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m7G regulator-mediated
methylation modification
patterns define immune cell
infiltration and patient survival
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Numerous studies have demonstrated the important roles of epigenetic

modifications in tumorigenesis, progression and prognosis. However, in

hepatocellular carcinoma, the potential link between N7-methylguanosine

(m7G) modification and molecular heterogeneity and tumor microenvironment

(TME) remains unclear.

Method: We performed a comprehensive evaluation of m7G modification

patterns in 816 hepatocellular carcinoma samples based on 24 m7G

regulatory factors, identified different m7G modification patterns, and made a

systematic correlation of these modification patterns with the infiltration

characteristics of immunocytes. Then, we built and validated a scoring tool

called m7G score.

Results: In this study, we revealed the presence of three distinct m7G

modification patterns in liver cancer, with remarkable differences in the

immunocyte infiltration characteristics of these three subtypes. The m7G

scoring system of this study could assess m7G modification patterns in

individual hepatocellular carcinoma patients, could predict TME infiltration

characteristics, genetic variants and patient prognosis. We also found that

the m7G scoring system may be useful in guiding patients’ clinical use of

medications.

Conclusions: This study revealed that m7Gmethylationmodifications exerted a

significant role in formation of TME in hepatocellular carcinoma. Assessing the

m7G modification patterns of single patients would help enhance our

perception of TME infiltration characteristics and give significant insights into

immunotherapy efficacy.
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Introduction

Liver cancer is one of the most common malignancies

worldwide, and the primary pathological type of the disease is

hepatocellular carcinoma (HCC). The incidence of liver cancer is

expected to exceed 1 million cases by 2025 (1). Liver cancer is the

fourth leading cause of cancer-related deaths worldwide (2).

Liver cancer has become one of the most challenging problems

in the world due to its high incidence and mortality rate.

Currently, the mainstay clinical treatments for liver cancer

involve surgical resection, liver transplantation, ablation and

interventional embolization therapy, etc. These traditional

treatments have been made remarkable progress and been

successful in the treatment of early stage liver cancer.

However, as liver cancer is characterized by high invasiveness,

metastasis and recurrence rate, and most of the liver cancers are

in advanced stages when diagnosed, the treatment of middle and

late stage liver cancer has long been a clinical challenge, and the

clinical outcome of patients is still not satisfactory (3). Over the

past few years, there have been numerous studies devoted to

treat liver cancer with targeted drugs and immunotherapy, and

significant progress has been made with molecularly targeted

therapeutic agents represented by the multikinase inhibitor

sorafenib. However, the 5-year survival rate of sorafenib for

HCC is very poor, and the prognosis for advanced hepatocellular

carcinoma remains poor with limited successful cases (4).

Immunotherapy has shown impressive clinical efficacy in a

small group of patients, while the majority of patients,

unfortunately, have received little or no clinical benefits, falling

far behind of their clinical needs (5, 6). Thus, it is urgently

needed to further develop diagnostic markers and therapeutic

targets in hepatocellular carcinoma. In order to develop more

effective therapeutic strategies to improve the patients’ clinical

prognosis, a deeper comprehension of the molecular

mechanisms underlying hepatocarcinogenesis and malignant

progression becomes even more essential.

During the development of chronic liver disease and

cirrhosis, hepatocytes gradually accumulate a large number of

genetic mutations and epigenetic changes (7), becoming a major

pathogenetic basis of hepatocellular carcinoma. Numerous

studies have demonstrated that epigenetic modifications play

significant roles in tumorigenesis, progression, treatment, and

prognosis (8, 9). RNA methylation modifications are widely

present in life processes as the third level of epigenetics, and over
Abbreviations: AUC, Area under the curve; DEGs, Differentially expressed

genes; EMT, Epithelial-mesenchymal transition; HCC, Hepatocellular

carcinoma; ICC, Intrahepatic cholangiocarcinoma; ICI, Immune checkpoint

inhibitor; IHC, Immunohistochemical; m7G, N7-methylguanosine; PCA,

Principal component analysis; ROC, Receiver operating characteristic;

SMG, Significant mutation gene; TME, Tumor microenvironment.
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150 RNA modifications have been identified. The main RNA

methylation modifications widely found on mammalian genes

include m6A, m1A and m7G, etc (10). RNA methylation is the

occurrence of methylation modifications at different locations

on the RNA molecule, and these methylation modifications

could regulate processes such as RNA variable splicing (11),

exonucleation (12), stabilization (13), translation (14), and

immunogenicity (15). When methylation modification occurs

at the nitrogen atom at position 7 of the guanine of the RNA, it is

described as N7-methylguanosine (m7G). In the process of post-

transcriptional regulation, m7G modification is one of the

commonest base modifications (16). Under normal conditions,

m7G methylation modifications within human mRNA are

basically concentrated in the 5’ untranslated region and in

environments rich in both A and G bases, while m7G

modifications improve the stability of mRNA (17, 18). The

m7G methylation modification is a dynamic biological process

that allows the organism to adapt to a constantly changing

environment. For example, m7G can be dynamically regulated

by H2O2 and heat shock treatment and then evolves to become

abundant in the coding region and 3’UTR region of genes.

Besides being found on mRNAs, m7G methylation

modifications are present in tRNAs, miRNAs, and rRNAs

(19–21).

In recent years, m7G methylation has become a rising

hotspot in RNA modification research. With increased

research, m7G modifications have been demonstrated to play

significant roles in regulation of normal human biological

processes (16, 22). And abnormal m7G methylation

modifications have also been found to be closely associated

with dysregulation of RNA, which may ultimately lead to

disease and cancer (23). Several studies have detected the

presence of m7G modifications in HCC, and m7G

modifications were closely associated with the development of

HCC (24–26). Chen et al. found that m7G tRNA modification

and its catalase metttl1 were expressed elevated in HCC, and

METTL1-mediated m7G tRNA modification could promote

mRNA translation, which was shown to accelerate the

development and progression of hepatocellular carcinoma and

correlated with poor prognosis of hepatocellular carcinoma by in

vitro and in vivo experiments (24). Xia et al. found that the RNA

methyltransferase WDR4 was highly expressed in hepatocellular

carcinoma, and upregulation ofWDR4 expression enhanced the

methylation level of m7G in hepatocellular carcinoma. WDR4

promotes tumor cells metastasis and resistance to sorafenib via

epithelial-mesenchymal transition (EMT), thereby promoting

the proliferation of hepatocellular carcinoma cells (27).

