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As a common malignant tumor of gastrointestinal tract, the incidence of

colorectal cancer (CRC) has gradually increased in recent years. In western

developed countries, it has even become the second largest malignant tumor

next to lung cancer. Immunotherapy is a hot topic in the field of cancer therapy,

including immune checkpoint blockade (ICB), adoptive cell therapy (ACT),

cancer vaccines and cytokines, aiming to improve the ability of the immune

system to recognize, target and eliminate cancer cells. However, cold CRC,

which accounts for a high proportion of CRC, is not so reactive to it. The

development of immunotherapy to prevent cancer cells from forming

“immune escape” pathways to the immune system in cold CRC, has been

under increasing study attention. There is proof that an organic combination of

radiotherapy, chemotherapy, and several immunotherapies can considerably

boost the immune system’s capacity to eradicate tumor cells. In this review, we

summarized the role of immunotherapy in colorectal cancer. In addition, we

propose a breakthrough and strategy to improve the role of immunotherapy in

cold CRC based on its characteristics.

KEYWORDS

cold colorectal cancer, immune checkpoint inhibitors (ICIs), adoptive cell therapy
(ACT), cancer vaccines, cytokines
Introduction

As the third most common cancer around the global with a high mortality, colorectal

cancer (CRC) generates a negative impact on human public health, and new effective

treatment strategies are urgently needed (1, 2). Although CRC morbidity rates have

declined with changes in risk factor patterns and the spread of colonoscopy, this progress

is increasingly confined to the elderly, the entire population of CRC patients is rapidly
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becoming younger (3) and its mortality remains high (4),

especially in the metastatic CRC which accounts for the vast

majority of CRC patients (5).

For the past few decades, immunotherapy, including

immune checkpoint blockade (ICB), adoptive cell therapy

(ACT), cancer vaccines and cytokines, has attracted wide

attention in the field of cancer treatment due to its long-term

efficacy in solid tumors such as melanoma and non-small cell

lung cancer. Due to the fact that tumors with high tumor

mutational burden (TMB) have more immune system-

recognizable neoantigens than tumors with lower TMB, high

TMB becomes a defining characteristic of immunotherapy

response, particularly ICB, in a number of cancer types (6,

7). In the cell genome, DNA sequences called microsatellites

are repeated in tandem with a small number of nucleotides,

often one to six (8). Mismatch repair (MMR) is a process that

removes certain nucleotides from the nascent DNA strand in

human cells when they integrate the incorrect nucleotides

during DNA replication in order to prevent genetic

mutations in progeny cells. The TMB of CRC is closely

associated with microsatellite instability (MSI), while MSI is

the result of the functional deficiency of the DNA MMR

protein (9). A large number of clinical trials have confirmed

that the molecular level detected by MSI is highly correlated

with the protein level detected by MMR, and the agreement

between the two is up to 90% in CRC (10). Mismatch repair

deficient (dMMR)/high microsatellite instability (MSI-H)

phenotypes accounted for 15% of CRC patients (11),

compared with the most of CRC patients presenting

proficient mismatch repair (pMMR)/microsatellite stable

(MSS) subtype. dMMR/MSI-H CRC has more to do with a

higher mutation burden and tumor neoantigen load as well as

dense immune cell infiltration compared to pMMR/MSS

tumors, and immunotherapy-based therapies have shown

strong clinical benefits for this subtype (9, 12). The FDA

approved the anti-PD-1 antibody pembrolizumab in 2017 for

use in patients with dMMR/MSI-H metastatic colorectal

cancer who have progressed after prior therapy and have no

satisfactory alternative treatment options. Nivolumab, as well

as ipilimumab, also got approval in the treatment of dMMR/

MSI-H mCRC patients. In contrast, pMMR/MSS mCRC,

commonly known as “cold” cancer, which featuring the

infiltration and inflammation of tumor (13), does not

respond well to immunotherapy. Therefore, it is important to

explore immunotherapies that can benefit such subtype

of patients.

This review emphasizes the constraints and problems in

providing better care for these patients by summarizing the

function of immunotherapies in cold colorectal cancer and

outlining their development. In addition, based on the features

of cold CRC, we propose a breakthrough and approach to

enhance the function of immunotherapy.
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Immune checkpoint inhibitors

The removal of co-inhibitory signals is an approach to

breaking the autoimmune tolerance and regulating the efficacy

of immune responses. ICB is changing the therapeutic paradigm

for many cancers by targeting or blocking the interaction

between tumor cells expressing immune checkpoints, thus

relieving immune evasion from tumors and restoring the

immune function of immune system (14). Several immune

checkpoint molecules have been identified as potential targets

for immunotherapy. The most widely studied ones now are PD-

1, PD-L1, and CTLA-4 (15). In addition, the potential of

checkpoints such as LAG-3 (16), TIM-3 (17, 18) and TIGIT

(19) in tumor immunity also requires further studying (Table 1).

