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lymph nodes
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Introduction: Immune cell infiltration into the tumor microenvironment is

generally associated with favorable clinical outcomes in solid tumors. However,

the dynamic interplay among distinct immune cell subsets within the tumor-

immune microenvironment as it relates to clinical responses to

immunotherapy remains unresolved. In this study, we applied multiplex

immunofluorescence (MxIF) to spatially characterize tumor-immune

interactions within the metastatic melanoma lymph node.

Methods: Pretreatment, whole lymph node biopsies were evaluated from 25

patients with regionally metastatic melanoma who underwent subsequent

anti-PD1 therapy. Cyclic MxIF was applied to quantitatively and spatially

assess expression of 45 pathologist-validated antibodies on a single tissue

section. Pixel-based single cell segmentation and a supervised classifier

approach resolved 10 distinct tumor, stromal and immune cell phenotypes

and functional expression of PD1.

Results: Single cell analysis across 416 pathologist-annotated tumor core

regions of interest yielded 5.5 million cells for spatial evaluation. Cellular

composition of tumor and immune cell subsets did not differ in the tumor

core with regards to recurrence outcomes (p>0.05) however spatial patterns

significantly differed in regional and paracrine neighborhood evaluations.

Specifically, a regional community cluster comprised of primarily tumor and

dendritic cells was enriched in patients that did not experience recurrence

(p=0.009). By an independent spatial approach, cell-centric neighborhood

analyses identified an enrichment for dendritic cells in cytotoxic T cell (CTL) and
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tumor cell-centric neighborhoods in the no recurrence patient response group

(p<0.0001). Further evaluation of these neighborhoods identified an

enrichment for CTL-dendritic cell interactions in patients that did not

experience recurrence (p<0.0001) whereas CTL-macrophage interactions

were more prevalent in CTL-centric neighborhoods of patients who

experienced recurrence (p<0.0001).

Discussion: Overall, this study offers a more comprehensive evaluation of

immune infiltrates and spatial-immune signatures in the metastatic tumor-

immune microenvironment as it informs recurrence risk following

immunotherapy.
KEYWORDS

tumor microenvironment, multiplex immunofluorescence, melanoma,
immunotherapy, spatial biology
Introduction

The success of immunotherapy is intrinsically related to the

surrounding tumor-immune microenvironment (TIME). To

assess the degree of immune infiltration in tumor tissue, the

density of tumor infiltrating lymphocytes (TILs) has emerged as

a relevant prognostic biomarker in the primary-tumor setting of

solid tumors including melanoma (1–5). While an increased

density of TILs has been largely associated with favorable

prognosis in melanoma (4), durable clinical responses to

immune checkpoint inhibitors are only achieved in a small

subset of patients (6, 7). Therefore, comprehensive detailing of

the immune infiltrate composition, the spatial arrangement of

immune cells within the TIME and the cellular interactions

promoted within these spatial structures is essential to improve

patient stratification to immunotherapy regimens.

Current immune checkpoint inhibitors mechanistically

target the cytotoxic T cell (CTL)-tumor cell interaction (8).

CTLs are effector lymphocytes capable of mounting an anti-

tumor immune response. To enable CTL-mediated tumor cell

lysis, CTLs must first be primed by an antigen presenting cell

(macrophage, dendritic cell, B cell) and positioned near the

target tumor cell. Increasing evidence suggests this effector-

target mechanism takes place in a diverse tumor-immune

climate comprised of tumor-associated macrophages, myeloid-

derived suppressor cells, and regulatory T cells with a propensity

to promote a tolerogenic TIME; while CTLs, Th1 biased helper T

cells and dendritic cells (DCs) may offer a counterbalance in

favor of anti-tumor immune responses (9–11). Resolving the

paracrine interactions within this diverse tumor-immune

climate may reveal yet unrealized interactions capable of

predicting the success of immune checkpoint inhibitors in

increasingly complex microenvironments.
02
Recent advances in bioimaging platforms have enabled highly

multiplexed, single-cell microscopy to be applied to clinically

archived formalin-fixed paraffin embedded (FFPE) tissue

specimens (12). By light microscopy or mass-spectrometry based

methodologies, these multiplexed platforms have been applied to

tissue microarrays to quantitatively assess the spatial distribution

and phenotypic diversity of the cellular landscape in various cancers

including colorectal (13, 14), ovarian (15), and breast cancer (16–

19). Recently, we expanded this application to include pathologist-

guided sampling of distinct histologies within the metastatic

melanoma lymph node (LN) (20). Together these platforms have

enabled studies on the tumor-immune landscape within tissue and

are beginning to cast a light on the cellular diversity and spatial

organization of the TIME as it informs therapeutic responses.

TILs are currently used as a surrogate for responsiveness to

immunotherapy (“hot” vs “cold” tumors) (21). But such work

does not address the diversity and functional status of TILs

within the spatial setting of the metastatic tumor and fails to

consider other contributing factors present in the TIME which

create the overall immune contexture of the tumor. Therefore, to

see whether TIL diversity and spatial interactions within the

TIME inform clinical responsiveness to anti-PD1 therapy, we

studied differences in metastatic LN tissues from patients with

melanoma prior to treatment with anti-PD1 immunotherapy.
Materials and methods

Patient demographics

From an initial cohort of thirty-three treatment-naïve

patients with Stage III melanoma eligible for anti-PD1

immunotherapy, twenty-five patients were selected for MxIF
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analysis in the current study due to having sufficient tumor

regions in the LN imaged to satisfy the tumor core field of view

(FOV) criteria. Use of all patient biospecimens and clinical data

was collected in accordance with the Declaration of Helsinki

with approval obtained by Mayo Clinic’s Institutional Review

Board (IRB). Given the retrospective, minimal risk structure of

the study design, informed written consent from participants

was waived by the IRB. Research authorization was verified for

each patient prior to use of samples in the current study.
Tissue preparation and antigen retrieval