Tumorigenesis and progression is a multistep process which

involves not only epigenetic variation in tumor cell, but also the

tumor microenvironment (TME) plays essential roles in tumor

development. The hepatocel lular carcinoma tumor

microenvironment is a dynamical system composed of cancer

cell, cytokine, extracellular matrix, and immunocyte
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subpopulations (28), and the interactions between hepatocellular

carcinoma cells and various immune components in the TME

are diverse and complex. Almost all major tumor immune cells

are important in TME of hepatocellular carcinoma. TME is

tightly associated with the initiation, progression and metastasis

stages of HCC (29). Recently, several studies have revealed that

RNA methylation impacts the effectiveness of tumor therapy by

modulating tumor immunity in addition to directly influencing

tumor development (30–32). Nevertheless, it is unclear whether

m7Gmethylation modifications in hepatocellular carcinoma also

play a potential role in tumor microenvironment (TME)

formation. A comprehensive evaluation of the variability and

sophistication of TME landscape may help enhance the guidance

and prediction of immunotherapeutic responses and would help

to identify new therapeutic targets.

In this study, we comprehensively assessed the association of

m7G modification patterns and immunocytes infiltration

features by analyzing genomic information from total 816

HCC samples. We identified three m7G modification patterns

with unsupervised clustering, and also found that the TME cell

infiltration characteristics among these three subtypes were

distinctly different. Moreover, with the consideration of the

heterogeneity of m7G modification among individual patients,

we formulated a score system to quantitate m7G modification

patterns in individual patients and to predict the clinical

response of patients to immune checkpoint inhibitor

(ICI) therapy.
Frontiers in Immunology 03
Materials and methods

Patient and clinical samples

A total of 10 pairs of HCC and adjacent non-cancerous

tissues were collected, all from Beijing Youan Hospital. The

samples were examined by three experienced pathologists.All

patients provided informed consent,and the study protocol was

approved by the Ethics Committee of Beijing Youan Hospital.
Immunohistochemistry

Immunohistochemical (IHC) staining was performed

with NUDT16 antibody (12889-1-AP, proteintech).

Immunohistochemical examination was performed by two

pathologists, and positive staining cells were found to be

visible in tumor and paired adjacent tissues. The IHC score

was computed by the percentage of stained cells and the intensity

of staining (33).
Collecting and pre-processing data

Our study workflow was illustrated in Figure 1. We

downloaded RNA expression data and clinical information of

HCC samples from TCGA database, GEO database and ICGC
FIGURE 1

Overview of this work.
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database, and RNA expression data of 50 normal liver tissue

cases from TCGA database. Finally, a total of 364 tumor cases

from TCGA-LIHC cohort in TCGA database, 231 tumor cases

from LIRI-JP cohort in ICGC database and 221 tumor

cases from GSE14520 cohort in GEO database were included.

These tumor samples all have complete clinical information

including survival time and status, and all have more than half of

the gene expression values. For the TCGA-LIHC cohort, the

downloaded FPKM values were converted into log2 (TPM+1)

values. Somatic mutation data were obtained from TCGA

database. The clinical characteristics of the TCGA-LIHC and

GSE14520 cohorts were listed in Table S1 and Figures S1A, B.

We used R (version 4. 1. 2) to analyze the data.
Identification of molecular subgroups
and calculating DEGs

Through previous studies, we extracted 24 genes related to

m7G. Differential expression of these 24 genes between 50

normal and 364 tumour cases from TCGA datebase was

analyzed by the”limma” package in R. We extracted the

expression matrix of these genes in the tumor samples in

TCGA-LIHC cohort, and consensus clustering was performed

using “ConsensusClusterPlus” package (34). DEGs between the

three clusters were analyzed using ‘limma’ package with the

cutoff criteria of |log2 fold change (FC)| > 1 and P-value< 0. 05.
Functional analyses, TIME evaluation and
immunophenoscore

To analyze the functions of the shared DEGs among the

above three subtypes, Gene Ontology Function was obtained

using the the”clusterprofiler”package in R. We obtained the a

gene set of “h.all.v7.5.1. symbols” from MSigDB. Mariathasan

et al. built gene sets in which genes related to certain biological

processes are stored (35). Based on the above gene set, GSVA

was performed using the “GSVA” and “limma” packages to

visualize alterations in signaling pathways among three subtypes

(36). We used the ESTIMATE algorithm to calculate the

immune score. The immunophenotype (IPS) is a better

predictor of response to anti-CTLA4 and anti-PD1 regimens,

and we downloaded the relevant scores from The Cancer

Immunome Atlas (TCIA) for the TCGA-LIHC cohort.
Estimation of TME cell infiltration

Cohorts of 23 immune-related cells were downloaded and

collated (37). 23 immune infiltrating cells in tumor samples were
Frontiers in Immunology 04
analyzed by ssGSEA enrichment using the “GSVA” software

package. The score calculated using ssGSEA were performed to

express relative abundance of different immunocytes in the

samples (38).
m7G score construction

In order to quantitate the m7G modification pattern of

individual tumors, we constructed a system called m7G score,

which was established as follows:

We selected overlapping DEGs found in different m7G

clusters. Prognostic analysis was then performed by using

univariate Cox regression analysis for the above DEGs.