In a phase II clinical trial higher progression-free survival

(PFS) and overall survival (OS) rates were found in MSI-H

patients using pembrolizumab (30). While in another phase II

clinical trial (NCT01876511), 41 patients with MSS/MSI-H

advanced mCRC received pembrolizumab intravenously. The

objective response rate (ORR) and OS rate in the cohort of

patients with MSI-H mCRC was 40% and 78%, compared with

0% and 11% in patients with MSS mCRC (31). The response of

these two phenotypes of CRC to ICB showed a dramatic

difference. The resistance mechanisms implicated against PD-1

immune checkpoint blockade in MSS CRC include loss of

antigen presentation, abnormal cell signal transduction, and

immunosuppression (32). MSI-H tumors have higher TMB,

more neoantigens, and higher levels of multiple checkpoints

expression (33), which may partly explain why immune

checkpoint blockade therapy is more effective in MSI-H CRC

than in MSS CRC. The resistance to PD-1/PD-L1 may associate

with the presence of liver metastases as well, which are related to

poorer PFS and OS (34). In a retrospective study, PD-1/PD-L1

inhibition showed a clinical advantage in MSS CRC patients

without liver metastasis, bringing new inspiration to MSS

colorectal cancer treatment (35).
Combination of two ICIs

The combination of PD-1/PD-L1 and CTLA-4-blocking

antibodies may have a controllable safety profile and inspiring

antitumor activity in MSS/pMMR colorectal cancer patients

(36). A total of 30 mice were divided into three treatment

groups in an experiment using the mouse colorectal cancer

model CT26: untreated, anti-PD-1 antibody monotherapy, or

anti-PD-1 and anti-CTLA-4 antibody combination (DICB). The

findings demonstrated that, in comparison to the other two

groups, DICB might dramatically restrain tumor progress.

Nonetheless, tumor growth was not stopped or reversed in the

DICB group (20). Durvalumab and tremelimumab were applied

to 21 pMMR and two dMMR resectable liver metastasis
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colorectal cancer in a clinical trial (NCT02754856). Two dMMR

patients showed complete pathological response, and evidence of

T cell activation as well as prolonged RFS was observed in

pMMR mCRC patients (21).

Cell immune responses are essential for tumor growth in

colorectal cancer. Cytotoxic anti-tumor-specific CD8+ T cells are

present in primary tumors or in metastatic tumor sites and can

specifically recognize and kill autologous cancer cells (37).

Tumor immune-infiltrating cells (TIL), especially CD8+ T

cells, are one of the most effective prognostic parameters for

both local and metastatic colorectal cancer (38). MSI-H/dMMR

CRC has a low probability of distant metastasis, while the

propor t ion o f tumors po ten t i a l l y r e spond ing to

immunotherapy in patients with pMMR/MSS CRC is

significantly increased in metastases (39). The MSS CRC

patients had a reduced CD8+ TIL percentage as compared to

the MSI-H CRC patients, respectively (40, 41). TIGIT and TIM-

3 are coinhibitory receptors on the surface of CD8+ T

lymphocytes that inhibit CD8+ T cells secreting cytokines and

promote CD8+ T cell depletion, providing insight for the

combined blockade of ICIs (22, 42). In one study,

atezolizumab monotherapy and the combination of

atezolizumab and tiragolumab were used in 13 MSS CRC

patients (19). The data suggested that atezolizumab alone can

only induce the activation of the immune response in tumor

infiltrating lymphocytes (TILs) in MSI tumors, while the

combination therapy of atezolizumab plus tiragolumab was

able to reactive CD8+ TILs in 46% of MSS CRC patients. Liu

et al. found that blockage of the Tim-3 and PD-1 pathways

enhanced the frequency of proliferating tumor antigen-specific
Frontiers in Immunology 03
CD8+ T cells, achieving a reversal of tumor-induced T cell

exhaustion/dysfunction in colorectal cancer patients (22).
Combination with chemotherapy

Increasing evidence suggests that chemotherapy can activate

the immune system either by directly stimulating anti-tumor

responses or by modifying local immune microenvironment (43,

44), providing a strategy to couple chemotherapy with ICIs to

transform the so-called “cold” non-infiltrated tumors into “hot”

highly infiltrated tumors.

The combination chemotherapy of leucovorin, fluorouracil

and oxaliplatin (FOLFOX) is often used in the first-line

treatment of mCRC (45, 46). Meanwhile, FOLFOX causes

immunogenic cell death and the recruitment of antigen-

presenting immune cells, and its role in anti-tumor immune

infiltration cannot be underestimated (47). Based on this theory,

Dosset et al. adapting FOLFOX with or without anti-PD-1

therapy to CT26 tumor-bearing BALB/c mice showed that

FOLFOX restores the immunological environment to sensitize

colorectal cancer to ICIs and only the FOLFOX/anti-PD-1 group

of mice achieved a complete cure of cancer without recurrence

(23). This provided a new perspective for the treatment of MSS

CRC. A Phase Ib/II study (NCT03202758) evaluated how the

combination of durvalumab, tremelimumab and FOLFOX

worked in MSS tumors with RAS mutated status (24). The

results showed a RFS rate of 95% and a PFS of 70.7% was

expected. FOLFOX is therefore a potent adjunct to ICB. More

fully designed clinical trials are still needed to determine the
TABLE 1 Protocols to improve the efficacy of immune checkpoint blockade in cold colorectal cancer.

