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Immune responses affiliated with COVID-19 severity have been characterized

and associated with deleterious outcomes. These approaches were mainly

based on research tools not usable in routine clinical practice at the bedside.

We observed that a multiplex transcriptomic panel prototype termed Immune

Profiling Panel (IPP) could capture the dysregulation of immune responses of

ICU COVID-19 patients at admission. Nine transcripts were associated with

mortality in univariate analysis and this 9-mRNA signature remained

significantly associated with mortality in a multivariate analysis that included

age, SOFA and Charlson scores. Using a machine learning model with these 9

mRNA, we could predict the 28-day survival status with an Area Under the

Receiver Operating Curve (AUROC) of 0.764. Interestingly, adding patients’ age
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to themodel resulted in increased performance to predict the 28-day mortality

(AUROC reaching 0.839). This prototype IPP demonstrated that such a tool,

upon clinical/analytical validation and clearance by regulatory agencies could

be used in clinical routine settings to quickly identify patients with higher risk of

death requiring thus early aggressive intensive care.
KEYWORDS

transcriptomic multiplex tool, SARS-CoV-2 infection, immune response, 28-day
mortality prediction, personalized medicine
1 Introduction

The current pandemic of coronavirus disease-2019 (COVID-

19) caused by severe acute respiratory syndrome-related

coronavirus 2 (SARS-CoV-2) has infected over 589 million

patients with more than 6 million deaths worldwide as of

August 2022. Disease severity is highly variable, with the vast

majority of patients remaining asymptomatic or demonstrating

minimal to mild symptoms such as fever, cough and shortness of

breath. Nonetheless, it was reported that 5 to 10% of patients

require intensive care due to rapid progression (9 to 12 days)

toward acute respiratory distress syndrome (ARDS) requiring

ICU (intensive care unit) admission and invasive mechanical

ventilation (1, 2).

The immune responsehas been demonstrated toplay a key role

in the physiopathology of COVID-19. In the most severe

phenotype, patients present a complex immune profile that

evolves over time (3, 4). At ICU admission, their immune

response is mostly characterized by altered immuno-

inflammatory responses with inadequate response of type I

interferons signaling and downregulation of IFN-stimulated

genes (ISGs), increased cytokines levels (both pro- and anti-

inflammatory), marked lymphopenia, elevated immature myeloid

cells, and decreased monocyte HLA-DR (mHLA-DR). Those

alterations were hypothesized to lead to microthrombosis and

tissue injury, eventually resulting in ARDS, multiorgan failure

and death (5). During the pandemic, many exploratory non-

hypothesis-driven studies have been conducted for deciphering

the immuneprocesses.As awhole, these studies usedmixed various

flow approaches (spectral flow, multicolor flow, time offlight mass

spectrometry), transcriptomic strategies (transcriptomic

signatures, single-cell RNA-seq), functional testing, and multiplex

measurement of soluble mediators. Results were mostly analyzed

though multi-data/−omic approaches. While providing crucial

information on COVID-19 pathophysiology, these approaches

were mainly based on clinical research tools that are, due to

several limitations (i.e., time consuming, lack of standardization,

poorly reproducible between cohorts or costly), not usable in

clinical routine at the patients’ bedside or central lab.
02
A prototype multiplex transcriptomic tool used on the

BIOFIRE® FILMARRAY® System allows whole blood

assessment of mRNA of several genes involved in various aspects

of the immune response (6, 7). Thus, this Immune Profiling Panel

(IPP) gene set could potentially contribute to better decipher the

complex immune status of severe COVID-19 patients when

admitted to ICU. Here, we investigated this transcriptomic

prototype device in a large cohort of critically ill COVID-19

patients. We found that a set of 9-mRNA immune-related

markers was capable in predicting 28-day mortality and

providing relevant information about immune dysregulations.
2 Material and methods

2.1 Subject details

2.1.1 RICO cohort
RICO (REA-IMMUNO-COVID) is an ongoing prospective

observational clinical study. In this ancillary study, 309 patients

wereenrolledbetweenAugust2020andAugust 2021 infive ICUsof

university-affiliated hospitals (Hospices Civils de Lyon, Lyon,

France). They all presented pulmonary infection with SARS-

CoV-2. Results on this cohort have been published previously (8).

Briefly, inclusion criteria were (1) man or woman ≥ 18 years of age

(2), hospitalization in ICU for SARS-CoV-2 respiratory infection

(3), first hospitalization in ICU (4), positive diagnosis of SARS-

CoV-2 infection carried out by PCR or by another approved

method in at least one respiratory sample (5), blood sampling in

the first 24h after admission to ICU (Day 0) feasible and (6) patient

or next of kin who has been informed of the terms of the study and

hasnotobjected toparticipating. Exclusioncriteriawerepregnancy,

institutionalized patients and inability to obtain informed consent.