Extraction of genes with significant prognosis was used to

construct the m7G score by principal component analysis

(PCA). We extracted PC1 and PC2 as signature scores. We

then used a similar approach to define the m7G score as in

previous studies (39, 40). m7Gscore=∑(PC1i+PC2i), i is the

expression of genes associated with the m7G phenotype.
Collection of immune checkpoint
blockade clinical information and
gene expression

The result of a systematic search we performed was in the

inclusion of an immunotherapy cohort: uroepithelial carcinoma

intervening with atezolizumab (IMvigor210 cohort). The

downloaded data were normalized and converted to

TPM values.
Drug sensitivity analysis

We utilized the “pRRophetic” package to analyze the

sensitivity to different m7G clusters to different small molecule

drugs. We utilized CellMiner database to assess the association

between different m7G regulators and drug sensitivity (41).
Cell culture and transfection

Human liver cancer cell line (Huh-7 and HepG2) was

purchased from the American Type Culture Collection. Huh-7

cells and HepG2 cells were cultured in DMEM (Gibco) containing

10% fetal bovine serum (Gibco) and were cultured in a humidified

incubator with 5% CO2 at 37°C. Si-NUDT16 (Suzhou, China,

sequences-1: 5’GGUUAAUAAUAGAGAGCUAUG’3;sequences-

2 :5 ’CGACAGAUGUUGAGGAGAAUG ’3) were used

for transfection.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1022720
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1022720
Cell adhesion assay

Add 50 µl of fibronectin (Biocoat) or vitronectin

(PeproTech) to a 96-well plate (Corning) and incubate

overnight at 4 degrees Celsius. The unbound fibronectin was

washed off the next day and the 96-well plate was closed with 1%

BSA for two hours. 10,000 cells were added to each well and

cultured in DMEM (Gibco) for 2 hours. Unbound cells were

washed away, fixed with 4% paraformaldehyde for 15 min and

stained with 0.1% crystal violet for 15 min.
Statistical analyses

The Student’s t-test was applied to normally distributed

variables and the Wilcoxon rank sum test was applied to non-

normally distributed variables. The Kruskal-Wallis test and one-

way ANOVA were applied for the nonparametric and

parametric methods, respectively (42). Survival curves were

prognostically analyzed using the Kaplan-Meier method, and

log-rank tests were used to determine the significance of

differences. We used a univariate Cox regression model to

calculate the hazard ratios (HR) of m7G regulators and m7G

phenotype-associated genes. Independent prognostic factors

were identified by multivariate Cox regression models. We

stratified the samples into m7G score high and low subgroups

using the surv-cutpoint function in the ‘survival’ package. The

specificity and sensitivity of m7G score were assessed using

receiver operating characteristic (ROC) curves, and the area

under the curve (AUC) was calculated using the ‘timeROC’

package. The waterfall function of maftools package was used to

present the mutation landscape. We used the ‘RCircos’ package

to map the copy number variation of 24 m7G regulators on 23

pairs of chromosomes. All p-values were bilateral and p-values

less than 0. 05 was statistically significant.
Results

Landscape of genetic variation of m7G
regulators in liver cancer

We explored the role of 24 m7G RNA methylation-regulated

genes of HCC in this study (Table S2). GO enrichment and

Metascape analysis were performed on 24 m7G regulators, and

the result showed significantly enriched biological processes

(Figure 2A; Figure S1A). We first established the incidence of

somatic mutations in 24 m7G regulators in HCC. 25 (6. 9%)

samples out of 364 showed genetic alterations in m7G regulators,

mainly consisting of missense mutations. GEMIN5 and EIF4G3

had the highest mutation frequency, followed by CYFIP1

(Figure 2B). Further analysis of the 24 m7G regulators showed
Frontiers in Immunology 05
that CNV mutations were prevalent. AGO2, NCBP2, GEMIN5

and LARP1 all showed extensive CNV amplification. In contrast,

EIF4G3, EIF4E, DCPS, EIF4E3, and EIF4A1 had widespread

CNV deletions (Figure 2C). The CNV alteration positions of the

24 m7G regulators on the chromosomes are depicted in

Figure 2D. Principal component analysis (PCA) was

performed on tumor and normal samples, and 24 m7G

regulators were found to thoroughly separate them

(Figure 2E). Further analysis yielded that only NUDT10 and

EIF4E3 were expressively down-regulated in HCC samples,

while the other 22 genes were expressively up-regulated in

HCC samples (Figure 2F). The expression of CNV-amplified

m7G regulators was markedly higher in HCC specimens than in

normal control specimens, such as AGO2, NCBP2, GEMIN5 and

LARP1, while the expression of EIF4E3 was significantly lower in

tumor specimens (Figures 2C, F). Furthermore, Spearman

correlation analysis was used to evaluate the interregulatory

effects between these m7G regulators (Figure S1B). Cox

regression analysis of these m7G regulators was performed in

relation to the prognosis of HCC patients (Figures S1C, D). A

forestplot showed that NUDT16 was considered as a risk factor.

The above analyses showed that the genomic and transcriptomic

landscapes of m7G regulatory factors were linked and different in

normal and HCC samples. Therefore, genetic variation and

altered expression of m7G regulatory factors played significant

roles in the development of HCC.
Identification of m7G modification
patterns mediated by 24 regulators

Data of 364 samples with liver cancer in TCGA-LIHC cohort

were used for analysis. In the m7G regulator network, the

interactions and connections between 24 m7G regulators and

their prognostic significance in HCC patients were

comprehensively described. The results suggested that the

intercommunication of these 24 m7G regulators may function

critically for the formation of distinct m7G modification patterns

and associated with cancer development and progression

(Figure 3A). With these assumptions, we used unsupervised

clustering to stratify samples into distinct m7G modification

patterns according to these 24 m7G regulators. Accordingly, we

stratified three different clusters of modified patterns, including

78 cases in cluster A, 134 cases in cluster B and 152 cases in

cluster C (Table S3; Figures S2A–D). We referred to these

subgroups m7G cluster A-C, among which m7G cluster B and

C showed a prominent survival advantage, while m7G cluster A

had the worst prognosis (Figure 3B). Furthermore, we noticed

that there were remarkable differences in the expression of m7G

regulators among distinct m7G modification patterns. The vast

majority of genotypes were significantly elevated in the m7G

cluster A subtype, such as METTL1, WDR4, DCP2, etc

(Figure 3C; Figure S2E).
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The m7G modification patterns
characterized by distinct
immune landscapes

In order to explore biological behavior behind these distinct

m7G clusters, GSVA enrichment analysis was performed. The

results showed that m7G cluster A was remarkably abundant in

oncogenic activated related processes, such as Myc targets, PI3K

AKT MTOR signaling pathway. While m7G cluster B showed

enrichment in metabolism-related pathways, such as fatty acid

metabolic signaling pathways, as well as m7G cluster C that was
Frontiers in Immunology 06
remarkably abundant in processes related to immune activation,

such as inflammatory response and complement signaling

pathway (Figure 3D). Additionally, we constructed heatmap

for visualizing and comparing the relative abundance of 23

immune infiltrating cells under different clusters (Figure 4A).