Target Compounds Model Outcome References

PD-1 Anti-CTLA-4 CT26.WT murine colorectal cell line Significantly inhibiting tumor growth compared with monotherapy
Enhancing expression of TIM-3

(20)

PD-1 Anti-CTLA-4 21 pMMR and 2 dMMR patients Increasing percentage of immune checkpoint expression in CD8+ cell
Enhancing RFS of some patients

(21)

PD-L1 Anti-TIGIT 13 MSS and 3 MSI-H colorectal tumor cells Improving the functional qualities of TILs (19)

PD-1 Anti-TIM-3 CD8+ T lymphocytes isolated from patients with
CRC

Increasing the frequency of interferon-g and tumor necrosis factor-a
Promoting the proliferation of tumor antigen-specific CD8+ T cells

(22)

PD-1 FOLFOX CT26 and MC38 colon carcinoma cell lines Inducing complete and durable tumor cure
Upregulating the immune checkpoint expression

(23)

PD-1
CTLA-4

Temozolomide MGMT-silenced MSS mCRC patients Enhancing the tumor mutation burden
Improving PFS, OS and ORR

(24)

PD-L1 Cetuximab 71 MSS and 3 MSI-H RAS wild-type mCRC
patients

11.6 months of mOS, 3.6 months of mFPS and ORR of 8.5% in MSS
CRC patients

(25)

PD-1 Regorafenib 24 MSS and 1 MSI-H CRC patients
25 GC patients

Enhancing ORR
Increasing response rate to PD-1 blockade

(26)

PD-L1 Cobimetinib 84 patients with mCRC Enhancing the tumor mutation burden
Increasing infiltration of CD8+ T cell

(27)

PD-1 Radiotherapy 22 patients with pMMR mCRC Enhancing the anti-tumor immune activity (28)

PD-L1
CTLA-4

Radiotherapy 24 patients with chemotherapy-refractory pMMR
mCRC

11.4 months of mOS, 1.8 months of mFPS and ORR of 8.3%
Promoting the proliferation of tumor antigen-specific CD8+ T cells

(29)
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optimal dosing regimen to maximize the immunogenicity of

the FOLFOX.

Temozolomide is an alkylating agent approved for use in

patients with glioblastoma, which works by causing cross-

linking between or within strands of DNA, destabilizing DNA

during replication (48). This provides the rationale for inducing

the immunosensitization of pMMR/MSS mCRC, which is

MGMT silenced, by temozolomide initiation. A multicenter,

single-arm phase II trial (NCT03832621), whose first phase of

oral temozolomide 150 mg/sqm treatment in MSS mCRC, and a

second phase of combination therapy with ipilimumab 1 mg/kg

and nivolumab when no progression was observed, had the

primary endpoint being the 8-month PFS rate calculated from

the enrollment of patients starting the second treatment portion

(49). 24% of the patients entering the second part of treatment

showed a PFS rate of 36%. The results demonstrated that the

combination treatment of temozolomide with ipilimumab and

nivolumab may produce a long-lasting clinical benefit in the

MSS mCRC.
Combination with anti-angiogenic
agents

Angiogenesis, which is closely linked to tumor progress, is

one of the hallmarks of cancer (50). Therefore, inhibiting

angiogenesis is a popular treatment for cancer (51). VEGF

(vascular endothelial growth factor) regulates the progress of

tumor angiogenesis (52), and is currently the only known

angiogenic factor continuously expressed throughout the

tumor life cycle. There are two main classes of antitumor

drugs acting on the VEGF-VEGFRs pathway. One is

monoclonal antibodies, and the other is small molecule

VEGFRs tyrosine kinase inhibitors.

Lee et al. demonstrated that the combination of avelumab

and cetuximab (targeting EGFR) showed an ideal 11.6-months

median OS and a longer median PFS in MSS mCRC (25).While

in a phase Ib trial REGONIVO (NCT03406871), 24 pMMR/MSS

CRC patients received the treatment of regorafenib (VEGFRs

tyrosine kinase inhibitor) plus nivolumab (26). The median PFS

for this treatment was 7.9 months, and the ORR was 36%. This

demonstrated that in pMMR/MSS CRC patients, the

combination of regorafenib and nivolumab had a manageable

safety profile and increased antitumor efficacy. However, the

encouraging results of the REGONIVO were not reproduced in

the following series of clinical practice. A phase I/Ib study

(NCT03712943) treated 52 pMMR CRC patients with a

combination of regorafenib and nivolumab (53).Only 10% of

the patients had partial remission, 2.5% had confirmed

remission, 53% were stable with a disease control rate of 63%,

showing a limited anticancer activity of this therapy in pMMR

CRC. This result could be explained by the differences in the

patient populations of the two study. This cohort recruited more
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patients with mCRC than the REGONIVO trial. Former study

has proved that metastasis was often accompanied by

diminished efficacy of ICB in multiple malignancies (54).

