR-9 Runx1/SOCS3 Promote differentiation and immunosuppressive activity (53) (54)

miR-10a AMPK Promote expansion and activation (55)

miR-21/miR-181 STAT3, C/EBP, MLL1 Promote differentiation and immunosuppressive activity (56, 57)

miR-34a N-myc Inhibit apoptosis (58, 59)

miRNA-30a SOCS3 Increases differentiation and
immunosuppressive activity

(60, 61)

miR-125 JAK/STAT3 Promote accumulation and immunosuppressive activity (62)

miR-494 PTEN//PI3K/Akt Promote accumulation and immunosuppressive activity (63)

miR-210 Arginase/NO Enhance immunosuppressive activity (64)

miR-155 SHIP-1/HIF-1a Promote expansion and immunosuppressive activity (65–67)

miR-200C PTEN/FOG2 Increase immunosuppressive activity (68)

miR-17 family AML1 Prevente differentiation and immunosuppressive activity (69)

miR-146a IRAK1/TRAF6/NF-kB Inhibit expansion and function (70, 71)

miR-223 MEF2C Suppress accumulation and function (72–74)

miR-142-3p C/EBPb/STAT3 Prevente MDSCs differentiation
and immunosuppressive activity

(75)

miR-6991-3p Galectin 9, STAT3 Prevente expansion and promote apoptosis (76)

miR-15 family PD-L1/PD-1 Inhibit suppressive functions (77, 78)

miR-124 STAT3 Reduce the frequencies of MDSCs (79)

LncRNAs regulation

Olfr29-ps1 miR-214-3p/MyD88 Promote differentiation and expansion (80)

RUNXOR RUNX1, Arg1, iNOS, and STAT3 Promote development and suppressive functions (81)

MALAT1 Arg-1 Inhibit differentiation (82)

HOTAIRM1 HOXA1-miR124 aix Promote development and suppressive functions (83, 84)

RNCR3 miR-185 CHOP Increase immunosuppressive activity (85, 86)

Pvt1 Arg-1, ROS Increase immunosuppressive activity (87)

AK036396 Ficolin B Inhibit differentiation (88)
fr
THC, 19-tetrahydrocannabinol; DAC, Decitabine; TSA,Trichostatin A; HDAC2, histone deacetylase 2; HDAC11,histone deacetylase 11; STAT3, signal transducer and activator of
transcription; IRF8, interferon regulatory factor 8; TNFa, tumor necrosis factor; NOS, nitric oxide synthase; HO, heme oxygenase; C/EBPb, CCAAT/enhancer-binding protein beta; Runx1,
RUNX family transcription factor 1; SOCS3, suppressor of cytokine signaling 3; AMPK, adenosine 5’-monophosphate (AMP)-activated protein kinase; C/EBP, CCAAT/enhancer-binding
protein; JAK, janus kinase; PTEN, phosphatase and tensin homologue deleted on chromosome 10; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; SHIP-1, src homology 2-
containing jnositol phosphatase-1; HIF-1a, hypoxia-inducible factor-1a; AML1, acute myelocytic leukemia; TRAF, tumor necrosis factor receptor-associated factor; NF-kB, nuclear factor
kappa-B; MEF2C, myocyte Enhancer Factor 2C; PD-1, programmed death 1.
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researches have discovered that epigenetic modification may

involve in the regulation of MDSCs differentiation, expansion,

and immunosuppressive activity. Hence, in this section, we will

conclude from recent researches of the role of DNAmethylation,

histone acetylation, mircoRNA and long non-coding RNA

( l n cRNA ) r e g u l a t i o n i n t h e d e v e l o pmen t a n d

immunosuppressive functions of MDSCs (Table 2), and

therefore provide a view for further study.
DNA modifications

DNA methylation is a form of DNA chemical modification

in which the cytosine 5’ carbon level covalent bond of the

genomic CpG dinucleotide binds to a methyl group under the

action of DNA methylation transferase (DNMTs) including

DNMT1, DNMT3a, DNMT3b, and DNMT3L (89–91). On the

contrary, ten-eleven translocation methylcytosine dioxygenase

(TET) enzymes including TET1, TET2, and TET3 mediate DNA

demethylation and activate transcriptions. The regulatory

balance of TETs and DNMTs maintains the promoter’s non-

methylation/methylation state (92). Recently, more researches

paid attention to the function of DNA methylation at specific

sites of individual genes during the activation and differentiation

of MDSCs. A research demonstrated a downregulation of

DNMT3a but an upregulation of TET enzymes in CD33+

HLA-DR– myeloid cells, compared with antigen-presenting

cell (APC). Meanwhile, researchers found that CpG islands in

the promoter regions of TGF-b1, TIM-3, and ARG1 were highly

unmethylated in CD33+HLA-DR– cells compared with APCs,

indicating that the expression of above three genes was

principally regulated through DNA methylation in

CD33+HLA-DR– myeloid cells (93). In addition, How DNA

methylation regulate the development and immunosuppression

activity of MDSCs has been sufficiently studied by administering

19-tetrahydrocannabinol (THC), an effective inducer of MDSCs

(94). THC-induced MDSCs expressed high levels of S100A8,

which is essential for the enhanced suppressive function.

Overall, this study revealed that THC mediates epigenetic

changes to promote MDSC differentiation and function and

that S100A8 plays a critical role in this process (94, 95).