Surprisingly to us, subsequent analysis of TME cells infiltrates

showed that m7G cluster A was abundant in innate immunocyte

infiltrates, including activated dendritic cell, immature dendritic

cell, plasmacytoid dendritic cell, and MDSC. However, patients

in m7G cluster A showed no matched survival advantage.

Previous studies have found that immune rejection tumors
B

C

D

E F

A

FIGURE 2

Profiles of genetic alterations of m7G regulators in HCC. (A) Metascape enrichment network. Clustering annotations were color-coded.
(B) Among 364 HCC samples, 25 occurred genetic alterations in 24 m7G genes with a frequency of 6.87%, consisting mainly of missense
mutations. The right-hand side numbers represent the frequency of mutations in individual regulators. Each column indicates a single samples.
(C) The frequency of CNV mutations in 24 m7G regulators was prevalent. The column indicates alteration frequency. The amplification
frequency, red dots.; The deletion frequency, green dots. (D) CNV of the m7G regulator changes position on the chromosome. (E) PCA of 24
m7G regulators that can distinguish tumor patients from normal patients. (F) Differences in mRNA expression levels of 24 m7G regulators
between HCC and normal patients. Asterisks represent statistical p-values (*P< 0. 05; **P< 0. 01; ***P< 0. 001).
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B

C

D

A

FIGURE 3

m7G modification patterns and related biological pathways. (A) Interaction of 24 m7G regulators expressed in HCC. The size of every circle
indicated the prognostic effects of individual regulators and scaled by p-value. m7G regulators, red; favorable factors, green; risk factors, purple.
(B) Survival curve for survival of 364 HCC patients in TCGA-LIHC cohort of different m7G clusters. The numbers of patients in m7G cluster A, B,
and C are 78, 134, and 152, respectively. (C) Comparing the expression of 24 m7G regulators between three m7G clusters. (D) GSVA enrichment
analysis displaying the activation status of biological pathways with different m7G clusters. The heatmap was made to visualize these biological
processes, with yellow representing activated pathways and green representing inhibited pathways. Asterisks represent statistical p-values
(*P < 0. 05; ***P < 0. 001).
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were distinguished by the presence of numerous immunocytes,

but these immunocytes remain in the stroma surrounding the

tumor cell nests without penetrating the parenchyma of the

tumor cell nests. Stromal activation in TME was considered T-

cell suppressive (43). GSVA analysis revealed that cluster A was

remarkably relevant to stromal activation such as EMT and

TGFb, which confirmed our speculations (Figure 4B). The above

results verified our suspicions. We further characterized the

immune infiltration using CIBERSORT and found that

antitumor lymphocyte subsets such as CD8 T cell and

activated NK cell were mainly abundant in m7G clusters B and

C (Figure 4C). Taking into account that PD-L1 is a proven

biomarker to predict immunotherapy response (44), we
Frontiers in Immunology 08
identified a significant upregulation of PD-L1 expression levels

in m7G cluster A and C subtypes (Figure 4D).

By Spearman correlation analysis, the specific correlation

among each m7G regulator and immune cells infiltration was

further characterized (Figure 5A). High expression of EIF4E3

and NUDT10/11 remarkably correlated with enhanced immune

cell infiltration, whereas expression of NUDT16 was negatively

relevant to the level of immunocyte infiltration. In these m7G

regulators, we observed a remarkable negative association of

NUDT16 with prognosis and immune infiltration (Figures 5A,

B). We used ESTIMATE algorithm to quantitate the overall

immunocyte infiltration in patients with high and low NUDT16

expression. It was identified that NUDT16 low expression
B

C D

A

FIGURE 4

TME characteristics in different m7G modification patterns. (A) The heatmap used to visualize the infiltration of 23 immunocytes in three m7G
clusters. Clinicopathological information including age, gender, tumor stage, and m7G cluster was shown in the annotation above. Yellow
represented high expression of m7G regulators and green represented low expression. (B) In TCGA-LIHC cohort, m7G modification patterns
were differentiated by distinct features. (immune-related signature, DNA repair-related signature and matrix-related signature). (C) Abundance of
TME-infiltrated cells in the three m7G clusters. The line in the box indicated the median value and the scatter indicated the abnormal value. The
upper and lower ends of the boxes indicated the interquartile range of values. (D) Comparison of PD-L1 expression levels of three m7G clusters.
The whiskers encompassed 1.5 times the interquartile range. The upper and lower ends of the boxes indicated the interquartile range of values.
Asterisks represent statistical p-values (*P < 0. 05; **P < 0. 01; ***P < 0. 001).
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exhibited a higher immune score, implying that NUDT16 low

expression enhances immunocyte infiltration in TME, thus

corroborating the above results (Figure 5C). We then

investigated the differences in the specificity of 23 TME-

infiltrating immunocytes in patients with high and low

NUDT16 expression. We found significantly increased

infiltration of 23 TME immunocytes in the tumor with low

NUDT16 expression compared to those with high expression

(Figure 5D). We noticed that NUDT16 was significantly

and negatively relevant to the infiltration level of activated

dendritic cells and CD8 T cells. Furthermore, we also found

that NUDT16 was seriously and negatively related to the levels of

several immune-related functions such as T cell co inhibition,
Frontiers in Immunology 09
T cell co stimulation, CCR, check point and APC co

stimulation (Figure 5E).