Therefore, further studies are required to validate the efficacy

of the combination therapy of ICIs with anti-angiogenic agents

in cold CRC.
Combination of MEK inhibitor

Underloading of tumor antigens impairs the T-cell-

mediated immune response and improving the antigenicity

of tumor is a feasible strategy to target cold CRC. MEK

signaling pathway is one of the most classic signaling

pathways in the tumor field whose protein overexpression or

mutation has been found in many malignant tumors. The

signaling molecule, MEK, is a key intermediate in the MAPK

pathway (54). The MAPK axis is essential in the proliferation

and apoptosis of CD8+ TIL (55–57). Preclinical models

demonstrated that highly selective MEK inhibitors inhibited

tumor progress and promoted changes in the proliferation and

effector phenotype of CD8+ TILs (55).This showed that the

MEK inhibitors combined with ICIs treatment may

synergistically inhibit tumor growth.

A phase I/Ib trial (NCT01988896) applied the combination of

the MEK inhibitor cobimetinib and the anti-PD-L1 antibody

atezolizumab to patients with solid tumors (27). Of the 84 mCRC

patients enrolled, a total of six MSS patients and one MSI-H patient

showed a clinical response, with an ORR of 10% and a median OS

of 10 months, demonstrating the safety and tolerability of this

therapy. Based on these results, cobimetinib was applied to MSS

CRC patients in combination with atezolizumab in the subsequent

phase III study (NCT02788279) (46). Unfortunately, although

atezolizumab plus cobimetinib improved OS compared to

atezolizumab monotherapy, the efficacy of the combination was

inferior than regorafenib.
Combination of radiotherapy

Radiotherapy is also an ideal option to promote T cell

infiltration into cold tumor. RT can release neoantigens and

inflammatory cytokines during treatment and has the ability to

increase CD8+ cytotoxic T cells, thus regulating the TME and

stimulating immune system response (58, 59). Grapin et al.

proved that the combination of ICIs and RT had the value of

further clinical studies (60). And another preclinical model

combined DNA repair inhibitors, RT, with anti-CTLA-4,

which was a multimodal treatment regimen that reduced

dosing, potentially inhibiting chemical resistance and dose-

limiting toxicity (61). The combination therapy of RT and ICB

exhibited great prospects in the treatment of refractory CRC and

should be intensively studied urgently.
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A non-randomized phase II study (NCT02437071) was

designed to evaluate the combination of pembrolizumab with

RT in patients with pMMR mCRC (28). Although only one

patient out of the 22 patients achieved an objective response in

the unirradiated area, it still gave us inspiration of further

investigation. A large number of studies centered on

combination of radiotherapy and immunotherapy are ongoing.

Segal et al. recruited 24 patients with chemotherapy-refractory

pMMR mCRC and applied durvalumab, tremelimumab and

radiotherapy (29). Two patients treated had an objective

response in the unirradiated tumors, with an ORR of 8.3%. 23

patients remained progression-free at 12 months after PR. The

best response in the three patients (12%) was a stable disease,

with no SD being observed for 4 months or longer. To determine

the combination of radiotherapy and immunotherapy is

challenging but crucial in clinical trials.
Adoptive cellular therapy

ACT is an emerging immunotherapy and is a rapidly

developing field of clinical research. Compared with traditional

methods, ACT has the advantages of high specificity, short

acting time and less interference by internal factors. By

isolating the immunoactive cells from the tumor patients, they

were expanded and modified in vitro, and finally returned to the

patients, so as to trigger passive or active immunity (62). There

are currently four major ACT approaches: chimeric antigen

receptor (CAR) T cells, genetically engineered T cell receptor

(TCR), tumor-infiltrating lymphocytes (TILs), and cytokine-

induced killer (CIK) cells, the latter three of which are still in

the early stages of research compared to CAR-T. ACT has

achieved remarkable results in hematological malignancies,
Frontiers in Immunology 05
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However, the role in solid tumors is still unclear, and its

therapeutic efficacy and safety remain to be verified in clinical

studies (Table 2).
Chimeric antigen receptor T-cell and
genetically engineered T-cell receptor

T cells are genetically modified to express a specialized

chimeric immune-receptor, enabling T cells to identify

oncogenic antigens, targeting specific proteins, in an MHC-

independent manner (72, 73). CAR-T is currently prevailing

for its applicability to all subtypes of colorectal cancer and its

capacity to overcome the barrier of cold tumor insensitivity to

immunotherapy. One of the difficulties in the development of

effective ACT in solid tumors, specifically targeting CAR-T cells,

is that CAR-T can produce toxic side effects in healthy tissues.

Targeting tumor cells and avoiding target recognition in normal

human tissues to overcome target antigen heterogeneity has

been a key challenge in the development of solid malignant

tumor cell therapy (74). Current targets used for anti-CRC CAR-

T cell therapy are generally not exclusive to tumor cells, which

can sometimes lead to targeted external tumor toxicity (75).

Therefore, CAR-T cell therapy suitable for CRC needs to be

further explored.

