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Background: This study aimed to develop a vaccine that targets mutation-

derived neoantigen in Chinese non-small-cell lung cancer (NSCLC).

Methods: A cohort of 1862 Chinese NSCLC patients who underwent targeted

sequencing with a 1021-gene panel was investigated. HLA typing was done

using OptiType v1.0 and neoantigens were predicted by netMHCpan v4.0. HLA

LOH was inferred using the lohhla algorithm and TMB were quantified by

counting the total number of non-synonymous ones based on our panel data.

CIBERSORT was utilized to estimate the TME in different EGFRmutant subtype

by using TCGA data.

Results:HLA-A*11:01(42.59%) was the top one allele and HLA-A*33:03(12.94%)

ranked 12th. EGFR L858R (22.61%) was the most prevalent gene variant. The

binding affinity (IC50 MT = 22.9 nM) and shared frequency (2.93%) of EGFR

L858R in combination with HLA-A*33:03 were optimal. In a subsequent further

analysis on immunological features of EGFR mutant subtypes, 63.1% HLA loss

of heterozygosity LOH (HLA LOH) and 0.37% (7 of 1862) B2M aberrations were

found in our population, both had no significant association with EGFR mutant

subtypes suggesting that the process of antigen presentation involved HLA

LOH and B2M mechanisms in EGFR L858R is working. Tumor mutation burden
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(TMB) was investigated by utilizing our panel and showed that EGFR L858R had

the lowest TMB compared with other EGFR mutant subtypes. In addition,

analysis of 22 immune cell types from The Cancer Genome Atlas (TCGA) data

showed EGFR L858R was correlated with low level of CD8 T cells, activated

CD4 memory T cells and elevated level of macrophage M2 suggesting an

inhibited tumor microenvironment (TME).

Conclusion: Our study identified that EGFR L858R neoantigen had the

potential to generate cancer vaccines in NSCLC patients with HLA A*33:03.

The neoantigen-based vaccines may become an effective salvage regimen for

EGFR L858R subgroup after targeted therapy or immune checkpoint inhibitors

(ICIs) failure.
KEYWORDS

EGFR L858R mutation, neoantigen vaccine, HLA A*33:03, immunological features,
Chinese NSCLC
Introduction

Lung cancer is still the most common malignancy with

morbidity and mortality both ranking first worldwide, and non-

small-cell lung cancer (NSCLC) is a subset of lung cancer that has

extensive clinical and molecular heterogeneity (1, 2). Epidermal

growth factor receptor (EGFR) mutations are the most common

driver genes in NSCLC, followed by RAS and ALK (3, 4). Only a

subset of patients initially responds to targeted therapy,

nonetheless, the majority inevitably acquire drug resistance (5–7).

Currently, immune checkpoint inhibitors (ICIs) have

achieved positive laboratory results and remarkable clinical

responses in the treatment of many kinds of cancer, including

NSCLC (8–16). However, in the NSCLC clinical trials, EGFR

mutant patients benefit less from ICIs than patients with KARS,

BRAF, and MET mutations (8, 17–19). Previous studies have

reported that antigen expression and presentation deficiency, the

low mutation burden, immunosuppressive microenvironment,

and upregulation of PD-L1 may be the mechanisms that limited

efficacy of ICIs in EGFR mutant NSCLC patients (2, 20–23).

Yet, some NSCLC patients whose tumors are harboring EGFR

mutations do respond to ICIs and studies have continued to

focused on the tumor immune phenotype or somatic mutation

features to develop novel and more effective treatments for this

population. To date, the strategy that utilizes individualized

neoantigen vaccines derived from mutated genes against cancers
ncer; ICIs, immune

tor receptor; 19 del,

HLA LOH, HLA loss

TCGA, The Cancer
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has achieved success in both mouse models and the clinical

settings (7). Neoantigens generated from tumor-specific somatic

mutations are the optimal targets for T-cells and are capable of

mobilizing strong antitumor immune responses (24, 25).