To further validate the effect of NUDT16 on TME immune

infiltration, we performed further analysis using the LIRI-JP

cohort. Consistent with previous result, patients with low

NUDT16 expression had higher immune score (Figure S3A).

We further compared the infiltration of aDCs and CD8 T cells

between high and low NUDT16 subgroups and showed that they

were more infiltrated in the low NUDT16 expression group

(Figures S3B, C). Based on the above results, we found that

NUDT16 was significantly and negatively relevant to the

infiltration level of activated dendritic cell, which are

responsible for antigen presentation and initial T-cell
B

C

D E

A

FIGURE 5

Correlation of TME infiltration with m7G regulators and the role of NUDT16 in hepatocellular carcinoma. (A) The correlation between each
immunocyte and individual m7G regulators was analyzed by spearman analysis. (B) Overall survival was analyzed using Kaplan-Meier curves for
high and low NUDT16 expression subgroups. (C) Distribution of immune scores in high and low NUDT16 expression subgroups. (D) Comparison
of the differences of individual immunocytes between the high and low NUDT16 expressing subgroups. (E) Comparison of the differences in
immune-related functional levels between high and low NUDT16 expressing subgroups. Asterisks represent statistical p-values (*P < 0. 05;
**P < 0. 01; ***P < 0. 001).
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activation and have a significant role in tumor immunity. To

further verify the effect of NUDT16 on the activation of DCs, we

examined the expression of specific markers of aDCs in the high

and low NUDT16 groups. These markers were identified by

Pornpimol et al. and can specifically represent aDCs (37). As

expected, the expression of specific markers of aDCs was

increased in the low expression group of NUDT16, suggesting

that increased expression of NUDT16 may inhibit the activation

of DCs (Figure S3D). Activation of dendritic cells is dependent

on the high expression of MHC molecules, co-stimulatory

factors and adhesion factors. We therefore compared the

expression of MHC molecules, co-stimulatory factors and

adhesion factors in the high and low NUDT16 expression

groups. The result showed that CD80, CD86, HLA-DMA,

HLA-DMB, HLA-F, HLA-L, ICAM1, ICAM2 and PDCD1

were significantly elevated in the NUDT16 low expression

group (Figure S3E). This result further demonstrated that high

expression of NUDT16 may inhibit the activation of DCs and

decrease the expression of MHC molecules, co-stimulatory

factors and adhesion factors. Based on these results, we

hypothesized that NUDT16 may impede antitumor immune

responses by inhibiting the activation of dendritic cells. We also

noted that the expression of various inflammatory cytokines

such as IL6, IL8, IL10, IL18, CSF1, CSF2, CCL1, CCL2, VEGFA,

VEGFB, VEGFC, NGF and FGF1 were increased in the

NUDT16 low expression group (Figure S3F). Therefore, we

also speculated that high expression of NUDT16 may suppress

tumor immunity by influencing the expression of multiple

immune-related cytokines in TME.
m7G methylation modification patterns
in the LIRI-JP cohort

To verify whether the m7G correlation type was applicable to

other datasets, we performed validation on the LIRI-JP cohort.

Similar to the clustering of TCGA-LIHC dataset, unsupervised

clustering identified three completely different patterns of m7G

modifications in LIRI-JP cohort (Table S4, Figures S4A–F). The

three different m7G modification patterns differed significantly

in the transcriptional profile of m7G (Figure S4F). m7G cluster A

was characterized by increased expression ofMETTL1, NUDT3/

4/11, CYFIP1, EIF4E, EIF4E2, GEMIN5, NCBP2, EIF3D, EIF4A1,

LSM1, AGO2, and decreased expression of NUDT16; m7G

cluster B had high expression of only NUDT16; the expression

of WDR4, DCP2, LARP1 was significantly increased in m7G

cluster C group (Figure S4E). One-way ANOVA also confirmed

significant differences in m7G regulator expression between the

three subtypes (Figure S4G). Prognostic analysis also indicated

that m7G cluster A and B had better survival, while m7G cluster

C had worse survival (Figure S4H).
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DEGs associated with the m7G
phenotype in hepatocellular carcinoma

Although we previously classified HCC patients into three

different subtypes based on m7G regulator expression. However,

the genetic alterations between these subtypes remained unclear.

Therefore, we further explored the overlapping differentially

expressed genes (DEGs) in the distinct m7G subtypes. We

considered 26 DEGs representing key distinguishing indicators of

the three m7G modification patterns as m7G-associated signatures,

which were illustrated with Venn diagrams (Figure 6A). GO

enrichment analysis of these characteristic genes was conducted

and it showed the biological processes associated with RNA

modification and transcription were markedly enriched

(Figure 6B). The results indicated that the overlapping DEGs

were characterized by m7G modifications and could be

considered as m7G-associated gene signatures. We performed

unsupervised clustering algorithm based on these m7G

phenotype-associated characteristic genes to obtain three stable

transcriptome phenotypes (Figures S5A–D). The patients were

eventually classified into three distinct subgroups of m7G gene

signatures with different clinicopathological characteristics, and

were redefined as m7G gene cluster A-C (Figure 6C). These

showed that three different m7G methylation modification

patterns were indeed present in hepatocellular carcinoma.