Carcincoembryonic antigen (CEA) is the most frequently

studied target for CAR-T cells for the treatment of CRC. In a

phase I clinical trial (NCT02349724) of CEA CAR-T treatment

in CEA+ CRC patients, 10 patients with relapsed and refractory

CRC metastasis were enrolled (65). The results showed that 70%

of the patients were stable after treatment, with a slightly reduced

tumor diameter, and 20% were stable for more than 30 weeks.
TABLE 2 Different applications of ACT in colorectal cancer.

Approach Model Outcome References

CEA CAR-T 10 refractory CRC patients with liver and lung
metastasis

Decreasing expression level of CEA
Decreasing tumor size

(65)

CEA CAR-T
IL-10

38 MSS CRC patients with liver metastases Inhibiting exhaustion of CD8+ T cell
Increasing cytotoxicity of CEA specific CAR-T cell

(66)

NKG2D CAR-T LS174T and HCT-116 human colorectal cell lines Increasing abundance of CD4+ cells
Improving anti-tumor ability of CAR-T cells in vitro and
vivo

(67)

HER2 CAR-T Xenograft CRC tumor models Potent and specific cytotoxicity against CRC cells
Significantly inhibiting tumor growth and migration
Prolonging ORS of mice

(68)

KRAS G12D-specific CD8+

TILs
Patient with MSS mCRC A sustained resolution of the symptoms

Enhancing regression of lung metastases
(69)

CIK cells
Chemotherapy

60 patients with CRC Increasing infiltration of CD8+ T cells
Improving PFS and OS
Reducing recurrence rate of CRC

(70)

DC-CIK cells
Chemotherapy

Patient with advanced CRC Improving PFS and OS significantly
Alleviating immune suppression
Promoting proinflammatory cytokines

(71)
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Discussion of the mechanisms of immune evasion is vital for the

development of new approach to overcoming drug resistance. In

a study using an electrostatic copy model in nude mice, it was

confirmed that rhIL-12 (recombinant human IL-12) enhanced

the anti-neoplastic capacity of CEA CAR-T cells (76). Another

study of combined treatment with neutralizing antibodies

against IL-10 and CAR-T in 38 patients with MSS liver

metastatic CRC showed that IL-10 increased CEA-specific

CAR-T cell activation and promoted CAR-T mediated tumor

cell death, inducing nearly 70% apoptosis in tumor biopsies (66).

These results also inspired us to bind cytokines to CAR-T cells is

a feasible strategy.

NKG2DL, EGFR, and HER2 are also suitable candidates for

CAR-T targeting. Transduction of NKG2D CAR-T cells from

non-viral third-generation NKG2D CAR cells had a significant

inhibitory impact on tumor progress in mice (67). HER2 CAR-T

cells exhibited antitumor activity in CRC xenograft models, and

some tumors were even completely eliminated. Since HER2

levels are significantly higher in mCRC than in primary CRC,

HER2 CAR-T cells have an effective immunotherapy capacity

for Mcrc (68). No occurrence of adverse reactions was observed

in any of the above studies, indicating the safety of the

above therapies.

The genetic alteration of T-cell receptors to enhance their

capacity to recognize and kill certain cancer cell antigens is a trait

shared by CAR-T and TCR-T technologies, albeit their precise

approaches vary. Unlike TCR, which depends on MHC

processing, CAR attaches to tumor surface antigens, but the

spectrum of tumor-specific antigens that TCR-T cells may detect

includes certain intracellular antigens (77). TCR is currently the

most likely T cell immunotherapy to make a breakthrough in

solid tumors. The search for immunogenic neoantigens is also

crucial for TCR-T cells. The limitation of CEA as a target for

CRC may be seen in the fact that TCR-T cells targeting CEA not

only produced tumor regression but also severe colitis and other

problems (78). In current clinical studies conducted both

domestically and internationally, TCR-T cells directed against

NY-ESO-1 have demonstrated high safety and effectiveness in

the treatment of refractory recurrent melanoma, synovial

sarcoma, multiple myeloma, lung cancer, and other cancers

(79). Ny-eso-1-specific TCR-T cells showed strong anti-tumor

ability in MSS CRC cell line and significantly prolonged the

survival of mice while decitabine treatment can synergistically

enhance the specific killing ability of TCR-T cells by

upregulating the expression of NY-ESO-1 (80). Another great

target for melanoma treatment is cancer-testicular (CT) antigen.

But its applicability in CRC is constrained by the lack of its

expression. The hypomethylating agent 5-AZa-2 ‘-deoxycytidine

(DAC) induces the expression of CT in CRC and makes tumor

cells more sensitive to TCR-T cells (81). Furthermore, several

targets, such the PCSK9, LDLR, and others have a role in

regulating TCR signaling in CD8+T cells via a variety of
Frontiers in Immunology 06
mechanisms (82). Regrettably, TCR-T clinical trials for CRC

are still in the early stages of development, and more research is

required to fully understand its therapeutic potential.
Tumor-infiltrating lymphocytes and
cytokine-induced killer cells

TILs are the lymphocytes that leave the blood flow and enter

the tumor, which is a polyclonal and heterogeneous population

of cells, including lymphocytes (T cells, B cells, and natural killer

(NK) cells), macrophages, dendritic cells, and neutrophils, with

extensive antigen-recognition capabilities in tumor cells (83).