Additionally, in tumor-bearing mice, Tnf and Irf8 promoter

DNAs in MDSCs showed hypermethylation, resulting in

significantly increased accumulation of MDSCs and

significantly decreased activation of antigen-specific cytotoxic

T lymphocytes (CTL). Instead, Decitabine (DAC), a DNA

methyltransferase inhibitor, dramatically decreased the Tnf

and Irf8 promoter DNA methylation and increased the level of

interferon regulatory factor 8 (IRF8) and tumor necrosis factor

(TNFa) in MDSCs in vitro. Decreased DAC-induced

aggregation of MDSCs correlates with increased expression of
Frontiers in Immunology 06
the myeloid lineage-specific transcription factor IRF8 in MDSCs

(48). Additionally, IL-6 is a potent activator of STAT3, which

not only induced STAT3 activation but also significantly

increased the expression of DNMT1 and DNMT3b. IL-6

treatment also contributed to reduced TNFa production and

increased J774M cell proliferation. Hence, autocrine IL-6

triggers the STAT3-DNMT intrinsic signaling pathway, and

therefore Tnf promoter is hypermethylated, promoting

MDSCs survival and accumulation (Table 2) (48).
Histone modifications

Histone modification are a class of post-translational

modifications that regulate gene expression, including

methylation, acetylation, phosphorylation, adenylylation,

ubiquitination (96). The process of acetylation in lysine

residues is well studied and regulated by the dynamic balance

between histone acetyltransferases (HATs) and histone

deacetylases (HDACs), which have opposing functions.

Generally, acetylation promotes gene expression while

deacetylation causes suppression of gene expression. HDAC

inhibition enhances histone acetylation, leading DNA to bind

tighter and gene expression to reduce (96, 97). Several studies

have illustrated the regulatory effects of different types of HDAC

inhibitors on MDSCs expansion and function through distinct

signal pathways (98). Trichostatin A (TSA), a potent histone

deacetylatase (HDAC) inhibitor, induces GM-CSF-mediated

bone marrow cells to differentiate into M-MDSC in vitro, and

this MDSCs have powerful activity in repressing the

proliferation of CD4+ T cells through nitric oxide synthase

(NOS)− and heme oxygenase (HO)- dependent manner (49).

HDAC2 facilitates the conversion from M-MDSCs to PMN-

MDSCs as it directly binds to retinoblastoma gene (rb1)

promoter and causes silencing of rb1 expression in cancer

(50). A recently identified member of the HDAC family

named HDAC11 mediates expression of C/EBPb and some

other immunosuppressive molecules in MDSCs (51, 52). Jie

Chen et al. reported that if without HDAC11, the arginase level

and enzymatic activity would be significantly higher in the

tumor-infiltrated PMN-MDSCs, whereas iNOS expression and

NO production were observed to be significantly higher in the

tumor-infiltrated M-MDSCs compared with wild-type (WT)

controls. Subsequently, the research further demonstrated that

in MDSCs lacking HDAC11, the elevated expression of

immunosuppressive molecules was associated with the up-

regulation of C/EBPb. Remarkably, further studies found that

the expression of C/EBPb was highest in CD11b+ Gr-1+ MDSCs

isolated from tumor-bearing mice. Hence, HDAC11 impacts

immunosuppressive molecules’ expression in MDSCs through

manipulating C/EBPb expression (Table 2) (52).
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Non-coding RNAs regulation

miRNA regulation
miRNAs are short interfering non-coding RNAs that

regulate post-transcriptional and post-translational gene

expression by binding to the 3′ untranslated regions (3′UTR)
of target mRNAs (99–101). Numerous miRNAs were considered

important in the epiregulation of many immune cells such as

DCs, B and T lymphocytes and macrophages (102).

Furthermore, emerging literature suggests that miRNAs are

vitally related to the differentiation, development, and function

of MDSCs (Table 2) (77).

A great many miRNAs display a positive regulatory

influence on the development and immunosuppression role of

MDSCs. miR-9 inhibits the development and promotes the

immunosuppressive activity of MDSCs via specific binding to

the Runt-related transcription factor 1 (Runx1) (53). miR-21

and miR-181b promotes MDSCs generation by targeting STAT3

and C/EBP in sepsis-induced inflammatory response, while

when inhibiting these miRNAs, the number of MDSCs is

reduced and the late-sepsis survival was significantly enhanced

(56). In addition, miR-21 as well as miR-181b positively regulate

PMN-MDSCs expansion, activation, and differentiation by

inhibiting the expression of mixed lineage leukemia-1 (MLL1)

complex (57). miR-9 and miR-181a facilitates the development

and immunosuppressive function of e-MDSCs through the

interference with suppressor of cytokine signaling 3 (SOCS3)

and protein inhibitor of activated STAT3 (PIAS3), separately,
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thus leading to immune escape and tumor growth in breast

cancer (54). miR-10a activates AMPK signaling to promote the

expansion and activation of MDSCs in breast cancer cells with

chemotherapy-induced immune resistance (55). miR-34a

reduces the apoptosis of MDSCs by inhibiting N-myc

expression (58, 59). miR-30a increases the differentiation and

immunosuppressive activity of MDSCs by targeting SOCS3 and

stimulating JAK2/STAT3 signaling, thereby reducing CD8+ T

cells infiltration and accelerating tumor progression (60, 61).