Survival analysis showed statistically remarkable differences in

prognosis between three m7G gene signatures in HCC samples.

m7G gene cluster B showed better prognosis for survival, and m7G

gene cluster A showed worse prognosis (Figure 6D). The expression

levels of 24 m7G regulators in three gene signature subgroups were

compared (Figure S5E). Consistent with expectations, we could

observe remarkable differences in m7G regulatory expression

among three m7G gene clusters. To explore the roles of m7G-

related phenotypes in immunocyte infiltration, we compared 23

immune cell types among three m7G gene clusters (Figure 6E). The

results showed significant differences in immune infiltration among

three m7G gene clusters.
Constructing the m7G score and
exploring its clinical significance

Our previous studies found roles for m7G modification in

prognosis and regulation of immunocyte infiltration, but the

above discussions were based on patient populations only and

were unable to predict accurately m7G methylation modification

pattern in individual patients. Accordingly, we used previously

identified m7G-related characteristic genes to construct a system

called m7G score, which could quantify the pattern of m7G

modifications in each patient. In consideration of the

complexity of m7G modification quantification, we used an
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FIGURE 6

Construction of differential expression of m7G gene signatures and functional annotation. (A) Venn diagram showing 26 m7G-related DEGs
between three m7G clusters. (B) Functional annotation of m7G-related genes using GO enrichment analysis. The color depth of the bars
represent the amount of gene enrichment. (C) Unsupervised clustering of DEGs associated with overlapping m7G phenotypes classified patients
into different gene clusters, which were called m7G gene cluster A, B and (C) The m7G gene cluster, m7G cluster, TMN stage, gender, and age
were used as patient annotations. (D) Survival curves for m7G phenotype-associated genes were plotted. (P=0. 02). (E) Abundance of individual
TME-infiltrated cells in the three m7G gene clusters. Asterisks represent statistical p-values (*P < 0. 05; **P < 0. 01; ***P < 0. 001).
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alluvial diagram (Figure 7A; Table S5) to illustrate the workflow of

m7G score construction. These results indicated that m7G gene

cluster B and C exhibited a higher m7G score, whereas m7G gene

cluster A was linked to a lower m7G score (Figure S6A). Notably,

m7G cluster A showed the lowest m7G score, which was

significantly lower than the other two m7G clusters (Figure

S6B). The relationship between known bio-signatures and m7G
Frontiers in Immunology 12
scores was examined. The heatmap of the correlation matrix

showed that the m7G score was negatively correlated with DNA

damage repair and DNA replication (Figure 7B). We further

identified the ability of the m7G score to predict prognosis in

terms of survival outcomes, using a method of dividing patients

into subgroups with high or low scores with a critical value of

-2.4267. Consistent with expectations, patients with high m7G
B
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FIGURE 7

Construction of the m7G score and exploration of the relevance of its clinical features. (A) Alluvial plots showed changes in m7G clusters, gene
clusters, m7G score and patient survival status. (B) Associations between m7G scores and certain biogenetic markers were analyzed. Positive
associations were colored in red and negative associations were colored in blue. (C) Survival curves for the high and low m7G score patient
subgroups in TCGA-LIHC cohort. P< 0. 001. (D) Survival curves for high and low m7G score subgroups of patients in LIRI-JP cohort. P< 0. 001.
(E) Survival curves for high and low m7G score subgroups of patients in GSE14520 cohort. P< 0. 001. (F, G) The mutation status of SMGs in
TCGA-LIHC cohort was divided into high (F) and low (G) m7G score subgroups. Each column represents single patient. The top bar shows the
tumor mutation burden(TMB), and the numbers on the right indicates the mutation frequency of individual genes. Asterisks represent statistical
p-values (*P < 0. 05).
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scores in TCGA-LIHC cohort were remarkably relevant to a better

prognosis (Figure 7C). In addition, a predictive advantage of our

established risk model could be seen in the results of the ROC

curve analysis (Figure S6C). Analysis of multivariate Cox

regression models taking into account the gender, age, tumor

grade, and TMN stage of patients demonstrated that the m7G

score was a reliable and independent biomarker for assessing

patient prognosis (Figure S6D).

We next validated the m7G scoring scheme by combining

genomic information and clinical features from the LIRI-JP

cohort. The m7G score was found to have potential prognostic

predictive value in the LIRI-JP cohort (Figure S6E), and patients

with a higher m7G score had a significant survival benefit

(Figure 7D). To further validate the reliability of the m7G

score, we also used GSE14520 cohort in order to identify the

association between the m7G score and patient prognosis (Table

S6). As expected, the high m7G score subgroup showed a

significant survival advantage relative to the low subgroup

(Figure 7E). Multifactorial analysis of the GSE14520 cohort

similarly supported that the m7G score could be considered an

independent prognostic factor for HCC (Figure S6F). The above

findings strongly suggested that m7G score could represent the

m7G modification pattern of HCC patients and predict

patient prognosis.

We made further significant mutation gene (SMG) analysis

for both high and low m7G subgroups in HCC samples. SMG

mutation landscape revealed that TP53 (19% vs. 49%) had a

higher somatic mutation rate in the low m7G score subgroup,

while CTNNB1 (30% vs. 14%) had a higher somatic mutation

rate in the high m7G score subgroup (Figures 7F, G).

We compared the differences in m7G score between distinct

clinical trait subgroups and showed that higher tumor grade and

higher TME stage were associated with lower m7G scores

(Figures 8A, B). And no significant differences were found in

m7G scores between age and gender subgroups (Figures S6G, H).

The above findings suggested that the m7G score might be used to

assess certain clinical features, like tumor grade and clinical staging.
The m7G score in predicting the efficacy
of immunotherapy

Recently, a major breakthrough in antitumor therapeutics

has been identified in the form of ICI therapy represented by

PD-1/CTLA-4 inhibitors. Besides the well-known TML, MSI,

and PD-L1 (45, 46), IPS is strongly recommended for the

assessment of immune responses. In our analysis, we found

that IPS was remarkably elevated in the high m7G scoring group

(Figures 8C–E). These discoveries indirectly suggested that the

characterization of m7G modification pattern has an essential

role in mediating tumor immune responses.

Given the strong association of m7G scores with immune

response, the next step was to investigate whether m7G-modified
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signatures could be a predictor of patient response to ICI therapy

in an independent immunotherapy cohort. Patients with higher

m7G score had remarkable benefits of treatment and clinical

response to anti-PD-L1 immunotherapy compared to patients

with lower m7G score in the anti-PD-L1 cohort (IMvigor210)

(Figures 8F, G). Furthermore, PD-L1 expression was significantly

higher in patients with high m7G scores (Figure 8H). In addition

to PD-L1, tumor mutation burden (TMB) and TIDE can also be

used to assess the immune response. High TMB is associated with

higher treatment response rates and longer survival in patients

treated with ICI. Our analysis showed that higher m7G score was

associated with higher TMB (Figure 8I). The TIDE algorithm can

be used to assess tumor immune evasion. Higher TIDE score

suggests that the tumor is more likely to induce immune evasion,

indicating that the tumor is poorer in response to ICI treatment.