Studies have identified associations between TIL load, mutation

rate, and the immune landscape of CRC patients and clinical

outcomes (15, 84). TIL within the CRC is beneficial for patient

survival and can serve as a prognostic indicator.

Although the TILs have been applied in varieties of cancers,

only a few trials of the TILs have been performed against the

CRC. Gardini et al. found that TILs combined with high-dose

IL-2 showed no distinct difference in clinical outcome compared

to conventional chemotherapy (85). In another trial

(NCT01174121), researchers extended the KRAS G12D-

specific CD8+ T cell clone and reinfused the TILs into the

patients, and observed a sustained resolution of the symptoms,

with six out of seven lung metastases eradicated. This result

suggested that ACT targeting TIL cells of tumor neoantigens was

an attractive therapeutic option for MSS CRC tumors with low

mutational burden (69).

In general, the pMMR/MSI-L/MSS CRC has a lower TMB

and limited amount of TILs (86) which is difficult to collect and

amplify, and cannot meet the requirements of ACT (87).

Moreover, TIL products need to be customized for individual

patients, which is time-consuming and costly (88). Therefore,

new improvement schemes are still being explored. As an

alternative source of TILs, CIK cells are a heterogeneous group

of cells co-cultured by human peripheral blood mononuclear

cells (PBMCs) with various cytokines (89) which have a similar

function to that of NK cells (90). A randomized controlled trial

aimed to evaluate the effect of autologous CIK cells

immunotherapy on OS and PFS in patients with colorectal

cancer. The median PFS and median OS in the CIK group

were 25.8 and 41.3 months, compared to 12.0 and 30.8 months

in the control group (70). Another study reviewed 142 advanced

colorectal cancers treated with conventional or adjuvant DC-

CIK, and analyzed their respective 1-, 3-, and 5-year OS rates

and PFS rates (71). The 5-year PFS and OS rates in the DC-CIK

group were 57.4% and 41.3%, while the 5-year PFS and OS rates

in the non-DC-CIK group were 33.6% and 19.4%, respectively.

The data suggested that DC-CIK cells used as adjuvant therapy

in combination with first-line therapy can significantly reduce

the mortality and recurrence rate of advanced colorectal cancer.
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Cancer vaccines

One of the key factors or processes to be tackled to achieve

clinical benefit in cold CRC is to trigger immune response, while

cancer vaccine is an ideal immunotherapy strategy. The most

critical step in designing a cancer vaccine is to find the right

antigen. Tumor antigens are traditionally classified into tumor-

associated antigens (TAA) and tumor-specific antigens (TSA).

Nowadays, the principle of most therapeutic cancer vaccine is

based on the establishment of TAA -specific antitumor immune

response to eliminate tumor cells expressing these antigens (91).

Cancer vaccines include cell (autologous, DC) vaccines, protein/

peptide vaccines, and gene vaccines (92) (Figure 1). Many studies

have identified a variety of TAA expressed by CRC cells as potential

targets for vaccine immunotherapy, including CEA, WT1, MUC1,

RNF43, GUCY2C, SART3, and hTERT (91). The three targets that

are the most comprehensive and widespread are CEA (93),enteric

in guanylyl cyclase 2C (GUUCY2C) (94) and melanoma-associated

antigen (MAGE) (95).

CEA is less frequently expressed in intestinal epithelial cells but

is overexpressed in CRC cells. Nonetheless, CEA is poorly

immunogenic as an “autoantigen”, and although many methods

have been used to vaccinate against CEA, none of the earlier

reported trials have produced objective responses (96). Allosteric

peptide ligand (APL) is a strategy to solve this problem. A phase I

clinical trial was immunized with the amplified DCs loaded with

allosteric peptide ligands derived from the CEA (97) and two out of
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the 12 patients had stable disease. A patient with progressive mCRC

had completely eliminated lung metastasis and malignant pleural

effusion. Evidence indicates that anticancer chemotherapeutic

agents may in fact stimulate the vaccine-induced immune cell

responses through its antigenicity and adjuvanticity (98). A phase

II clinical trial tested the efficacy of the CEA-specific T cell response

initiated by the ALVAC (Canary pox virus) vaccine expressing CEA

and B7.1 combined with FOLFIRI chemotherapy in metastatic

colorectal cancer (99). Large increases in T cell levels were observed

in some patients. Of the 104 evaluable patients, the ORR was 40.4%,

with two complete responses, and another 37.5% were in a

stable condition.