In the present work, IPP was tested at Day 0. Patients were 65.0

years old [IQR, 57.0-72.0] and presented a disparate distribution of

males and females (68/32).

The RICO study protocol was approved by ethics committee

(Comité de Protection des Personnes Ile de France 1 – N°IRB/

IORG #: IORG0009918) under agreement number 2020-A01079-
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30. This clinical study was registered at ClinicalTrials.gov

(NCT04392401). The committee waived the need for written

informed consent because the study was observational, with a

low risk to patients, and no specific procedure, other than routine

blood sampling, was required. The RICO cohort comply with the

Declaration of Helsinki, principles of Good Clinical Practice and

the French personal data protection act.

2.1.2 Healthy donors
Concomitantly, blood samples from 49 healthy volunteers

were independently obtained from EFS (Etablissement Français

du Sang, Lyon, France). Briefly, healthy donors were 40 years old

[IQR, 27-54] and were heterogeneously distributed between

males and females (73/27). Samples were collected in April

2020 and November 2021.

We used the Etablissement Français du Sang standardized

procedures for blood donation and followed provisions of

articles R.1243–49 and the French public health code to obtain

written non-opposition to the use of donated blood for research

purposes from healthy volunteers. The blood donors’ personal

data were deidentified before transfer to our research laboratory.
2.2 Method details

2.2.1 Transcriptome analysis
Whole blood was collected in PAXgene™ tubes following

the manufacturer’s guidelines. Briefly, samples were left for 2

hours at room temperature in contact with reagents in the tubes

before being transferred to -20°C for at least 24 hours and stored

at -80°C. Samples were run on the BIOFIRE® FILMARRAY®

TORCH (BioFire Diagnostics®, USA) using the prototype IPP

gene set. Results were delivered in less than an hour and

normalized expression values of markers were computed and

used for the analyses.

2.2.2 Immunological markers measurements
CD3+ T cells count was performed on an automated

volumetric flow cytometer (Aquios CL, Beckman Coulter).

Standardized mHLA-DR values (AB/C, antibodies bound per

cell) were obtained by flow cytometry (Navios, Beckman

Coulter) with HLA-DR Quantibrite reagents (Becton

Dickinson) as previously described (8).
2.3 Statistical analysis

The study cohort was split randomly in a 70/30 manner to

obtain two datasets balanced on three parameters: age, sex and

mortality. This resulted in a dataset of 216 patients used for

machine learning training purposes and an independent test set

of 93 patients used for performances validation. For datasets

description, qualitative data were reported as counts and
Frontiers in Immunology 03
frequencies and quantitative data were reported as median

[IQR range]. Clinical characteristics were compared with non-

parametric Mann-Whitney-Wilcoxon test for continuous

variables and a Fisher’s exact test or chi-squared test (as

appropriate) for categorical variables. The level of significance

was set at 5% two-sided tests. Statistical analyses were performed

with R software version 3.6.2. Data were centered and scaled to

perform non-supervised principal components analysis using

FactoMineR package (version 2.4). Genes that were significantly

associated with 28-day mortality in a univariate logistic

regression model were used to build multivariate models for

prediction of the 28-day survival status. Trained models were

logistic regression with L1 (Lasso), L2 (Ridge) and mixed

(ElasticNet) regularization, Partial Least Squares-discriminant

(PLS) analysis and Support Vector Machines with linear kernels

(linear SVM) using CARET package (version 6.0-84). To

compensate the imbalanced repartition of mortality in our

datasets, the Synthetic Minority Oversampling Technique

(SMOTE) was applied for hyper parameters tuning (9).

Models hyper parameters were chosen corresponding to the

largest mean Area Under Precision Recall Curve (AUPRC) value

among test folds from repeated cross-validation (k-fold=5,

number of repeats=10) in the RICO training cohort (10) as

sensitivity and Positive Predictive Values (PPV) are parameters

of interest. Briefly, among the 5 machine learning algorithm

evaluated, the hyper parameters selected were as follow, Lasso

(a=1, l=0.031), Ridge (a=0, l=0.556), ElasticNet (a=0.35,
l=0.37), PLS (ncomp=1) and linear SVM (C=0.367). AUPRC

and their bootstrap 95% confidence interval was obtained using

PRROC (version 1.3.1) and boot (version 1.3-28) packages.

Number of bootstrap resamples has been set to N=1000.