To develop a vaccine that targets individualized neoantigen

in NSCLC patients with EGFR mutations who do respond to

ICIs, we performed a retrospective analysis of 1862 Chinese

NSCLC tumor tissues matched with normal tissue samples

which were previously profiled using our 1021-gene panel. We

then assessed the expression of mutated alleles and predicted

possible neoantigens. In this research, we have found that an

EGFR L858R mutation could be a good target for the

development of an individual vaccine for NSCLC patients with

HLA A*33:03. We then presented a further investigation on

immunological features (HLA LOH, B2M, TMB, and TME) of

EGFR mutant subtypes to procure the evidence supporting the

feasibility of EGFR L858R neoantigen. Our results not only

provide useful information for predicting response to ICIs, but

also introduce a promising treatment for Chinese NSCLC

patients with EGFR mutations who were failed ICIs therapy

and are without alternative therapy.
Materials and methods

Cohort

Clinical information of patients was collected from our

records. Patients who were diagnosed with NSCLC and

underwent targeted sequencing with a 1021-gene panel at

Geneplus-Beijing (Beijing, China) were deemed eligible for

analysis. For each patient tumor and normal (peripheral blood
frontiersin.org
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or normal tissue) samples were available. This study was

approved by the Ethics Committee of Fujian Cancer Hospital.

Written, informed consent was obtained from all participants

before inclusion.
HLA typing

HLA typing was done using the OptiType v1.0 to obtain the

four-digit HLA type at each locus of a patient (26). The Allele

Frequency Net Database was utilized to retrieve the allele

frequency (AF) of alleles in general Chinese Han populations

and carrier frequencies were calculated according to this

equation: carrier frequency = 1-(1-AF)2.
Neoantigen prediction and prioritization

For each patient, manually curated somatic mutations

(missense or in-frame indel, AF≥0.05) in coding regions were

also retrieved from previous records in our database.

Neoantigens were predicted using netMHCpan v4.0 (27).

Candidates with IC50 mut <500 nM and IC50 wild >=500 nM

were considered for further analysis. A putative neoantigen was

considered mutant-specific if the IC50 mut is <500 nM, and

especially, it is considered as a “strong binder” if the IC50 mut is

<50 nM.
Loss of Heterozygosity (LOH) in HLA
genes

The LOH status at all three human leukocyte antigen (HLA)

loci was inferred using the lohhla algorithm developed by

McGranahan et al. (28). A locus was considered impacted by

LOH if the computed p-value (‘PVal_unique’ in the output) was

<0.01. A patient with a LOH at an HLA locus was defined as one

who had at least one HLA locus impacted by LOH. All other

patients (including those who have homozygous alleles at all

three HLA loci) were considered not affected by HLA LOH.
Mutation number across four EGFR
mutation type

Samples were categorized into four sub-groups: with L858R

mutation, with deletions in exon 19 (19del), with other EGFR

mutations, and EGFR wild types (WT). Mutations in each

sample were quantified by counting the total number of non-

synonymous ones. Group-wise Kruskal-Wallis tests were

then performed.
Frontiers in Immunology 03
NSCLC datasets and preprocessing
in TCGA

Somatic mutations and RNA-sequencing (RNA-seq) data

were downloaded from TCGA (https://portal.gdc.cancer.gov/).

In consideration of no EGFR L858R mutation was found in 495

lung squamous cell carcinoma, therefore, we only mined

mutation data from lung adenocarcinoma samples. The lung

adenocarcinoma cohort was divided into four clusters as EGFR

L858R (n=21), EGFR 19del (n=21), EGFR other (n=29) and

EGFR WT (n=490). TCGA-LUAD (lung adenocarcinoma)