Cancer vaccines against individual TAA have limited effects,

and the development of vaccines containing multiple TAA-

derived peptides or targeting multiple TAA’s is underway. In a

phase I clinical trial, patients received a combination of a novel

peptide vaccine derived from RNF43 (ring finger protein 43) and

TOMM34 (34-kDa translocase in the outer mitochondrial

membrane) and chemotherapy (100). Of the 21 evaluable

patients, 95% had enhanced specific CD8+ T cell infiltration,

and 83% were under control. The recently reported recombinant

poxvirus vaccine against MUC1 and CEA (BN-CV301) applied

in 12 patients (NCT02840994) showed high efficiency in

producing antigen-specific T cells directed against MUC1 and

CEA (101). Single-agent BN-CV301 produced a partial response

(PR) in one patient, and the disease stabilization period was

prolonged in multiple patients.
FIGURE 1

Schematic diagram of different types of cancer vaccines and characteristics of new adjuvants.
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Apart from relying on TAA, vaccine-induced immune

reactivity to antigens depends on the use of adjuvants, key

components that enhance antigen-specific immune response. One

study evaluated the efficacy of the WT colon tumor cell antigen

vaccine used with recombinant mouse GM-CSF and IL-2 as

cytokine adjuvants in a BALB/c murine tumor model (102). The

results showed that the combination effectively activated the

autologous T cell response, prolonged survival and significantly

inhibited tumor growth, compared to the adjuvant or the

inactivated antigen alone. Numerous studies have shown that

CpG, OX40 agonist, and anti-PD-1/PD-L1 antibodies can be used

as adjuvants to improve vaccine activity through different

mechanisms. It was newly explored that how the extent to which

different combinations of local injected antibodies to CpG ODN,

anti-PD-1, and OX40 agonists improved the efficacy of oncolytic

vaccinia-virus (VVs) vaccines armed against IL-2 (103). The results

showed that dual treatment with vvDD-mIL2 and CpG injection

resulted in specific CD4+ and CD8+ T cells response, weakening

immune suppression. PD-1 blockade also significantly promoted

the antitumor activity.
Cytokines

Since cytokines are important regulatory components of TME,

cytokine-based immunotherapy is a promising field in cancer

therapy. Cytokines are soluble proteins which mediate cell-to-cell

communication and can interfere with cell cycle in different cell

types (104). As molecular messengers of immune responses,

cytokines are able to modulate the host immune responses to

cancer cells, including T-cell initiation and activation, and effector

T-cell infiltration at cancer sites (105, 106). Cytokines can also be

targeted to bind to membrane receptors, and then directly affect

carcinogenesis by altering tumor phenotype (104). So far, there are
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more than 130 different functional cytokines, of which only two,

IFN-a and IL-2, have received FDA approval (107). Cold CRC is

characterized by low immune infiltration, and the function of

cytokines to expand the proliferation of immune cells and induce

the recruitment of immune cells is an ideal method to transform

cold tumors into hot tumors (Table 3).
Interferons

Interferon is of great significance for the development of novel

antitumor therapies. IFNs are divided into three types based on

their function and target receptors: type I (a, b, ϵ, k and w), type II
(g) and type III (l) (113).

Loss of IFN-I signaling is a typical characteristic of noninvasive

tumors. As one of the markers of hot tumors in TME, IFN- I,

including IFN-a and IFN-b, plays an important role in cancer

antigen presentation by activating a variety of immune cells and

upregulating MHC class I surface molecules (114). Because IFN-a
shows effective antiangiogenic activity (115), the combination of the

anti-VEGF antibody bevacizumab with IFN-a was approved by the

FDA as a first-line treatment for metastatic renal cell carcinoma in

2009 (116). Fusing IFN-a2 with anti-VEGFR2 significantly

inhibited the proliferation, migration and invasion of CRC cells,

and promoted the apoptosis and cell cycle arrest of CRC cells (108).

However, the affinity of IFN-a2 for its receptor and its direct

cytotoxicity were decreased in this combination. Thus, subsequent

studies mutated IFN-a to further improve the anti-tumor efficacy

and regulate TME more effectively by promoting dendritic cell

maturation and enhancing CD8+ T cell infiltration (109). Although

there is in vitro evidence that IFN-b inhibits tumor cell proliferation

more effectively than IFN-a, no clinical trials have demonstrated its

efficacy in cancer therapy (105). Additional preclinical and clinical

research is required to examine more potent combo therapies.
TABLE 3 Different applications of cytokines in colorectal cancer.

Approaches Model Outcome References

IFN-a2
Anti-VEFGR2

HCT-116 and SW620 human CRC cell
lines
HCT-116-bearing NOD-SCID mice model

Inhibiting migration and invasion of tumor
Arresting the cell cycle of CRC cells
Enhancing antitumor activity of DC cells

(108)

IFNa-mutant
Anti-VEFGR2

HCT-116 and SW620 human CRC cell
lines
CHO-pro hamster ovary cell line
HL-7702 human liver cell line
HCT-116-bearing BALB/c mice model

Enhancing ability to induce apoptosis in CRC cells
Promoting DC cell maturation and enhancing antitumor activity
Improving tumor microenvironment and inhibiting tumor growth and migration

(109)

IL-2
IL-15
cetuximab

52 patients with CRC Activating exhausted NK cells
Improving tumor killing ability of CRC-NK cells

(110)

IL-2
oxaliplatin plus 5-
fluorouracil

mCRC patients with or
without pretreatment lymphocytopenia

Enhancing efficacy of chemotherapy in patients with pretreatment
lymphocytopenia
Improving immune status