Variables relative importance in the linear SVM model was

calculated using the FIRM method from vip package (version

0.3.2) (11). Area Under the ROC Curve (AUROC) and bootstrap

95% confidence interval and diagnostic performances

(sensitivity, specificity, positive and negative predictive values

and F1 score) at optimal cut-offs for the 9-mRNA panel as well

as others individual parameters were obtained considering

respective Youden values from cutpointr package (version

1.1.1) defined on training dataset and then applied on test

dataset values. The F1 score (harmonic mean of recall and

precision) was used as model accuracy measure due to

unbalanced data. The survival probability rendered by the

linear SVM machine learning model with the 9 genes

significantly associated with 28-day mortality was tested in a

multivariate logistic regression analysis with confounding

clinical factors found to be significantly associated to 28-day

mortality in the univariate analysis (i.e. age, Charlson and SOFA

scores). The SAPS II score was excluded from the analysis as age

and severity were captured by age and SOFA score. As the

number of events of interest in the combined train and test

cohorts was 52; the inclusion of three confounding factors in

such multivariate analysis appeared appropriate.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1022750
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tardiveau et al. 10.3389/fimmu.2022.1022750
3 Results

3.1 Clinical characteristics at
ICU admission

Patient characteristics (whole, training and test cohorts) are

shown in Table 1. A total of 309 patients were hospitalized in 5

hospitals in Lyon between August 2020 and August 2021. Briefly

and as previously reported, we observed that 70% of patients were

male. Overall, patient characteristics were similar to those

described in previously published cohorts of critically ill

COVID-19 patients. Patients were admitted to the Intensive

Care Unit (ICU) with a median of 9 days after presentation of

the first symptoms [IQR, 6.0-11.0]. They presented comorbidities

as assessed by their Charlson score. Among these comorbidities,

diabetes was preponderant (31%). As reported worldwide,

patients presented a high median BMI (kg/m3) of 29.1 [IQR,

26.1-33.2]. In terms of severity of the disease, patients presented a

decreased PaO2/FiO2 (mmHg) with a median of 97.5 [IQR: 74.3-

146.5], elevated SOFA [median: 2.0; IQR: 1.0-5.0] and SAPS II

scores [median: 30.0; IQR: 23.5-39.0]. At admission, 17.2%

patients required invasive mechanical ventilation. All patients

were under systemic corticoid therapy upon or at admission

(6mg dexamethasone daily). Patients spent a median 18 days

[IQR, 11.0-31.8] in the hospital among which 8 days [IQR, 4.0-

17.0] were spent in the ICU. About a third developed secondary

infections. Most of these were pneumopathies (87/99) among

which 16 were fungal infections. Lastly, among the 309 patients,

52 (17%) died by day 28.
3.2 Cellular immunology and IPP
transcriptomic profile

As previously reported, mHLA-DR was decreased with a

median of 8950 AB/C [IQR, 6655.5-12173.5] in comparison with

references values (> 13 500 AB/C) and patients presented with

severe lymphopenia with a median T cell count of 325 cells/μL

[IQR, 228.0-505.5] compared to reference values > 1000 cells/μL

(13, 14).

Non-supervised clustering using principal component analysis

(PCA) on the 26 IPP mRNA transcripts resulted in clear distinct

clusters between the 309 critically ill COVID-19 patients at

admission and 49 healthy donors (Figure 1A). The IPP gene set

revealed significant changes in inflammation and cellular-

associated transcriptomic markers in COVID-19 patients when

compared with healthy volunteers. CD74, CIITA, CD3D and IL7R

were downregulated in critically ill COVID-19 patients (Figure 1B)

in accordance with the occurrence of altered monocyte and T

lymphocyte responses. Pro- and anti-inflammatory responses (e.g.

IL1RN, IL10, IL1R2 and IP10) were both upregulated in patients

(Figure 1B). In contrast, we observed that IFNG and TNF mRNA

levels were lower in patients than in healthy donors. Overall, these
Frontiers in Immunology 04
first results indicated that the IPP gene set provided relevant

information recapitulating immune dysregulation known in

COVID-19 critically ill patients, in line with the vast literature

previously published on this population.
3.3 Association with 28-day mortality

We further investigated the association between IPP markers

and the 28-day mortality. A logistic regression univariate

analysis was performed on the training dataset composed of

216 patients, we identified 9 genes that were significantly

associated with 28-day mortality (Table 2), namely ADGRE3,

C3AR1, CD177, CD74, CIITA, IL10, IL1R2, OAS2 and TDRD9.

Among those, ADGRE3, CD74 and CIITA were significantly

downregulated in non-survivors when compared to survivors,

while all other markers were upregulated in non-survivors.

Among cellular parameters, only CD3 T cells count was

significantly associated with 28-day mortality in a logistic

regression model (p=0.031). Descriptive boxplots of the 9

genes that compose the panel along with clinical scores and

age regarding with 28-day survival status are presented in

Figure 2. Consistent with the existing literature, age, SOFA,

SAPS II and Charlson scores were significantly associated with

mortality in univariate analysis.

This 9-mRNA signature was then used in five different

machine learning models to predict the 28-day survival status

in the training dataset. We selected the best performing machine

learning model based on the area under the precision-recall

curve (Table 3). We found that the linear support vector

machine learning model presented the best AUPRC (0.431)

and second best AUROC (0.744). We then tested the tuned

models on the test dataset (93 patients) to confirm results

obtained in training dataset. The AUPRC calculated was 0.431

while the AUROC reached 0.764 (Table 3). The ROC curves

generated on the training and test datasets are shown in Figure 3.