FPKM data containing 594 cancer tissue samples were

obtained. After exclusion, analysis was performed on a dataset

of 513 lung adenocarcinoma patients who have EGFR mutation

status data: EGFR L858R (n=21), EGFR 19del (n=19), EGFR

other (n=28), EGFR WT (n=445).
Inference of infiltrating cells in TME

The CIBERSORT (http://cibersort.stanford.edu/) is an

analytical tool developed by Newman et al. (29). To quantify

the proportions of immune cells in tissue samples. We used the

CIBERSORT algorithm and the LM22 gene signature, which was

used to distinguish 22 immune cell phenotypes, including B-

cells, T-cells, natural killer cells, macrophages, DCs, and myeloid

subsets. We utilized CIBERSORT to estimate the fractions of 22

immune cell types among different EGFR mutant subtype.
Statistical analysis

P < 0.05 was considered statistically significant. All data were

processed using the R software (version 3.6.0), GraphPad 7.0,

and AdobeIllustratorCS6.
Results

Diversity and prevalence of HLA
class I alleles

Data was collected from 1,862 patients who had been

diagnosed with NSCLC and underwent targeted sequencing

with a 1021-gene panel.

We recovered the HLA class I alleles (HLA-A, HLA-B, and

HLA-C) for each patient from NGS data. We found 172 different

alleles, of which 17 were carried by more than 10% of all patients

(Figure 1). The most prevalent allele, A*11:01, was found in over

40% of all patients. HLA*11:01 and HLA-A*33:03 allele

frequency (AF) are roughly comparable to the numbers
frontiersin.org
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retrieved from the Allele Frequency Net Database (30)

(Supplementary Tables 1, 2). A rarefaction curve shows that

the selected patients covered a large portion of HLA alleles,

although it did not reach saturation (Supplementary Figure 1).

Therefore, the selected population was not biased towards

certain allele types and the reported carrier rates were reliable.
Recurrence of genes and mutations

Somatic missense or in-frame indel mutations were selected

with an AF greater than or equal to 0.05 for neoantigen

prediction and post-prediction analysis. We detected over

10,000 mutations across all patients (about 5 per patient).

These mutations affected more than 800 genes. Genes EGFR

and TP53 were the most frequently mutated genes, they were

found mutated in 50% and 40% of all patients, respectively. They

were followed by LRP1B and KRAS, which were mutated in 13%

and 11% of all patients, respectively (Figure 2A). When

inspected at variant level, EGFR mutations L858R and

E746_A750del were overwhelmingly dominant. The

frequencies were 23% and 13% for each, over 7-fold and 4-fold

higher than the third mutation on the list. The EGFR genotyping

results mainly agreed with previous studies in the prevalence of

driver mutations in NSCLC patients (3, 4, 31). Interestingly,

LRP1B mutations were not among the top at variant level

(highest frequency at 0.11%), although the gene was mutated

in a moderate proportion of patients (Figure 2B). Despite the

aforementioned genes and mutations, a large majority of these
Frontiers in Immunology 04
genes and mutations were carried by few patients, typically less

than 1% of the population.
Overview of putative neoantigens

All 8- to 11-mer peptides were derived from all selected

mutations and predicted their binding affinity to the patient’s

HLA class I complexes to identify patient-specific neoantigens.

The prediction was performed for both mutant (MT) and wild

type (WT) peptides. We considered a MT peptide a candidate

neoantigen if the IC50 MT is smaller than 500 nM and the

corresponding IC50 WT is greater than or equal to 500 nM.

Furthermore, we categorized candidate neoantigens into “strong

binder” and “weak binder” groups by the IC50 MT threshold of

50 nM.

We ident ified ~1900 candidate neoant igens in

approximately 60% of all patients (1122/1862). The number of

neoantigen ranged from 1 to 15, with a median of 1. More than

half of the patients were predicted to possess only one

neoantigen (Figure 3). We further shortened the list to 1438

unique neoantigens. A neoantigen was deemed “unique” if there

was no other neoantigens derived from the same mutation and

of the same amino acid sequence. About 35% of these unique

neoantigens (504/1438) were derived from mutations found in

less than 1% of patients. And among these, 19% (98/504) were

strong binders (Figure 4A). Of the 934 unique neoantigens

derived from frequently mutated genes (genes that were found

mutated in more than 1% of all samples), 18% (169/934) were
FIGURE 1

17 different HLA class I alleles (HLA-A, HLA-B, and HLA-C) were found in more than 10% of all patients (n=1862).
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FIGURE 2