(111)

IL-21 C57BL/6J and C57BL/6J-ApcMin mice
model
B6.129S-Il21tm1Lex/Mmucd mice model

Increasing T cell and NK cell infiltration
Inhibiting the polarization of lymphocytes toward the Th17 phenotype

(112)
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As the only TFN-II, IFN-g is a pleiotropic cytokine both

coordinating pro-tumor and anti-tumor immunity in the tumor

microenvironment (117). Cell cycle inhibition can greatly

enhance the pro-apoptotic function of IFN-g (118). IFN-g has

been shown to selectively eradicate label-preserving cancer cells

(LRCC), a group of stem-like cancer cells that exhibit slow

proliferation, enhanced chemical resistance, and tumor-

initiation (119). Another study found increased PD-L1

expression through JAK2/STAT1 signaling after IFN-g
stimulation, which inhibited the antitumor immune response

(120). However, IFN-g gene signatures can be used as predictive

markers of clinical response to ICIs (121). Increased IFN-g
concentrations are associated with better ICB efficacy, and the

combination of ICIs and IFN-g may have additional value in

antitumor effects. The complex role of IFN-g in TME remains to

be studied in order to enhance its antitumor effect and limit its

tumor-promoting effect.
Interleukins (ILs)

The use of cytokines derived from the IL-2 family, such as

interleukin IL-2, IL-7, IL-15, and IL-21, to stimulate the anti-

tumor response is prevailing in the field of immunotherapy

(122). Among them, IL-2, IL-15, and IL-21 are also the most

widely studied subjects, with different effects on CD8+ T cells,
Frontiers in Immunology 09
NK cells and Tregs (123, 124). IL-2 can induce preferential

activation of Tregs and stimulate the expansion of CD8+ T cells

(125). Nevertheless, continuous exposure to IL-2 results in T cell

hyperactivation and is prone to apoptosis. IL-15 and IL-21 have

been shown to be superior to IL-2 in the development and

maintenance of NK cells, thus protecting them from apoptosis

(126). Interleukins, as monotherapy or combined with other

biological agents, are actively pursued in the clinical studies.

IL-2 is one of the cytokines approved by the FDA for the

treatment of metastatic RCC and metastatic melanoma. A study

showing that therapeutic strategies combining cetuximab, IL-2,

and IL-15 could activate phenotypic and dysfunctional blood

NK cells and improve cytotoxicity in CRC patients provided

novel insights into CRC therapies based on ILs (110). Another

study demonstrated that IL-2 pretreatment could promote

lymphocyte proliferation and enhance the efficacy of

oxaliplatin plus 5-fluorouracil chemotherapy in mCRC

patients (111).

IL-15 has attracted attention as a potential therapeutic agent

in CRC immunotherapy. A preclinical model demonstrated that

IL-15 deficiency increased tumor burden due to NK and CD8 +

T cell immunodeficiency as well as the inflammatory

environment supporting tumors, suggesting that intestinal

homeostas i s and inhibi t ing inflammat ion- induced

tumorigenesis were dependent on IL-15 (127). Another study

showed that IL-15 which was either administered alone in CRC
FIGURE 2

Applications of Immunotherapy in Cold CRC.
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rats or in combination with leucovorin reduced chemotherapy-

induced gastrointestinal toxicity and enhanced the antitumor

activity of 5-fluorouracil (128).

IL-21 has both tumor-promoting and tumor-suppressive

effects. Elevated IL-21 expression levels were detected in the

CRCmicroenvironment whose result indicating that IL-21 levels

were inversely correlated with poor survival (129). However,

another study proved that IL-21 stimulated a cytotoxic anti-

tumor response in CRC, and the lack of IL-21 promoted

intestinal tumor formation through the dysregulation of the

Th1/Th17 axis (112). A phase I trial tested the safety and

tolerability of a recombinant IL-21 (rIL-21) therapy combined

with cetuximab in stage IV CRC (130). The results showed rIL-

21 plus cetuximab was well tolerated at doses up to 100g kg (–1)

and led to increased expression of immune markers.
Conclusions

Immunotherapy has significantly altered the paradigm of

partial cancer treatment due to its significant and

durable therapeutic advantages. However, it has been

discovered that colorectal cancer is one of the tumor types that

does not react favorably to immunotherapy. Although the

effectiveness of ICI has been demonstrated in dozens of

clinical trials and with multiple FDA approvals, their response

was restricted to relatively fewer patients with dMMR/MSI-H

CRC. pMMR/MSS CRC, as a recognized cold cancer, is actually

a real challenge for immunotherapy due to the heterogeneity of

tumors and the complexity of the tumor microenvironment. In

order to achieve “cold” to “hot” neoplastic transformation in

MSS/pMMR CRC and subsequently overcome immunotherapy
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resistance, current immunotherapy-based research studies

include ICIs, ACT, cancer vaccines, cytokines, and

combinations of immunotherapies with chemotherapy,

radiotherapy, targeted therapy, and other therapies (Figure 2).

The discovery of novel medications, antibodies, and antigenic

targets is still necessary to win the game.
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