Overall, results from the test dataset confirm the robustness of

those obtained on the training dataset to predict mortality. The

9-mRNA signature was further tested in a logistic regression

multivariate analysis with the following confounding factors:

age, SOFA score and Charlson score. The signature remained

significantly associated with 28-day mortality with an odds ratio

per interquartile range of 3.78 (Table 4).

In order to test the added value of a 9-mRNA signature, we

then examined individual 28-day mortality prediction

performance of each mRNA in the signature set as well as age,

SOFA and SAPS II scores, and T cell count using logistic

regression models. We found that the 9-mRNA signature

presented the best AUPRC (and AUROC) when compared to

all other individual parameters. Using the Youden threshold, we

calculated the sensitivity, specificity, positive predictive value,

negative predictive value and F1 score for each parameter

(Table 5). Not surprisingly, we found that age was also well
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TABLE 1 Clinical characteristics of critically ill patients with COVID-19.

All patients
(n = 309)

Training Test

28-day survivors
(n = 179)

28-day non
survivors (n = 37)

p
value

28-day survivors
(n = 78)

28-day non
survivors (n = 15)

p
value

Demographics

Age - years 65.0
[57.0-72.0]

64.0
[55.0-70.0]

71.0
[69.0-78.0]

<0.001 64.5
[55.0-70.0]

72.0
[68.0-76.0]

<0.001

Male gender – n (%) 210 (68.0%) 119 (66.5%) 28 (75.7%) 0.369 52 (66.7%) 11 (73.3%) 0.767

Body mass index - kg/m² 29.1
[26.1-33.2]

29.1
[25.7-33.1]

29.6
[27.33-33.0]

0.674 28.7
[26.1-33.4]

30.1
[28.0-33.2]

0.335

BMI > 30 – n (%) 128 (43.7%) 75 (43.9%) 15 (46.9%) 0.903 30 (40.0%) 8 (53.3%) 0.504

Comorbidities

Diabetes: none - n (%) 213 (69%) 131 (73.2%) 18 (48.7%) 0.001 55 (70.5%) 9 (60.0%) 0.534

Diabetes: with damage - n (%) 15 (4.9%) 6 (3.4%) 6 (16.2%) 3 (3.9%) 0 (0.0%)

Diabetes: w/o organic damage
- n (%)

81 (26.2%) 42 (23.4%) 13 (35.1%) 20 (25.6%) 6 (40.0%)

Charlson Score - points 1.0
[0.0-2.0]

1.0
[0.0-1.0]

2.0
[1.0-4.0]

<0.001 0.5
[0.0-1.0]

1.0
[1.0-2.0]

0.043

Clinical severity at admission

Delay between symptoms
and ICU admission - days

9.0
[6.0-11.0]

9.0
[7.0-12.0]

7.5
[5.0-9.8]

0.013 9.0
[6.8-10.3]

6.0
[5.5-9.0]

0.041

ARDS at admission –

n (%)
72 (23.8%) 41 (23.3%) 11 (30.6%) 0.478 13 (17.1%) 7 (46.7%) 0.029

SOFA Score - points 2.0
[1.0-5.0]

2.0
[0.0-5.0]

4.0
[2.0-6.0]

0.008 2.0
[0.3-3.0]

3.0
[1.5-7.5]

0.068

SAPS II Score - points 30.0
[23.5-39.0]

30.0
[23.0-38.8]

39.0
[33.0-47.0]

<0.001 27.5
[21.0-34.0]

32.0
[26.8-41.3]

0.086

PaO2/FIO2 - mmHg 97.5
[74.3-146.5]

95.0
[77.5-146.0]

82.0
[70.5-147.8]

0.376 98.0
[89.0-149.0]

104.5
[93.8-128.3]

0.844

pH 7.45
[7.42-7.49]

7.46
[7.42-7.49]

7.44
[7.40-7.49]

0.591 7.46
[7.43-7.49]

7.47
[7.40-7.49]

0.769

Lactate - mmol/L 1.65
[1.30-2.00]

1.70
[1.37-2.02]

1.90
[1.40-2.20]

0.326 1.50
[1.30-1.90]

1.40
[1.30-1.80]

0.785

Organ support

Invasive mechanical
ventilation at Day 0 –

n (%)

53 (17.2%) 29 (16.2%) 10 (27%) 0.186 9 (11.5%) 5 (33.3%) 0.046

Vasoactive drugs - n (%) 35 (11.4%) 19 (10.7%) 8 (21.6%) 0.120 6 (7.7%) 2 (13.3%) 0.611

Renal replacement therapy - n
(%)

31 (10.0%) 13 (7.3%) 11 (29.7%) <0.001 4 (5.1%) 3 (20.0%) 0.080

Follow-up

MV duration - days 14.0
[7.0-27.3]