Recurrence of genes and mutations. (A) Mutated gene frequency among all patients. (B) Gene variant frequency among all patients.
FIGURE 3

The number of neoantigens in each sample.
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strong binders. Also, there were more than 1% of neoantigens

(13/934) with ambiguous binding strength, as they were able to

bind different HLA molecules with varying affinities. The

neoantigens were further categorized into two groups by the

mutation rate of the related genes (>1% samples vs. <=1%

samples). No statistically significant difference was found

between the proportions of strong and weak binders in the

two groups (Chi-square Test, p = 0.61) (Figure 4B). The result

indicates that concurrently mutated genes do not relate with

increased proportion of strong binding neoantigens.
Quantifying neoantigens

The “neoantigen frequency” was calculated, defined in this

study as the number of neoantigens related to a gene divided by

the number of all mutations targeting this gene, for each

neoantigen-producing gene (32). We did this from two
Frontiers in Immunology 06
perspectives: (1) the total neoantigen frequency, which reflects

the “ability” of a gene to produce neoantigen, and (2) the

neoantigen frequency corresponding to a specific HLA allele.

Note that the latter might be larger than the former, because

when calculating the total neoantigen frequency, neoantigens

that were able to bind more than one HLA molecule were only

counted once. Genes mutated in less than 1% of all patients were

removed. By doing this, we also removed any genes targeted by

less than 10 mutations. The EGFR, with a neoantigen frequency

of 0.646, was the top one neoantigen producing gene, and most

of these neoantigens were predicted to bind to A*11:01 (allele-

specific neoantigen frequency 0.150). We noticed that some

genes that were not so prevalent across patients still exhibited

a high neoantigen frequency, like ERBB2 (0.563; mutated in

4.9% of patients), CTNNB1 (0.321; 3.2% of patients), and BRAF

(0.357; 3.0% of patients) (Data not shown).

We repeated the above procedures at variant level. Instead of

calculating frequency, we counted the number of neoantigens
B

A

FIGURE 4

Overview of putative neoantigens. (A) Analytic pipelines to output putative neoantigens. (B) The proportions of strong and weak binders in two
groups. The two groups were categorized by the mutation rate >1% samples vs. <=1% samples.
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derived from a mutation directly, in total or HLA-specific. The

number of per-mutation neoantigens ranged from 1 to 5. The

EGFR L858R, the most prevalent mutation, produced four

neoantigens. Two mutations were strong binders, while most

mutations (except TP53 R110L, which was found in only 0.64%

of all patients) produced no more than one strong

binder (Figure 5).
Finding shared neoantigens

To find shared neoantigens that could be a good target for

generalized neoantigen-based vaccines we further investigated the

top twomutations by frequency; EGFR L858R and E746_A750del.

The two strong binders derived from EGFR L858R were

HVKITDFGR and RAKLLGAEEK. The latter binds to A*30:01

(IC50 MT = 47.5 nM and IC50 WT = 881.9 nM). Peptide

HVKITDFGR binds to three HLA complexes; A*31:01 (IC50

MT = 18.9 nM and IC50 WT = 11653.7 nM), A*33:03 (IC50 MT

= 22.9 nM and IC50 WT = 12734.0 nM), and A*68:01 (IC50 MT

= 19.6 nM and IC50 WT = 8625.5 nM). The shared frequency of

L858R and A*33:03 is 2.93% (22.61% × 12.94%).For the other two

the percentages were 1.19% (A*31:01, 22.61% × 5.26%) and 0.28%

(A*68:01, 22.61% × 1.24%). The most shared combination is

E746_A750del and A*11:01 with a frequency of 5.60%. However,

neither of the two neoantigens derived from this mutation was a

strong binder (Table 1).
Prevalence of HLA LOH across NSCLC

In order to predict the ability to present neoantigens of

different EGFR mutant subtypes (EGFR L858R, EGFR 19del,
Frontiers in Immunology 07
EGFR other rare, EGFR WT), we identified HLA LOH in our

cohort. We analyzed 1731 tumor exomes and found 639 patients

(36.9%) who were heterozygous at all HLA-I loci and 1092

patients (63.1%) who had LOH in at least one HLA-I locus in

tumors in total (Supplementary Table 3). The HLA LOH

occurrence rate was higher than the 40% reported in a

previous study (28). HLA LOH was calculated for the EGFR

WT (n=828) and EGFR mutant tumors harboring EGFR L858R

(n=380), EGFR 19del (n=315), and EGFR other (n=139)