miR-125 family, which includes miR-125a-5p, miR-125b-5p,

and miR-351-5p , induce s the accumula t i on and

immunosuppressive activity of MDSCs via triggering JAK/

STAT3 pathway (62). miR-494 plays an essential role in

governing the accumulation and functions of MDSCs by

targeting phosphatase and tensin homolog (PTEN) and PI3K/

Akt pathway (63). miR-210, whose expression was dramatically

induced by hypoxia-inducible factor 1a (HIF-1a), enhances the
immunosuppressive activity of MDSCs by increasing arginase

activity and NO production (64). miR-155 promotes the

accumulat ion of funct ional MDSCs in the tumor

microenvironment (TME) via suppressing suppressor of

cytokine signaling 1 (SOCS1) signaling and reducing the

generation of Treg cells (54, 55, 57–67). miR-200c enhances

the suppressive activity mediated by MDSCs. This is achieved

through regulating PTEN and FOG2 signaling (68).

miRNAs also have a negative contribution in regulating the

differentiation and activity of MDSCs. Recent findings have

declared that miR-17 family, including miR-17-5p, miR-20a,
FIGURE 2

Multiple agents regulated the differentiation, expansion, and activation of MDSCs. The differentiation and expansion of MDSCs were regulated by
multiple mediators, such as IL-10, IL-23, TGF-b as well as miRNA, lncRNA.
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and miR-106a, are capable of inhibiting tumor MDSCs. miR-17

family overexpressed in human myeloid progenitor cells greatly

inhibits AML1 by binding to its AML1 promoter, resulting in

down-regulation of M-CSFR, thereby limiting the differentiation

ofmyeloid progenitors intoMDSCs (69). Besides, Overexpression

of miR-146a inhibits the expansion of MDSCs, thereby delaying

tumorigenesis (70, 71). miR-223 significantly inhibits the

differentiation and accumulation of MDSCs as well as their

suppressive function by targeting myocyte enhancer factor 2C

(MEF2C) and inhibiting STAT3 signaling respectively in tumor-

bearing mice (72–74). miR-142-3p not only restraints the

generation and reduces the immunosuppressive activity of M-

MDSCs, but also restores CD8+ T cells proliferation through

modulating STAT3 and C/EBPb signal pathways during tumor-

induced myelopoiesis (75). Mimic transfection of miR-6991-3p

can remarkably inhibit expansion and promote apoptosis of

MDSCs by suppressing the activation of LGALS9-mediated JAK

and STAT3 signaling pathways (76). miR-15 family blocks the

signaling of PD-L1/PD-1, and hence impairs immunosuppression

function ofMDSCs and/or Treg cells (77, 78). In hepatitis C hosts,

miR-124 downregulates the expression of STAT3, IL-10, and

TGF-b to reduce the frequency and suppressive function of

MDSCs, thereby promoting Treg cells maturity (79). Taken

together, a variety of miRNAs are essential to regulating

differentiation, maturation and function of MDSCs (Figure 2).
LncRNA regulation
Long non-coding RNA (lncRNA) is a class of RNA with a

transcript length of more than 200 nt, which can regulate the

expression level of genes epigenetically, transcriptionally, and

post-transcriptionally etc. (103, 104). In addition to miRNAs,

lncRNAs are also indicated to involve in the differentiation and

development of MDSCs (105). Olfr29-ps1, a lncRNA pseudogene

highly expressed inMDSCs, positively regulates the differentiation

and function of MDSCs through a regulatory network, which is

m6A-modified Olfr29-ps1/miR-214-3p/MyD88 dependent (80).

Silencing or ectopic expression of RUNXOR or RUNX1 in CD33+

mye lo id ce l l s a ff e c t s MDSCs d i ff e rent i a t ion and

immunosuppressive functions. The overexpression of RUNXOR

significantly increases the expression of RUNX1, Arg1, iNOS, and

STAT3 at mRNA and protein levels, thus promoting the

differentiation of immature myeloid cells into MDSCs during

HCV infection (81). Another nuclear intergenic of lncRNA

named Metastasis associated lung adenocarcinoma transcript 1

(MALAT1) is also involved in the differentiation of MDSCs cells.

Knockdown of MALAT1 significantly increases the quantity of

MDSCs by regulating their differentiation in patients with lung

cancer (82). HOXA transcript antisense RNA myeloid-specific 1

(HOTAIRM1), preferentially expressed in the myeloid lineage,

promotes the differentiation and suppresses function of MDSCs

by inducing HOXA1 expression in lung cancer MDSCs to prevent

tumor progression (83, 84). RNCR3 stimulates the activity and
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differentiation of MDSCs by miR-185-5p. In the inflammatory

and tumor microenvironment, RNCR3 in MDSCs are expressed

significantly higher (85, 86). The increased expression of Pvt1

which is induced by HIF-1a under hypoxia causes the down-

regulated expression of Arg-1 and ROS in PMN-MDSCs, and

assists T cells to suppress tumor growth in tumor-bearing mice

(87). The reduction of lncRNA AK036396 stimulates the

deve lopment o f PMN-MDSCs and inh ib i t s the i r

immunosuppressive function through reducing Fcnb protein

stability in a ubiquitin-proteasome dependent manner (88). In

summary, numerous current research has emphasized that certain

miRNAs/lncRNAs play an important role in the differentiation,

development and activity of MDSCs (summarized in Table 2).
Role of MDSCs on autoimmunity
disease