17.0
[7.0-34.0]

12.0
[7.0-20.0]

0.110 22.5
[11.3-30.8]

12.0
[6.5-15.5]

0.030

ICU length of stay - days 8.0
[4.0-17.0]

8.0
[3.0-16.0]

12.0
[8.0-19.0]

0.017 8.0
[5.0-16.8]

11.0
[5.5-15.5]

0.871

Hospital length of stay - days 18.0
[11.0-31.8]

18.0
[10.0-36.5]

15.0
[9.0-21.0]

0.024 20.5
[13.0-34.8]

14.0
[7.5-18.5]

0.014

28-day mortality - n (%) 52 (16.8%) 0 (0%) 37 (100%) <0.001 0 (0%) 15 (100%) <0.001

90-day mortality - n (%) 66 (21.9%) 12 (6.8%) 37 (100%) <0.001 2 (2.7%) 15 (100%) <0.001

ICU-acquired infections –
n (%)

99 (33.1%) 55 (31.6%) 19 (54.3%) 0.018 15 (20.0%) 10 (66.7%) <0.001

ICU-acquired
pneumopathies - n (% IAI)

87/99 (87.9%) 48/55 (87.3%) 18/19 (94.7%) 0.366 12/15 (80.0%) 9/10
(90.0%)

0.504

(Continued)
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associated with 28-day mortality, which is consistent with

numerous observations made since the beginning of the

pandemic. Based on this, we next investigated whether a

machine learning model including age and the 9-mRNA

signature could be more informative to predict 28-day

mortality. Using the same previous methodology, we found

that the linear support vector machine learning model

composed of the 9 genes and age was the best to predict 28-

day mortality with an AUPRC of 0.539 (AUROC = 0.839) in the

training dataset. The test dataset provided similar results, i.e., an

AUPRC of 0.532 (AUROC = 0.839) (Figure 4A). Results from the

two models (i.e., with and without age) are depicted in Figure 4B.
4 Discussion

Clinical presentation of COVID-19 ranges from asymptomatic,

mild infection to severe cases with acute respiratory distress

syndrome, respiratory failure and, ultimately, death. It is now well

established that immune alterations play a pivotal role in

determining the severity of the disease course (15). Finding

effective patient-tailored care management for COVID-19 patients

that take into account their immune status is key to lessening the

clinical burden and improve prognosis (16). Different approaches

have been used to characterize the immune status in COVID-19

patients at the protein (circulating cytokines and/or other

biomarkers), cellular (characterization of the immune subsets and

functionality) or RNA levels (bulk/single-cell RNA-seq in whole

blood, respiratory fluids) (3, 5, 17–19). Many groups over the past 2

years have worked on the identification of risk factors for severe

disease progression in order to identify patients at high-risk of

evolving towards a severe outcome. Among illustrative examples, in

a study combining ~50 clinical features and ~200 high-

dimensionality immunological features, Mathew et al. previously

reported three distinct immunotypes associated with COVID-19

severity (20). In an extensive immune assessment study combining

cellular data accessed by flow cytometry, soluble immune markers
Frontiers in Immunology 06
(multiplex cytokine analysis), RNA expressions (Nanostring) and

serology (ELISA), Laing et al. identified a core peripheral blood

immune signature in COVID-19 patients, which could identify

settings of immunopathology, correlate with disease severity and

anticipate clinical progression (4). In another elegant work, Abers

et al. established that longitudinal trajectories of 11 immune-based

circulating biomarkers were substantially associated with mortality

when increased (10) or decreased (1) providing additional evidence

that immune-based biomarkers may provide an early warning of

COVID-19 outcome (21). Transcriptomic approaches have shown

that they could discriminate between distinct physio-pathological

states of the COVID-19 (e.g paucisymptomatic, mild/moderate and

severe) (22). Recently, a 6-gene signature was identified to predict

COVID-19 mortality based on cohort explorative approaches (23).

However, to date, none is implemented in the standard

bundle of care of patients. The IPP prototype tool measures

immune-related markers that were pragmatically selected based

on their known-documented function or prognostic significance

with the aim to assess the immune status of sepsis patients in a

multi-dimensional way (7), recently it was demonstrated to

predict 30-day mortality in patients with sepsis (24). In

addition, technically speaking, the IPP prototype device could

be used with its dedicated measurement platform to provide

results in less than an hour from whole blood. When compared

to other devices used for transcriptomic analyses, the IPP tool

presents with several advantages, as it does not require any

specific technicity. It is easy to use as it works with whole blood

directly instead of extracted RNAs. Thus, the IPP prototype

device presents the potential, in the future, to be used as a very

appropriate and practical tool for implementation at the bedside.