(Figure 6A). We did not find that HLA LOH had any

association with EGFR mutation status. Additionally, we

examined the HLA LOH of selected HLA (A*33:03, A*31:01,

and A*68:01) and also found no difference (Figure 6B).

Some mutations that are vital for antigen presentation and

MHC class I expression were detected. In our cohort of 1862

NSCLC patients, only seven tumors were found to harbor b2-
microglobulin (B2M) mutations and there was no difference

among different EGFR mutant subtypes (Supplementary

Table 4). No further mutations like TAP1, TAP2, LMP2 and

LMP7 were identified in our cohort (Supplementary Table 5).
Association between EGFR mutant
subtypes and mutation number

To examine whether the EGFR mutant status influenced the

tumor mutation number, we determined the mutation numbers

across EGFR mutation subtypes in NSCLC tumors from our

cohorts. The median of EGFR WT (n=604) was five non-

synonymous mutations, EGFR L858R (n=421) was three non-

synonymous mutations, EGFR 19del (n=367) was three

non-synonymous mutations, and EGFR other (n=145) was

four non-synonymous mutations. The mutation number was
FIGURE 5

Neoantigens derived from a mutation frequency corresponding to a specific HLA allele.
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significantly lower in EGFR L858R and EGFR 19del tumors

compared with EGFR other and EGFR WT tumors. There was

no difference between EGFR L858R and EGFR 19del, which was

different from the previous report that EGFR 19del mutant lung

cancers had a lower mutation number compared with EGFR

L858R mutant lung cancers (2, 20) (Figure 7).
Association between EGFR mutant
subtypes and immune infiltration

When looking at the difference of 22 immune cells in EGFR

mutant subtypes, EGFR L858R mutation were found to be

associated with the relatively low level of CD8 T cells

(P=0.00032), activated CD4 memory T cells signatures

(P=0.0052) and elevated level of macrophage M2 (P=0.02)
Frontiers in Immunology 08
compared to EGFR WT tumors. However, the differences were

not significant among EGFR L858R, EGFR 19del and EGFR

other sites mutations (Figure 8).
Discussion

NSCLC accounts for about 85% of all lung cancers and is a

tumor with a high mutational load (33). Although NSCLC

harbors many known driven mutations, the inter-individual

genomic heterogeneity is extensive. Distinct molecular

subtypes differ in sensitivity to various treatments (2). For

instance, for treating EGFR-driven lung cancers, EGFR TKIs

has been the first choice. However, the acquired resistance to

TKIs is inevitable (5, 6, 34). As an emerging therapeutic

approach with the potential for durable responses, ICIs are not
TABLE 1 Shared neoantigens based on EGFR L858R and E746_A750del.

EGFR mutation EGFR neoepitope HLA restriction IC50 MT (nM) IC50 WT (nM) shared frequency (%)

L858R HVKITDFGR A*31:01 18.9 11653.7 1.19

A*33:03 22.9 12734.0 2.93

A*68:01 19.6 8625.5 0.28

RAKLLGAEEK A*30:01 47.5 881.9 1.71

E746_A750del IPVAIKTSPK A*11:01 158.2 31132.7 5.60

A*03:01 70.7 30763.0 0.63

A*03:02 376.4 29825.9 0.05

A*11:02 158.2 31132.7 0.48

A*11:20 65.1 26653.4 0.03

A*68:01 429.6 11669.5 0.16

AIKTSPKANK A*30:01 355.0 5721.5 1.00
BA

FIGURE 6

Frequency of HLA LOH in NSCLC. (A) The HLA LOH rate in the EGFR WT (n=828), EGFR L858R (n=380), EGFR 19del (n=315), and EGFR other
(n=139). (B) The HLA LOH rate in HLA A*33:03 (n=84), HLA A*31:01 (n=37), and HLA A*68:01 (n=12).
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recommended for EGFR-driven lung patients due to less benefit

derived compared with other molecular subgroups (8, 17, 18,

35). However, an EGFR mutation is the most common gene

alteration in NSCLC. There is a considerable need to find an

effective treatment option to significantly increase

immunotherapy efficacy in this subgroup.