The importance of MDSCs in autoimmune diseases is

remarkable. If the immunosuppressive activity of MDSCs in

cancer and infectious diseases is detrimental to diseases

prognosis, the role of MDSCs in autoimmune diseases is

undetermined and even controversial. Conflicting studies have

shown that MDSCs play a positive and negative role in regulating

the progression of autoimmune diseases such as MS, RA, SLE and

IBD. In addition, since epigenetic modification of MDSCs is one

of the key mechanisms regulating immune tolerance, its

regulatory mechanism has also been intensively studied in

autoimmune diseases. The changes in differentiation,

development and activity of MDSCs induced by epigenetic

modifications can reconstruct the immunomodulatory function

of MDSCs, which may provide some insights for the harmful or

beneficial effects of MDSCs in various pathological conditions.

Hence, in this section, we conclude the immunomodulatory

mechanisms of MDSCs in different autoimmune diseases and

collected the latest evidences on the epigenetic regulation of

MDSCs in the pathogenesis of inflammatory autoimmune

diseases from the following four examples, to provide a new

perspective for the epigenetic therapies of diseases (summarized

in Tables 3, 4).
Multiple Sclerosis

Multiple Sclerosis (MS) is a potentially chronic disabling

disease of the central nervous system (brain and spinal cord)

(107). The regulatory role of MDSC in MS has been extensively

carried out through experimental autoimmune encephalomyelitis

(EAE), which is a prevalent and persuasive animal model for MS.

In murine models of EAE, circulating CD11b+CD62L+/-Ly6Chi

myeloid precursors were mobilized increasingly and accumulated

in the blood, spleen, and CNS. M-MDSCs isolated from the spleen

potently induced T cells apoptosis via NO production (108–110).
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Moreover, the above-mentioned MDSCs could prevent the

proliferation of T cells and promote the differentiation of IL-1b-
mediating inflammatory Th17 cells (136). Hence, the above

studies in EAE implied that MDSCs play a pro-inflammatory

role and the accumulation of MDSCs was positively correlated

with the clinical score/disease severity. However, other studies

drew different conclusions. Ioannou et al. found that prior to

r e s o l u t i on o f i nflamma t i on , a l a r g e numbe r o f

CD11bhiLy6G+Ly6C- PMN-MDSCs were gathered in the spleen

of mice with EAE. Meanwhile, adoptive transfer of PMN-MDSCs

inhibited the proliferation of Th1 and Th17-cells through the

programmed death ligand (PD-L1)/IFN-r dependent pathway,

thereby effectively delaying the progression of EAE (111). In

patient diagnosed with MS, the frequency of MDSCs increased

in patients with relapsing-remitting multiple sclerosis during

relapse compared to patients with stable disease. However, the

frequency of MDSCs was reduced in patients with secondary
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progressive multiple sclerosis (106). Taken together, These

observations indicate that MDSCs have multiple functions as

organ-specific effectors in MS, with pro-inflammatory functions

that aggravate disease progression and anti-inflammatory

functions that delay disease progression. Therefore, we

speculate that PMN-MDSCs have a protective effect on

tissue damage caused by acute inflammation, but M-MDSCs

induced in chronic inflammatory environments may play a

pathogenic role.

The discrepancy of different studies suggests that it is

necessary to further investigate the regulatory role of MDSCs

in various autoimmune environments from the perspective of

epigenetic modifications (137). Claudia Cantoni et al. observed

that patients diagnosed with MS have less circulating suppressive

MDSCs with decreased M-MDSCs subset particularly, and the

expression of miR-223 was also increased in MDSCs compared

with normal controls. miR-223 knockout mice displayed
TABLE 3 The potential role of MDSCs in different autoimmune diseases.

Disease/model organs Type of
MDSCs

Target gene/
pathway

Role of MDSCs References

MS patient PB MDSCs ↑ – Anti-inflammatory (106)

EAE SP, PB,
CNS

M-MDSCs ↑ NO, IL-1b Pro-inflammatory (107–110)

EAE SP, PB PMN-MDSCs
↑

PD-L1/IFN-r Anti-inflammatory (111)

RA patient SF PMN-MDSCs
↑

– Ameliorate disease progression (112)

RA patient PB MDSCs ↑ Arg-1, TNF-a, IL-1b Deteriorate CIA by promoting the expansion of Th17 cells (113)

CIA SP PMN-MDSCs
↑

IFN-r, IL-2, TNF-a, and
IL-6; IL-10

Ameliorate CIA by inhibiting Th17 cells (114, 115)

PGIA SF PMN-MDSCs
↑

NO,ROS Ameliorate PGIA by suppressing DC maturation and expansion of
autoreactive T cells

(116)

CIA SP MDSCs ↑ Arg-1, TNF-a, IL-1b Deteriorate CIA by promoting Th17 cells (117)

CIA PB PMN-Exo PGE2/GSK-3b/CREB Ameliorate CIA by promoting IL-10+Breg cells production (118)

SLE patient PB M-MDSCs↑ iNOS/Arg-1-dependent
manner

Positively correlated with the disease activity (119–121)

MRL/lpr mice PB MDSCs↑ ROS, IL-1b Deteriorate disease by altering the ratio of Th17 and Treg cells (122)

Pristane-induced
lupus mice

PB, SP M-MDSCs ↑ cell-cell contact, NO, and
PGE2

Ameliorate lupus by inhibitingTh1 cell differentiation and expaning Treg
cell.