In this study, we showed that IPP captured immune response

dysregulations induced by SARS-CoV-2 infection. For examples,

monocyte alterations (CD74, CIITA mRNA), lymphopenia (CD3,

IL7R mRNA), increased anti-inflammatory response (IL10, IL1RN

mRNA), altered IFN response (OAS2, IFNGmRNA)were observed.

Most importantly, from this whole blood multiplex mRNA

assessment, we reported that the IPP prototype resulted in
TABLE 1 Continued

All patients
(n = 309)

Training Test

28-day survivors
(n = 179)

28-day non
survivors (n = 37)

p
value

28-day survivors
(n = 78)

28-day non
survivors (n = 15)

p
value

Immunological parameters at admission

mHLA-DR – AB/C 8950.0
[6655.5-
12173.5]

9246.0
[6770.0-12827.0]

7377.5
[4760.8-11413.0]

0.029 8939.0 [6859.8-11038.8 8967.0
[7551.5-11118.0]

0.810

CD3 T cells – absolute count 325.0
[228.0-505.5]

326.0
[236.5-506.0]

303.0
[200.0-400.0]

0.056 326.0
[218.0-515.0]

500.0 [251.0-555.5] 0.583
frontier
Medians and interquartile ranges [Q1-Q3] are shown for continuous variables or numbers and percentages are presented for categorical variables. COVID-19 patients were separated in two
groups based on their 28-day survival status after admission. Sequential organ failure (SOFA) and simplified acute physiology II (SAPS II) scores were calculated during the first 24 hours
after admission. Acute respiratory distress at admission was based on the Berlin definition (12). Data were compared using the nonparametric Mann-Whitney-Wilcoxon test for continuous
variables or the chi-square/Fisher exact test for categorical variables.
p values ≤ 0.05 are highlighted in bold.
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prediction of 28-day survival with a sensitivity of 0.667 and

specificity of 0.808. We found that 9 genes associated with 28-

day mortality and using machine learning approaches. This 9-

mRNA signature could be used to predict 28-day survival status.
Frontiers in Immunology 07
Among them, some were already known and described in the

literature for their role in pathophysiology and/or association

with mortality such as IL10, CD74, CTIIA, IL1R2, CD177 and

C3AR1 (22, 25–28). For example, increased expressions of IL10,
A

B

FIGURE 1

IPPmarkers distinguish healthy donors from critically ill COVID-19 patients and are associatedwith immunological parameters. (A)Non-supervised PCA on IPP
markersmeasured at admission (Day 0) in critically ill COVID-19 patients (n=309) and healthy donors (n=49). (B) Boxplots representation of the expression of
IPPmarkers related to immunological parameters. p values were computedwith aMann-Whitney-Wilcoxon test. Whiskers indicate the 2.5 and 97.5 percentiles.
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IL1R2 mRNA and decreased expression of CD74 and CIITA

mRNA were described in monocytes of progressive COVID-19

patients compared with stable patients suggesting the acquisition

of a regulatory phenotype by myeloid cells. In the same study,

increased expression of IL1R2 was also observed in neutrophils

(29). Regarding neutrophils, the increased expressions of

CD177, IL1R2 and S100A9 in our study agree with the

existing literature, which points towards the induction of a

dysregulated neutrophil function in COVID-19 patients with

increased NET production that aggravates the pathophysiology

of COVID-19. Similarly, increased mRNA expression of IL10

was reported in regulatory T cells of severe COVID-19 patients

suggesting a defective adaptive immune response (30). Saichi

et al. reported that antigen-presenting cells from severe COVID-

19 patients presented with defects in several antiviral processes

among which a downregulation of MHC class II related genes

was observed in both monocytes and dendritic cells (31). Thus,

while we cannot discriminate the cell specific mRNA

deregulation in our study, we believe that the current results

are consistent with the literature and thus that the fully

automated IPP transcriptomic solution can capture immune

deregulation induced by COVID-19 in the most severe patients.

In addition, we observed that OAS2 was also associated with

mortality and its expression level at admission was informative to

build our 9-mRNA model. OAS2 is an interferon stimulated gene

involved in interferon response, it was previously reported to be

associated with COVID-19 severity (32). Nonetheless, the current

literature is conflicting regarding the OAS2 role in the
Frontiers in Immunology 08
pathophysiology of COVID-19. Indeed, on the one hand, a

haplotype in the region containing OAS2 has been described to

be protective against severe COVID-19 (33). on the other hand,

transcriptomic levels of OAS2 in PBMCs were found to be

upregulated in severe cases of COVID-19 (34, 35). TDRD9 and

ADGRE3 were chosen since they have been previously

demonstrated to be part of the SRS1 signature in sepsis (36). In

agreement, although their precise role in pathophysiology remains

to be further explored, both mRNAs were found to be associated

with 28-day mortality in COVID-19 critically ill patients.