Our result also showed that TIDE was significantly decreased in

the high m7G score group, suggesting that patients with high m7G

score may have a better response to immunotherapy (Figure 8J).

These results demonstrate that the m7G score could potentially be

used to predict immunotherapy response in patients. In summary,

the results of our study strongly indicate that the m7G score could

predict patient prognosis and patient response to immunotherapy.
Comparsion of IC50 of small molecule
drugs between different m7G clusters

Through drug sensitivity analysis, 126 small molecule drugs

with potential use for the treatment of liver cancer were

identified (Table S7). Our results indicated that m7G cluster A

was sensitive to Lapatinib, AZD6244, BMS.536924 and

Bicalutamide, while m7G cluster B was sensitive to ABT. 888,

ATRA, Bortezomib, Doxorubicin and Sorafenib, and m7G

cluster C was more sensitive to Docetaxel, Paclitaxel and

KU.55933 were more sensitive (Figures 9A–L). Notably,

sorafenib is currently an effective first-line treatment for

advanced hepatocellular carcinoma. And our result found that

m7G cluster B was more sensitive to sorafenib (Figure 9A). We

then evaluated the relationship between the expression of 24

m7G regulators and medication sensitivity (Table S8, Figure S7).

The above results suggest that exploring different m7G

methylation modification patterns could be used to predict

and guide clinical drug therapy for HCC patients.
Immunohistochemical detection of
NUDT16 expression distribution

Given the potential role of NUDT16 in hepatocellular

carcinoma progression, our previous study comparing the

expression of NUDT16 in tumor and normal tissues showed that

NUDT16 was highly expressed in tumor tissues. In order to further

validate above result, we compared NUDT16 levels in HCC and
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adjacent non-cancerous tissues. IHC staining indicated that the

level of NUDT16 expression in HCC tissues was distinctly higher

than that in adjacent non-cancerous tissues (Figures 10A, B).
NUDT16 influenced the adhesion of
HCC cells

We previously found that NUDT16 was highly expressed in

HCC tissues and that it may influence the immune infiltration in
Frontiers in Immunology 14
TME. Further, we used cell adhesion assays to explore the effect

of NUDT16 on the adhesion of HCC cells to the extracellular

matrix. Fibronectin and vitronectin are important component of

the extracellular matrix in the TME, so we explored the effect of

NUDT16 on the ability of HCC to adhere to fibronectin and

vitronectin. The result showed that the adhesion ability of Huh-7

cells to fibronectin (Figure 10C) and vitronectin (Figure 10D)

was decreased in si-NUDT16 compared to the control group.

Similarly, we found that the adhesion ability of HepG2 cells to
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FIGURE 8

The m7G score predicts immunotherapeutic benefits. (A, B) Comparison of differences in m7G scores between tumor grade subgroups (A) and
TME stage subgroups (B). (C–E) Comparison of differences in IPS scores between high and low m7G score subgroups. (F) Comparison of m7G
score between different anti-PD-L1 treatment response subgroups in IMvigor210 cohort. (G) Survival curves for high and low m7G score
subgroups of patients in IMvigor210 cohort. P< 0. 05. (H) Comparison of PD-L1 expression between high and low m7G score subgroups in
IMvigor210 cohort. (I) m7G score and TMB were significantly and positively correlated in IMvigor210 cohort. (J) Comparison of differences in
TIDE scores between high and low m7G score subgroups in IMvigor210 cohort.
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fibronectin (Figure 10E) and vitronectin (Figure 10F) was

decreased in si-NUDT16 compared to the control group.
Discussion

Liver cancer has a high morbidity and mortality rate, so

reliable diagnosis and survival prediction are urgently needed.

Increasing evidence suggested that m7G modification played

integral roles in tumor progression (26, 27). Previous studies on

m7G methylation modification were mostly focused on

individual regulatory molecules such as METTL1 and WDR4,

and were less abundant than those on other types of RNA

methylation modifications (47–51). The overall features

regulated by the combination of multiple m7G regulators have

not been completely clarified. Even though there are also

numerous previous research that has the role of m7G

regulator-mediated epigenetic regulation in the immune
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environment (32, 50), there is still little understanding of the

overall TME infiltration properties mediated by the combined

action of various m7G regulators. Therefore, studying the

integral features mediated by the combined effects of various

m7G regulators, and identifying different m7G modification

patterns in TME will strengthen our understanding of the role

of m7G methylation in the antitumor immune response and help

guide more effective immunotherapeutic strategies.

In this study, we revealed three distinct m7G clusters based

on 24 m7G regulators, and the TME cell permeation

characteristics were significantly different among these three

subtypes. The m7G cluster A was characterized by natural

immunity and stromal activation, especially activation of EMT,

TGFb signaling pathways, which were thought to be T cell

suppressive (43). Thus, the finding that cluster A was

abundant in innate immunocyte infiltration but had a poorer

prognosis could be explained. m7G cluster B and C were

characterized by adaptive immune activation, manifested by
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FIGURE 9

Comparison of drug sensitivity. (A–L) Comparison of IC50 of small molecule drugs between different m7G clusters.
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significant enrichment of antitumor lymphocyte subsets such as

T-cell CD8 and NK cells. Taking into account that PD-L1 is a

proven biomarker to predict immunotherapy response (44). Our

study also found remarkable upregulation of PD-L1 expression

in m7G A and C subtypes, and this finding may help to predict
Frontiers in Immunology 16
the efficacy of immunotherapy. Combined with the cell

permeation characteristics of TME between the three subtypes,

it is quite possible to confirm the reliability of our

immunophenotypic classification of the distinct m7G clusters.