(123)

Roquinsan/
san SLE mice

SP MDSCs↑ NO Ameliorate renal symptom by expansingIL-10+Breg cells (124)

IBD patient PB M-MDSCs ↑ – Positively associate with disease activity (8)

IBD patient PB PMN-MDSCs
↑

CEBPb Promote chronic intestinal inflammation by enhancing T cell
proliferation

(125)

Hp-induced colitis SP MDSCs ↑ I-cysteine/H2S pathway Alleviate colon inflammation by limiting PMN-MDSCs recruitment (126)

VILLIN-HA mice SP, LN M-MDSCs ↑ NO-dependent,
cell-cell contact

Induce T cell apoptosis and suppress T cell proliferation (127)

DSS-induced colitis SP MDSCs ↑ IL-17, TNF, and IFN-r Ameliorate DSS-induced colitis by adoptive transfer MDSCs (128)

DSS-induced colitis SP PMN-Exo Arg-1 Ameliorate DSS-induced colitis by preventing Th1 cell proliferation and
promoting Treg cell expansion

(129)
fr
EAE, experimental autoimmune encephalomyelitis; MS, multiple sclerosis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; CNS, central
nervous system; SP, spleen; PB, peripheral blood; LN, lymph node; SC, spinal cord; SF, synovial fluid; BM, bone marrow; NO, nitric oxide; ROS, reactive oxygen species; PMN-Exo, PMN-
MDSCs-derived exosomes; PGE2, Prostaglandin E2; GSK-3b, glycogen synthase kinase-3; CREB, cAMP-response element binding protein; CEBPb, CCAAT/enhancer-binding protein beta.
↑, increased in quantity and activity.
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increased accumulation of MDSCs, decreased immune response

capacity of T cells isolated from the CNS, and milder disease

symptoms. Besides, the up-regulation of Arg-1 and STAT3 are

associated with stronger inhibitory function of miR-223−/−M-

MDSCs. In conclusion, it is indicated that miR-223 shall be

pivotal in EAE by mediating the biological behavior of MDSCs

and miR-223 can be act as potential and promising target to

therapeutic applications (73).
Rheumatoid arthritis

Rheumatoid arthritis (RA) is a progressive inflammatory

autoimmune disease that can lead to destruction in articular

cartilage and bone (138). MDSCs play an important role in the

pathogenesis of RA, but their effects are still controversial (139,

140). In patients with RA, MDSCs isolated from SF were mainly

PMN-MDSCs, which could strongly inhibit the proliferation of

autologous T cells and relieve joint inflammation (112). In a

mouse model of collagen-induced arthritis (CIA), MDSCs

separated from the spleens suppressed the production of pro-

inflammatory cytokine, whereas promoted the production of IL-

10. Further studies have found that these MDSCs inhibited the

proliferation of CD4+T cells and their differentiation into Th17

cells, whereas promoted the expansion of Treg cells in vitro,

leading to the alleviation of joint inflammation and the

reduction of CIA severity. Adoptive transfer of PMN-MDSCs

ameliorates disease symptoms (114, 115). In addition, PMN-

MDSCs isolated from the synovial fluid in the joints have a

potently protective effect via suppressing the maturation of DCs

and the proliferation of autoreactive T cells in proteoglycan-

induced arthritis (PGIA) mice (116). Contrary to the anti-
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inflammatory effect of MDSCs in RA, MDSCs were

significantly amplified in arthritis mice and patients with RA,

and were positively correlated with disease severity and

inflammatory Th17 cells response (113, 117). In a mouse

model of CIA, the frequency of MDSCs in the spleen was

increased, which could secrete higher level of Arg-1, TNF-a,
IL-1b and induce Th17 cells differentiation compared to the

control group. Adoptive transfer of MDSCs separated from

spleen of CIA mice accelerated the pathogenesis of the disease.

Furthermore, the frequency and activity of MDSCs were

increased in the peripheral blood of RA patients and

associated with increased Th17 cells and disease activity. These

results suggested that MDSC promoted Th17 cells differentiation

in an IL-1b-dependent manner, thus exerting crucial role in the

pathogenesis of RA (113).

Although a growing body of evidence highlighted the

important role of disrupted epigenetic regulation of immune

cells in the pathogenesis of RA, current research clues regarding

the regulatory role of epigenetic modifications in MDSCs in the

pathological progression of RA are still weak. PMN-MDSCs

derived exosomes (PMN-Exo), playing a similar role as MDSCs,

efficiently mitigated the mean arthritis index, joint destruction

and leukocyte infiltration in CIA mice. miR-29a-3p and miR-93-

5p contained jn PMN-Exo suppressed the differentiation of Th1

and Th17-cells via specifically binding to T-bet and STAT3

respectively. Further study indicated that human PMN-Exo

exhibited high levels of miR-29a-3p and miR-93-5p as well as

powerful ability to inhibit Th1 and Th17-cells differentiation in

vitro, while M-MDSCs exosomes have no such ability (131).In

addition, Prostaglandin E2 (PGE2) in PMN-Exo promoted the

production of IL-10+Breg cells by activating the signaling

pathways of GSK-3b/CREB in CIA mice, thereby alleviating

arthritis (118).
TABLE 4 Epigenetic mechanisms affecting the role of MDSCs in different autoimmune diseases.