Most importantly, beyond the individual predictive value of

the 9 mRNAs, their combination, based on machine learning

models, was found to be a robust indicator of 28-day mortality

within an AUROC of 0.764. Previous studies have demonstrated

that various combinations of clinical and biochemical

parameters could be used to predict mortality in COVID-19

patients. In a work by Halasz et al., a machine learning approach

that used 6 clinical and biochemical features resulted in

mortality prediction with an AUROC of 0.78 [0.74-0.84] (37).

Zhao et al. presented a model using 7 clinical and biochemical

variables which resulted in mortality prediction with AUROC of

0.83 [0.73-0.92] consistent with our results (38). Using machine

learning algorithms with an input of 21 clinical or biochemical

variables, Banoei et al. presented an in-hospital mortality

prediction with AUROC of 0.91-0.95 (39). Thus, we

acknowledge that our transcriptomic-only based approach

yields predictive metrics that are in the same ranges of other

published approaches. However, we propose the use of a tool
TABLE 2 Association between IPP transcriptomic, immune, clinical or demographical parameters and 28-day survival status: univariate analyses.

ORIQR [95% CI] IQR p value

ADGRE3 0.66 [0.45-0.93] 1.17 0.021

C3AR1 2.02 [1.20-3.55] 1.90 0.010

CD177 1.76 [1.10-2.94] 2.69 0.022

CD74 0.56 [0.34-0.88] 1.08 0.014

CIITA 0.54 [0.33-0.82] 1.41 0.005

IL10 2.88 [1.72-5.01] 1.67 < 0.001

IL1R2 2.82 [1.15-3.39] 1.84 0.016

OAS2 1.82 [1.02-3.31] 2.43 0.045

TDRD9 1.86 [1.15-3.11] 1.60 0.014

mHLA-DR
[antibody/cell]

0.97 [0.67-1.30] 6246 0.856

CD3 T Cells
[cells/μL]

0.56 [0.31-0.90] 258.5 0.031

SOFA Score 1.50 [1.04-2.15] 4 0.029

SAPS II Score 1.65 [1.17-2.33] 16 0.004

Charlson Score 1.62 [1.14-2.42] 2 0.017

Age 4.95 [2.62-10.17] 15.25 < 0.001
fronti
Two hundred and sixteen critically ill patients were included in the training set. One hundred and seventy-nine patients survived up until Day 28 and thirty-seven died. The association
between 28-day survival status and transcriptomic IPP parameters, classical immune, clinical or demographical parameters were performed by implementing univariate logistic regression
models. To allow comparison between models, odds ratios calculated for each parameter were normalized to an increment from first to third quartile (inter quartile range odd ratios,
ORIQR). p values ≤ 0.05 are highlighted in bold.
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that captures the immune profile of a patient directly through

processing blood samples without added laborious hands-on

time and resource. In regard, none of the elegant transcriptomic-

based machine learning models which were previously described

to predict mortality in COVID-19 (21, 23) can be easily

implemented at the patient´s bedside due to constraints with

RNAs processing and standardization of the measures. Similarly,

while demographic parameters such as age or clinical parameters

such as the SOFA score can readily be obtained at patient
Frontiers in Immunology 09
admission, some other variables used to build models in the

literature are not so easily accessed. Going further, with regards

to risk factors largely described in COVID-19 and observed in

our study, adding age in the model improved mortality

prediction with an AUROC of 0.84. Implementation of the

IPP prototype device, that could be considered for use in

clinical routine, may help in rapidly identifying patients at

higher risk of death in order to provide early aggressive

intensive care.
A B

C

FIGURE 2

Description of IPP 9-mRNA and clinical parameters in the RICO cohort of 309 critically ill COVID-19 patients. (A) Expression of IPP markers
(values are presented as normalized Cp). (B) Age (years). (C) Clinical scores. All parameters are presented at admission between 28-day survivors
(green) and non-survivors (red). When relevant, reference values of healthy donors are presented in grey. The p-value were generated using a
Mann-Whitney-Wilcoxon test between survivors and non-survivors.
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FIGURE 3

IPP markers measured at admission predict 28-day mortality in critically ill COVID-19 patients. Area Under the Receiver Operating
Characteristics curve (AUC) calculated on the training dataset of 216 patients and the independent test set of 93 critically ill COVID-19 patients
using the 9-mRNA panel at their admission in the ICU. The 95% confidence interval (grey) was calculated using bootstrap with 1000 repetitions.
TABLE 3 Summary of the performance of the five different machine learning models on the training and test datasets.