More recent literature has reported that activation of EMT- and
B
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FIGURE 10

Immunohistochemical analysis of NUDT16 expression in HCC tissues and adjacent tissues and effect of NUDT16 on the adhesion ability of HCC
cells. (A) High NUDT16 expression in HCC tissues at 40× magnification. Low NUDT16 expression in adjacent tissues at 40× magnification.
(B) Comparison of NUDT16 IHC scores in HCC tissues and paired adjacent tissues. (C) Comparing the adhesion ability of Huh-7 cells to
fibronectin between control and si-NUDT16 groups. (D) Comparing the adhesion ability of Huh-7 cells to vitronectin between control and si-
NUDT16 groups. (E) Comparing the adhesion ability of HepG2 cells to fibronectin between control and si-NUDT16 groups. (F) Comparing the
adhesion ability of HepG2 cells to vitronectin between control and si-NUDT16 groups. (****P< 0. 0001).
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TGFb-related pathways could impede lymphocyte infiltration

into tumor parenchyma (51), and it has been proposed that

targeting specific molecular inhibitors of TGFb could remodel

the tumor microenvironment and reinstate antitumor immunity

(35, 52). Accordingly, we hypothesize that HCC patients in m7G

cluster A may benefit from the combination of ICB drugs and

TGFb blockade.

In addition, this study found that DEGs with different m7G

modification patterns were found to be significantly enriched in

biological processes involving RNA modification and

transcriptional correlates in this study, and these DEGs were

recognized as m7G-related signature genes. We identified three

gene clusters based on m7G signature genes and found that they

clustered similarly with m7G modifications, and both were

significantly correlated with patient survival prognosis. In

order to quantitate the pattern of m7G modification in

individual HCC patients and thus more precisely guide the

treatment strategy for individual patients, we further

developed “m7G score”, a quantitative system to define it.

According to this scoring system, m7G subtypes B and C,

which were characterized by adaptive immune activation,

presented a higher m7G score. In contrast, the m7G A subtype,

characterized by natural immunity and significant stromal

activation, presented a lower score.

What’s more, we found that the m7G score was significantly

relevant with IPS, a predictor of immune response. This finding

implies that our m7G score has a potential predictive advantage

in the precise immunotherapy of liver cancer. In fact, we

validated the constructed m7G scoring system with three liver

cancer cohorts (TCGA-LIHC cohort, LIRI-JP cohort, GSE14520

cohort) and confirmed our hypothesis that the m7G score would

be regarded as an independent prognostic biomarker of HCC.

Moreover, we validated that the m7G score is a reliable predictor

of patient survival outcomes and immunotherapy response

through another independent ICI cohort (IMvigor210).

While elucidating the results of m7Gmodification clustering,

we also discussed the roles of individual m7G regulators

specifically in tumor immunomodulation. Dai et al. found in

their recent studies that METTL1 and WDR4 were upregulated

in patients with intrahepatic cholangiocarcinoma(ICC) and that

METTL1-mediated m7G tRNA modification selectively

regulated oncogenic genes including EGFR pathway and cell

cycle genes in ICC through a codon frequency-dependent

mechanism mRNA translation. This is associated with poor

prognosis in ICC patients (53). Meanwhile, numerous studies

have also disclosed the functions and potential mechanisms

played by METTL1 and WDR4 in other cancer types, as they

were found to significantly upregulate and regulate the

translation of oncogenic mRNAs in multiple cancer types, and

they were considered to be a tumorigenic oncogene (54, 55). In

our research we also found thatMETTL1 andWDR4 expression

was upregulated in hepatocellular carcinoma tissues and
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correlated with reduced survival time, and also found that

high METTL1 and WDR4 expression was distinctively and

negatively relevant with the level of NK cell infiltration. In

addition, NUDT16 was brought to our attention in our study

because of its remarkable negative association with both tumor

prognosis and immunocyte infiltration. Thereafter, we focused

on analyzing the specific association between NUDT16 and

immunocyte infiltration, while comparing the expression of

NUDT16 in HCC tissues and adjacent non-cancerous tissues

by IHC staining. Based on these findings, we hypothesized that

NUDT16-mediated m7G methylation modification might

impede antitumor immune responses by inhibiting the

activation of DCs. In this study, NUDT16 was also found to be

commonly altered and significantly upregulated in CNV among

tumor tissues, indicating that it may also promote the

development and progression of HCC. In the future, we need

to further validate the effects of NUDT16-mediated m7G

modification on tumor immunosuppression mechanisms in

biological experiments such as cell culture and mouse models.

The assessment of human tumor significant mutation gene

(SMG) is an important foundation for cancer diagnosis, treatment

and rational choice of therapy. Previous studies have shown that

TP53 mutations occur in many tumor types and suppress

antitumor immune responses (56). In our study, the somatic

mutation rate of TP53 was found to be significantly higher in the

low m7G score subgroup of m7G than in the high m7G score

subgroup. These tumor driver gene mutations associated with

m7G scores were significantly associated with tumor immunity,

showing that there is a complex interaction between m7G

modifications and tumor immunogenomic features.

Nevertheless, our study is not without any limitations.

Although our model has incorporated 24 recognized m7G

RNA methylation regulators, more need to be incorporated in

the future to optimize our model and improve the accuracy of

prediction. Although we have performed multiple validations of

the resulting prediction models, more independent datasets

could be incorporated in the future to reduce potential biases.

On the other hand, as the main findings of this study were

obtained through comprehensive bioinformatics analysis,

biological experiments such as cell culture and mouse models

are needed to further explore the detailed mechanisms of how

m7G regulators interplay with each other.

In this study, we performed a comprehensive evaluation of

m7G modification patterns in 816 hepatocellular carcinoma

samples based on 24 m7G regulatory factors and made a

systematic correlation of these modification patterns with

TME cells infiltration characteristics. These comprehensive

analyses revealed a broad regulatory mechanism of m7G

methylation modifications on tumor microenvironment. In

short, differences in m7G modification patterns are a non-

negligible factor contributing to the heterogeneity and

complexity of the individual tumor microenvironment.
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Assessing the m7G modification patterns of individual tumors

would help enhance our perception of TME infiltration

characteristics and provide significant insights into

immunotherapy efficacy.
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