Epigeneticmechanisms Disease/
model

Type of
MDSCs

Target gene/pathway Role of MDSCs References

Histone modifications

EZH2 DSS-induced
colitis

MDSCs STAT3 Ameliorate experimental intestinal inflammation (130)

Non-coding RNAs

miR-223 MS patient/
EAE

M-MDSCs ARG1, STAT3 Aggravate EAE severity (73)

miR-29a-3p
miR-93-5p

RA patients
and CIA

PMN-Exo T-bet, STAT3 Ameliorat CIA/RA by inhibiting Th1 and Th17
cell differentiation

(131)

miR-451a pristane-
induced lupus
mice

M-MDSCs IRF-8/miR-451a/
AMPK/mTOR

Aggravate lupus symptoms by regulating M-
MDSCs differentiation

(132)

miR-322-5p SLE MDSCs Arg-1/miR-322-5p/TGFb/
SMAD/pathway

Elevat the Th17/Treg ratio and aggravate SLE
disease

(133)

LncRNA NEAT1 MRL/lpr mice PMN-MDSCs NEAT1-BAFF axis Aggravate lupus symptoms (134, 135)
fr
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Systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is a life-threatening

autoimmune disease characterized by the immune system

attacking its own tissues, causing widespread inflammation

and tissue damage in the affected organs (141). Although

current studies show that MDSCs play an important role in

SLE, their immunoregulation effect remains controversial, which

may be related to the heterogeneity of MDSCs themselves and

the immune microenvironment at different stages of the disease.

The frequency of MDSCs in the peripheral blood of active SLE

patients were significantly increased compared with normal

controls (119). Further studies have revealed that in newly

diagnosed SLE patients, the elevated levels of circulating M-

MDSCs are positively correlated with disease severity and exert

an immunosuppressive effect in an iNOS-dependent manner

(120). Besides, in patients with active SLE and a mouse model of

lupus, the enhanced MDSCs induced Th17 cells differentiation

in an arginine-dependent manner and altered the ratio of Th17

cells and Treg cells via ROS and IL-1b dependent manner,

thereby exacerbating disease progression (121). Adoptive

transfer of MDSCs into MRL/lpr mice induced elevated serum

IgG, anti-dsDNA, IL-17A and IL-1b levels, and increased Th17

cells proportions and decreased Treg cells proportions in the

spleen (122). However, MDSCs also perform protective effects in

SLE progression. In pristane-induced lupus mice mode, M-

MDSCs were markedly increased in spleen and peripheral

blood and showed immunosuppressive characteristics. Besides,

M-MDSCs strongly impaired Th1 cells proliferation but

enhanced Treg cells differentiation in a manner depending on

cell-cell contact, NO, and PGE2 (123). In Roquinsan/san SLE

mice, MDSCs induced the expansion of regulatory B (Breg) cells

in vitro via iNOS, thus promoting IL-10 production. Moreover,

Treatment with MDSCs caused a decrease of autoreactive B cells

and an increase of Breg cells, resulting in a reduction of serum

anti-dsDNA antibody levels and degree of proteinuria, thus

improving renal pathology (124). All in all, the above studies

displayed that both the frequency and immunomodulatory

activity of MDSCs have a great impact on the development

and severity of SLE.

Notably, epigenetic modifications have as well been well

documented as critical factors in the pathogenesis of SLE (142,

143). Research indicated that the increase of M-MDSCs is

associated with lupus symptoms in mice with pristane-induced

lupus. Further study indicated that compared with control mice,

miR-451a promotes MDSC differentiation by targeting IRF-8,

which was highly expressed in M-MDSCs isolated from

pristane-induced through AMPK/mTOR signaling (132).

LncRNA NEAT1 is closely related to the pathogenesis of

immune-related diseases mediated by immune imbalance

(144). LncRNA NEAT1 overexpressed in PMN-MDSCs of

MRL/lpr mice, but not M-MDSCs, could significantly promote
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PMN-MDSCs to secrete BAFF and subsequently enhanced the

activation of IFN-g signaling in B cells, thereby promoting SLE

to progress (134, 135). Further research showed MDSCs-derived

Arg-1 promoted Th17 differentiation by elevating the amount of

mmu-miR-322-5p in mice, which is homologous to hsa-miR-

542-5p in humans. Furthermore, in humanized SLE mice,

MDSCs-deplete group showed a declined proportion of Th17

in both PBMC and spleen, while the mRNAs expression levels of

miR-542-5p and 3 polyamine synthetases were down-regulated

in PBMC, spleen, and kidney. Overexpression of miR-542-5p,

reversed the Th17 proportion and IL-17A expression and

ROR&t in PBMC, spleen, and kidney in MDSCs-deplete

group. Meanwhile, the positive relationship between

polyamine/miR-542-5p and SLE disease progression through

Th17 induction in vitro, which have also been fully verified in

vivo in humanized mouse models. All data demonstrated that

MDSCs-derived Arg-1 from SLE mice strongly promoted Th17

and Treg differentiation in a mmu-miR-322-5p–dependent

manner, eventually elevating the Th17/Treg ratio and

worsening SLE disease (133).
Inflammatory bowel disease

Inflammatory bowel disease (IBD) is an idiopathic intestinal

inflammatory disease involving ileum, rectum and colon (8).