ML Models AUROCtraining[95% CI] AUPRCtraining[95% CI] AUROCtest[95% CI] AUPRCtest[95% CI]

Elastic Net 0.715
[0.575-0.844]

0.361
[0.243-0.524]

0.721
[0.493-0.938]

0.380
[0.171-0.662]

Ridge 0.737
[0.612-0.859]

0.406
[0.257-0.584]

0.751
[0.575-0.927]

0.326
[0.164-0.558]

Lasso 0.754
[0.630-0.874]

0.402
[0.256-0.576]

0.748
[0.554-0.932]

0.346
[0.168-0.620]

PLS 0.732
[0.605-0.853]

0.406
[0.256-0.579]

0.744
[0.567-0.924]

0.312
[0.156-0.566]

svmLin 0.744
[0.600-0.881]

0.431
[0.278-0.610]

0.764
[0.536-0.960]

0.431
[0.214-0.720]
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Area Under the Receiver Operating Characteristics Curves and Area Under the Precision Recall Curves with their respective 95% confidence intervals calculated for 5 different machine
learning models on the training and test datasets to predict 28-day survival.
Performances of the best model are highlighted in bold.
TABLE 4 Association between 9-mRNA signature, clinical or demographical parameters and 28-day survival status: multivariate analysis.

ORIQR [95% CI] IQR p value

9-mRNA signature 3.78 [2.22-6.73] 0.26 < 0.001

SOFA Score 1.34 [0.90-2.03] 4 0.151

Charlson Score 1.37 [1.04-1.81] 2 0.015

Age 5.11 [2.82-9.96] 15 < 0.001
fronti
Three hundred and nine critically ill patients were included. Fifty two patients died by Day 28. The association between 28-day survival status and the 9-mRNA signature and clinical and
demographical parameters was evaluated by implementing multivariate logistic regression models with the following confounding factors: age, SOFA score and Charlson score. To allow
comparison between models, odds ratios calculated for each parameter were normalized to an increment from first to third quartile (inter quartile range odd ratios, ORIQR). p values ≤ 0.05
are highlighted in bold.
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TABLE 5 Indicators of 28-day survival prediction performance of individual transcripts and the 9-mRNA panel along with age, CD3 T cells count,
SOFA and SAPS II scores at admission.

Parameters AUROCTest AUPRCTest Sensitivity Specificity PPV NPV F1 Score

9-mRNA signature 0.764 0.431 0.667 0.808 0.400 0.926 0.500

Age 0.763 0.429 0.733 0.667 0.297 0.929 0.423

CD177 0.606 0.352 0.467 0.705 0.233 0.873 0.311

IL10 0.717 0.351 0.533 0.872 0.444 0.907 0.485

SOFA Score 0.647 0.339 0.533 0.654 0.229 0.879 0.320

OAS2 0.305 0.270 0.067 0.949 0.200 0.841 0.100

TDRD9 0.668 0.266 0.667 0.513 0.208 0.889 0.317

SAPSII Score 0.645 0.222 0.500 0.718 0.241 0.889 0.326

#CD3 T cells 0.455 0.180 0.467 0.338 0.121 0.765 0.192

C3AR1 0.578 0.172 0.600 0.590 0.220 0.885 0.321

IL1R2 0.541 0.160 0.800 0.346 0.190 0.900 0.308

CD74 0.697 0.133 0.400 0.833 0.316 0.878 0.353

ADGRE3 0.594 0.126 0.667 0.487 0.200 0.884 0.308

CIITA 0.644 0.118 0.400 0.782 0.261 0.871 0.316
Parameters are presented by descending Area Under the Precision Recall Curve (AUPRC) values. Values superior to 0.75 for Area Under the Receiver Operating Characteristics curve
(AUC) and 0.4 for AUPRC are underlined.
Prediction performances of 9-mRNA signature are highlighted in bold.
A

B

FIGURE 4

Performance of the 9-mRNA signature combined with age to predict 28-day survival status in critically ill COVID-19 patients at ICU admission. (A) Area Under
the Receiver Operating Characteristics curve (AUC) calculated on the training dataset of 216 patients and the independent test set of 93 critically ill COVID-19
patients using the 9-mRNA panel alongwith the age at their admission in ICU. The 95% confidence interval (grey) is calculated using bootstrapwith 1000
repetitions. (B) Probability of 28-daymortality from linear SVMmodel trained on 9-gene panel (left) and 9-gene panel combinedwith age (right) on the entire
cohort (n=309) of patients and healthy donors (n=49). p-values were generated using aMann-Whitney-Wilcoxon test between survivors and non-survivors.
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Although patients were enrolled in 5 different ICU in university

hospitals (multi-center study), all ICUs are located within the

same city (Lyon, France). This constitutes the main limitation of

this study. Results need thus to be confirmed in cohorts from

other cities/countries.

In conclusion, we showed that the multiplex transcriptomic

panel prototype termed Immune Profiling Panel (IPP) could

capture the dysregulation of immune responses of ICU COVID-

19 patients at admission. Nine transcripts were associated with

mortality in univariate analysis and this 9-mRNA signature

remained significantly associated with mortality in a

multivariate analysis including usual clinical confounders.

Upon clinical/analytical validation and clearance by regulatory

agencies, such fully automated and standardized immune

monitoring tool could be used in clinical routine settings to

quickly identify patients with higher risk of death requiring thus

early aggressive intensive care.
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