In this study, we explored neoantigens in 1862 Chinese

NSCLC patients who underwent targeted sequencing with a

1021-gene panel. Even though some of the same mutations were

shared among different patients, not every mutation would play

a role as a neoantigen as the binding affinity to each patient’s

own HLA might vary (7, 36, 37). By combining the shared

frequency and binding affinity to identify tumor specific somatic
Frontiers in Immunology 09
mutations, our data revealed that EGFR L858R was the top

neoantigen producing gene allele, and most of these neoantigens

were predicted to bind to A*33:03. We then presented a further

analysis on immunological features of EGFR mutant subtypes to

procure the evidence supporting the feasibility of EGFR

L858R neoantigen.

A key step in neoantigen presentation and recognition by T-

cell receptors is controlled by HLA. Hence, not only the binding

affinity of the peptide to the HLA but also loss of HLA

expression, which is caused by HLA haplotype loss or

mutation of antigen presentation machinery genes such as

B2M, needs to be taken into account (28, 38–40). We found

that HLA LOH occurred in 63.1% NSCLC in our cohort, higher
FIGURE 7

Non-synonymous mutations in NSCLC from our cohorts. The median non-synonymous mutations of EGFR L858R (n=421) was three, of EGFR 19del
(n=367) was three, of EGFR other (n=145) was four and of EGFR WT (n=604) was five. **p < 0.01; ***p < 0.001; ****p < 0.0001 , ns, no significance.
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than 40% reported in a previous study and had no significant

association with EGFR mutant subtypes (28). Furthermore, the

HLA LOH of selected HLA (A*33:03, A*31:01, and A*68:01) also

did not show any difference. We next examined B2M

aberrations. Specifically, we found only one form of frameshift

mutation in B2M: p.L15Ffs*41 and did not find B2M aberrations

to be significantly enriched in any subtypes of EGFR mutations.

Since B2M is essential to the assembly of all HLA class I

complexes (41), and HLA LOH may facilitate immune evasion

(38), our negative findings indicated that the EGFR L858R may

not have a deficiency in neoantigen presentation, at least HLA

LOH and B2M mutations did not play a crucial role in the

immune resistance of EGFR L858R patients.

TMB contributes to enhancing antigenic response through

the generation of neoantigens (42, 43). Accordingly, we next

sought to evaluate the correlation between the attributes of the

TMB and EGFR mutant subtypes using our panal. Our panel

analyses demonstrated that EGFR L858R and EGFR 19del had

the lowest TMB compared to other EGFR rare sites mutants and

EGFR WT, though no difference was noted in EGFR L858R and

EGFR 19del. This is in line with the lower response rate of EGFR

mutant NSCLCs treated with ICIs, for which low TMB was

deemed to be a major culprit of low efficiency of immunotherapy

for EGFR L858R NSCLC. However, this was different from other

studies that EGFR 19del mutant lung cancers had a lower TMB

compared with EGFR L858R mutant lung cancers (2, 20), might
Frontiers in Immunology 10
be due to, for instance, different races, histology and stages.

Moreover, tumor cells are embedded in the tumor

microenvironment (TME), suggesting that intercellular

relationships are as important as genomic factors (44, 45). In

our study, we estimated the fractions of 22 immune cell types of

NSCLC from TCGA and studied the correlation between the

TME and EGFR mutant subtypes. We found EGFR L858R was

correlated with lower percentage CD8 cells, lower percentage

activated CD4 memory T cells and higher percentage

macrophage M2 compared with EGFR WT. Taken together,

these revealed an inhibited TME in the EGFR L858R subgroup.