MDSCs have been shown to ameliorate inflammatory bowel

disease in multiple mouse models of IBD. In the peripheral

blood of IBD patients, CD14+HLA-DR-/low cells are significantly

increased and associated with disease activity (8). In a colitis

mouse model induced by Helicobacter hepatica (HP), closely

resembling human IBD, PMN-MDSCs and M-MDSCs in colon

and spleen shown significantly accumulation in a time-

dependent manner. Further study revealed that the

recruitment of PMN-MDSCs was restricted and the

inflammatory response mediated by MDSCs was inhibited

when activating the I-cysteine/H2S pathway, thereby

alleviating colonic inflammation (126). In the animal model of

IBD induced by VILLAIN- hemagglutinin (HA), MDSCs

accumulated in the spleen and intestine and only M-MDSCs

prevented T cells to proliferate and induce T cells to apoptosis

via cell-cell contact and NO-dependent manner (127). Similarly,

in the dextran-sulfate sodium (DSS)-induced colitis mouse

model, the frequency of MDSCs in the spleen was significantly

increased and associated with symptoms of intestinal

inflammation. Meanwhile, adoptive transfer of MDSCs

reduced inflammation and promoted efficient colonic mucosal

repair (128). Furthermore, PMN-Exo attenuated the severity of

DSS-induced colitis via preventing inflammatory factor response

produced by Th1 cells and expanding Treg cells in an Arg-1

activity-dependent manner (129). Hence, the accumulation of

MDSCs in the site of inflammation may be effective to treat IBD.

Although most studies in vitro demonstrated its anti-
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inflammatory effects by inhibiting the proliferation and function

of T cells, MDSCs also contribute to chronic inflammation by

promoting the expansion of effector T cells. In patients with IBD,

PMN-MDSCs from the peripheral blood not only failed to

suppress the autologous T cells response but also enhanced T

cells proliferation in vitro, due to phenotypic switching and

downregulation of CEBPbexpression in MDSCs under steady

state. Meanwhile, these findings were consistently validated in

mouse models (125).

Epigenetic mechanisms are also related to the pathogenesis

of IBD. Enhancer of zeste homolog 2 (EZH2), acts as a major

histone methyltransferase, facilitates the trimethylation of

histone H3 on lysine 27 (H3K27) and silences target gene

transcription. Recently, a report displayed that inhibition of

EZH2 activity could improve the symptoms of experimental

enteritis and delay the development of colitis-related cancers.

Moreover, an increasing number of functional MDSCs was

found in the colons in DSS-induced colitis. In addition,

inhibition of EZH2 activity with GSK126, a selective EZH2

inhibitor, contributed to the differentiation of hematopoietic

progenitor cells into MDSCs in vitro, thereby ameliorating colitis

symptoms, whereas depletion of MDSCs exacerbated disease

progression (130).

As discussed in this section, there are currently two different

hypotheses regarding the function of MDSCs in autoimmune

diseases, namely pro-inflammatory and anti-inflammatory

theories. According to the above two articles, it is not difficult to

conclude that MDSCs play a pro-inflammatory role by promoting

T cell proliferation and increasing the number of Th17 cells, thus

exacerbating the progression of autoimmune disease; while

MDSCS play an anti-inflammatory role by inhibiting T cell

proliferation and promoting the differentiation of Treg cells,

thus alleviating the symptoms of autoimmune disease. However,

about these two contradictory functions, the reason may be that

the immune microenvironment can affect the development and

function of MDSCs, M-MDSCs and PMN-MDSCs have different

immunosuppressive functions in different stages of autoimmune

disease, and regulate the immune response in different ways. In

addition, another possible reason is the unreliable detection of

MDSCs by surface markers. As described in the previous section,

it is difficult to distinguish these cells from their precursors or

from neutrophils and monocytes relying solely on surface

markers. Therefore, measurements of transcription factors and

immunomodulatory molecules, together with surface markers, are

necessary for accurate identification of MDSCs subtypes. On the

other hand, it has been found that the use of different proportions

of MDSCs (as effector cells) versus T cells (as target cells) may

induce different immune responses in cell culture-based studies,

leading to this controversy. Data from the new study suggest that

the in vitro regulatory function of MDSCs is entirely dependent on

the frequency of these cells being used as effector cells. In
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summary, MDSCs have a strong potential to regulate immune

imbalance occurring in autoimmune disorders, but the functional

differences of MDSC subsets need to be further elucidated.
Therapeutic potential of MDSCs on
autoimmunity disease

Autoimmune diseases usually require prolonged treatment

with immunosuppressive drugs. Considering that the long-term

use of these drugs at high doses may cause many unexpected side

effects and even an increased risk of life-threatening

opportunistic infections and malignant tumors, therapeutic

strategies targeting immunosuppressive cells show promising

application prospects. The results of adoptive transfer of MDSCs

in animal models of many autoimmune diseases lead us to

believe that MDSCs have important therapeutic effects, although

few studies have been conducted in humans. However, at the

time of this review, clinical trials of adoptive MDSCs for

autoimmune diseases had not been registered with

clinicaltrials.gov or the European Union Clinical Trials Registry.

The conflicting evidence for the role of MDSCs in

autoimmune diseases has been presented in the previous

chapter, therefore, the effect of MDSCs-based cellular therapy

in autoimmune diseases is also inconsistent. Ionnou et al.

demonstrated that adoptive transfer of PMN-MDSCs derived

from myelin antigen treated mice reduced spinal cord paralysis

and inflammatory lesions compared to untreated controls (111).

On the contrary, the study of Yi et al. confirmed that adoptively

transferred MDSCs purified from EAE mice promoted the

differentiation of Th17 cells and increased the level of IL-17 in

vitro (136). The study of Mildner et al. demonstrated that

adoptively transferred M-MDSCs are recruited to the

inflammatory sites of the brain and thus contribute to

maintain the inflammatory response (109). Similarly, there are

conflicting data on the effects of adoptive transfer of MDSCs for

the treatment of RA. Adoptively transferred MDSCs have been

shown to differentiate into osteoclasts and contribute to bone

resorption (145). Conversely, In multiple mouse models of RA,

adoptive transfer of MDSCs reduced the relative ratio of Th1 and

Th17 cells, accompanied by an increase in Treg numbers, and

decreased serum inflammatory factors including TNF-a, IL-6,
and IL-17, resulting in remission of clinical and histological

manifestations of RA [118, 119, 146]. Furthermore, in addition

to using whole intact cells, adoptive transfer of MDSC-derived

exosomes has also been shown to improve symptoms of RA in

mice (131). PMN-MDSC derived endosome (PMN-Exo)

treatment decreased the populations of Th1 and Th17 cells.

miRNAs isolated from PMN-Exo have been shown to affect T

cell populations by down-regulating the expression of T-bet and

STAT3, respectively (131). Similarly, the role of adoptive
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transfer of MDSCs in SLE varies. In a humanized mouse model

of SLE, adoptive transfer of MDSCs from human SLE patients

promoted IL-17 production, accompanied by nephritis and anti-

dsDNA antibodies in mice, leading to increased clinical

symptoms (8). Conversely, some studies have shown

attenuation of clinical manifestations of SLE via the adoptive

transfer of MDSCs (123, 124). In a pristane-induced lupus

model, the adoptive transfer of M-MDSCs reduced the

production of antibody and inhibited the proliferation of T

cells in an iNOS and PGE dependent manner. Additionally,

changes in the T cell population were also observed, with fewer

Th1 cells and more Treg cells. In a sanroque mutation-driven

model, the adoptive transfer of MDSCs derived from healthy

mice decreased inflammatory cell infiltration in the liver and

spleen, and reduced anti-dsDNA antibodies and proteinuria in

the model mice, thereby alleviating clinical symptoms.

Meanwhile, analysis of lymphocytes isolated from this model

showed that MDSCs treated mice had increased IL-10+ B cells

and decreased Th1, Th17 and Tfh cells. MDSCs have also been

shown to be associated with the development and progression of

inflammatory bowel disease. In multiple models of IBD mice,

adoptive transfer of MDSCs from spleen cells of colitis mice

reduced intestinal immune infiltration and the concentrations of

inflammatory cytokines such as TNFa, IFN-g, and IL-17 in

colon tissue, thereby alleviating mucosal destruction of intestinal

tissue and improving clinical symptoms in IBD mice.

In conclusion, MDSC-based cell therapy has shown

promising clinical application in preclinical animal models.

However, mixed results from animal models, MDSCs

subtypes, and differences among researchers highlight the

nuances of this treatment. At the same time, therapies

targeting the epigenetic modification mechanisms of MDSCs

have been well studied and achieved clinical application in the

treatment of tumors, but little research has been done in the

treatment of autoimmune diseases. Therefore, the functional

diversity and therapeutic potential of MDSCs autoimmune

diseases can be further explained from the perspective of

epigenetic modification mechanism.
Conclusion

MDSCs are a group of highly heterogeneous cell subsets with a

variety of phenotypic characteristics, and their differentiation,

expansion and activation in vivo are highly dependent on

immune micro. MDSCs with different phenotypic characteristics

regulate immune effector cells through different mechanisms, thus

affecting immune response. In addition, the differentiation,

expansion and activation of MDSCs are also regulated by a

variety of epigenetic factors, especially the non-coding RNAs

(20). In certain pathological conditions, MDSCs act as a double-

edged sword, either favor disease outcome or exacerbate disease

progression. By reviewing these two types of literature, many
Frontiers in Immunology 13
papers supporting the inflammation theory argue that MDSCs

promotes T cells proliferation and increases the number of Th17

cells, eventually leading to immune imbalance, while other papers

focus on the anti-inflammatory theory, suggesting that MDSCs

increases the number of Treg cells and Breg cells, thusmaintaining

immune tolerance (146). The heterogeneity of MDSCs, the

plasticity of microenvironment on MDSCs, and the limitation of

detection methods are all possible reasons for this contradictory

result. In addition, the epigenetic mechanisms affecting the role of

MDSCs to regulate the pathogenesis of inflammatory autoimmune

disease have been well studied, especially the non-coding RNAs

regulation. MDSCs-related miRNAs can be used not only as

monitoring indicators of MDSC activity, but also as potential

biomarkers for predicting autoimmune disease progression.

Finally, the latest development of MDSCs-based cell therapy is

also summarized in the present review. Although there are still

many theoretical mechanistic and technical methodological

challenges to MDSCs-based cell therapy, we believe that these

challenges will eventually be overcome and the cell therapy of

autoimmune diseases based on MDSCs will make significant

progress and gain clinical application in the future.
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