We assembled the largest cohort of NSCLC cases to explore

tumor-specific somatic mutations by targeted sequencing with a

1021-gene panel for developing neoantigen vaccines. In our

analysis, the EGFR L858R neoantigen was identified in an HLA

subtype-specific manner that could be used to generate cancer

vaccines in HLA A*33:03 subsets patients. EGFR L858R in HLA

A*33:03 patients would be relevant to 2.93% of the population.

Given that lung cancer is the most common cancer, the percentage

of patients who may benefit is considerable. We then proposed that

the lower TMB and inhibited TME may be the reason for the week

immunogenicity of the EGFR L858R subset of NSCLC. There were

no deficiencies in the HLA LOH and B2Mmechanisms, suggesting

that the process of antigen presentation of EGFR L858R is working.

Our research has some insufficiency. One limitation was that a

1021-gene panel lacks sufficient sequencing data compared with
FIGURE 8

TME in NSCLC from TCGA database. TME, tumor microenvironment. TCGA, The Cancer Genome Atlas.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1022598
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2022.1022598
WES or WGS, and only covers a proportion of all coding regions.

With the exception of B2M, it did not cover gene mutations related

to the HLA presentation which have been implicated as resistance

mechanisms to ICIs, like TAP1, TAP2, LMP2 and LMP7 (40, 46,

47). However, since the panel covers most concurrently mutated

genomic regions, it is capable of capturing necessary information. In

addition, as an indispensable component of neoantigen peptide

recognition, the T-cell receptor (TCR) repertoire profiling needs to

be explored (48). Recent work on NSCLC has investigated whether

the TCR repertoire enables assessment of T cell diversity and T cell

clonal expansion and indicated that EGFR mutant tumors exhibits

lower T cell clonal expansion (49, 50). In the future, we plan to

perform TCR sequencing to elucidate whether there exist significant

differences in the TCR repertoire diversity in EGFR mutant

subtypes, aiming to investigate the distinct characteristics of TCR

repertoire patterns in EGFR L858R. Another possible limitation of

this study is that we lack available sequencing data to directly

compare TME in this cohort. To address this, we utilized the TCGA

data source, but this data source does not represent the real tumor

immunogenomic landscape in our Chinese cohort. At last, this is a

retrospective study and the clinical information like stages and

treatment strategies were incomplete. So we could not conduct

stratified analysis to explore some underlying mechanisms.

We excluded frameshift mutations from analysis. The

rationale behind this is that there is a chance to raise false

positives. Such mutations often result in premature

termination codons, which cause the degradation of

transcripts via nonsense-mediated mRNA decay (NMD)

before translation (51). An approach to assess NMD

efficiency through RNA-Seq has been published (52), but is

not applicable here due to the lack of RNA-Seq data. Still, we

estimated to what extent our findings are biased. A total of 975

frameshift mutations (915 unique) were detected, spanning 670

samples. We recalculated the mutation frequency for each gene

with frameshift taken into account. The top 6 genes by

mutation frequency did not change, while the remaining

genes were reordered. For some genes, the mutation

frequency increased after the recalculation, such as TP53 and

LRP1B. This indicates that in some patients only frameshift

mutations were detected on these genes. TP53 mutation

frequency increased from 40.44% to 48.34%, indicating that

we probably have underestimated its potential role in

neoantigen producing. However, the most frequent

frameshift mutation STK11 P281Rfs*6 was shared by only six

patients, which translated into a percentage of 0.3%

(Supplementary Table 4). This did not serve our purpose of

finding shared neoantigens.

In summary, our research identified that EGFR L858R

neoantigen had the potential to generate cancer vaccines in

NSCLC patients with HLA A*33:03 and revealed the possible

underlying immunological features between EGFR mutant

subtypes. Our finding provides the basis for further

investigations into which neoantigen-based vaccines may
Frontiers in Immunology 11
become an effective treatment strategy for patients with EGFR

L858R mutation.
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