A single 5µm formalin-fixed paraffin embedded (FFPE)

tissue section was prepared from each patient for the MxIF

workflow. Slide preparation including deparaffinization,

rehydration and permeabilization was performed on each slide

as detailed previously (20). Heat-induced epitope retrieval was

performed in a NxGen decloaking chamber (Biocare Medical)

using heated citrate buffer (pH 6, Vector Labs) and Tris-EDTA

buffer (pH 9.5). Slides were then blocked in 10% donkey serum,

stained in DAPI (1ug/mL) and coverslipped using non-

hardening mounting media.
Antibody panel design

We customized a 45-antibody panel to characterize tumor,

immune and stromal cell subsets into 10 unique classification

phenotypes. Antibody clone information is detailed in

Supplemental Table 1. Antibodies were purified on HiTrap

Protein A or Protein G columns (Sigma) or obtained as

carrier-free formulations. Direct fluorophore conjugation was

performed using Bis NHS Ester dye (GE Healthcare) as

previously described (13).

Similar to previous work (20), MxIF antibodies were evaluated

by an experienced board-certified dermatopathologist and

compared to routine chromogenic IHC stains to ensure

concordance. When unavailable, corresponding H&E sections

were reviewed to determine cell distributions in distinct cell types.

MxIF antibodies also underwent random quality checking to ensure

reproducibility following an antibody lot change.
Field of view selection

Images were acquired by the INCell Analyzer 2500HS (GE

Healthcare) beginning with a whole slide image of the LN tissue

at the 10X objective using DAPI and Cy3 fluorescent channels

and was projected as a virtual H&E image for pathology review.

Together with a serial H&E section, histopathological regions of

interest were selected by a board-certified pathologist
Frontiers in Immunology 03
encompassing areas of tumor core, tumor-immune interface

and lymphoid tissue. Individual fields of view (2040 x 2040

pixels, ~1mm2) were then selected from these histopathological

regions at the 20X objective and used for all downstream

multiplexed imaging (Supplemental Figure 1). FOVs localized

to the tumor core were identified in 25 cases of the initial cohort

and used for the current study (n=416 FOVs).
Image acquisition

All images were acquired by the INCell Analyzer 2500HS

(GE Healthcare). Following background and FOV selection at

the 10X and 20X objectives, user-annotated FOVs were imaged

iteratively at the 20X objective. Details regarding each image

type has been detailed previously (20). The autofluorescence

(AF) removed image encompasses the final stained image

following per-pixel image subtraction of the dye inactivation

image from the previous round. Image normalization was

applied to scale the intensities according to the minimum

exposure time in the dataset. Image alignment was performed

for each round and compared to the initial 10X DAPI image

using Insight Toolkit registration and phase correlation.
Cyclic MxIF process

Evaluation of multiple antibodies on a single tissue section

was achieved through cyclic MxIF methods including iterative

rounds offluorescent antibody staining and dye inactivation. For

staining, slides were incubated for 1 hour at RT in a humidified

dark chamber. Slides were washed in PBS and coverslipped for

imaging. Following imaging, slides were de-coverslipped in PBS

and subjected to dye inactivation in a sodium bicarbonate

solution (0.5M NaHCO3, pH 11.2) as previously described

(13). Following dye inactivation, slides were washed in PBS

and coverslipped for imaging.
Pixel classification-based segmentation

We adapted the pixel classification process developed

previously by the Bodenmiller lab to generate boundaries around

each cell and nucleus compartment (18). The separate TIFF image

files from the INCell were joined into a standard OME.TIFF file

format, readable by BioFormats (22). The process includes

encoding individual pixels into one of three classes to differentiate

nuclear, cytoplasm and background areas using the Ilastik package,

resulting in three probability predictionmatrices (23).We enhanced

our pixel classification model by employing 14 common core

biomarkers (DAPI, CD14, CD163, CD16, CD206, CD20, CD45,

CD4, CD68, CD8, gp100, HLA-II, HLA-I, NaKATPase, S6) to
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leverage pixel classification from previous projects of similar tissue

(20). Supervised m odel training was conducted by labe ling a tiled

grid of crops (200x200 pixels) from each FOV in the dataset. The

single pixel uncertainty was calculated and evaluated on labe led

and unlabeled crops to determine the ability for algorithmic

detection to distinguish between classes. From this effort we

expanded on the existing pixel classification model from prior

work (20), thus obtained 12.40% +/- 0.5% uncertainty in 140

validation crops. The updated model predictions were then

applied to every FOV in the dataset generating pixel classification

probabilities which were then input into CellProfiler for

algorithmically constrained object propagation and the generation

of labe led masks for whole cell and nuclei (24). These segmentation

masks were merged with the full panel OME.TIFFMxIF image files

and incorporated into QuPath, an open-source software package for

quantitative bioimaging analysis (25). Using a QuPath script to

merge disparate data files, QuPath was then used to export

all quantifications.
Classification and single cell analysis

Cell classification was divided into two separate approaches

for distinct objectives : phenotypic and functional classification.

Phenotypic classification took a supervised classifier

approach which predicted the cellular phenotype for the ~1.4

million (1,445,062) cells located in FOVs labe led as ‘tumor core’.

After several model testing iterations [SVM, GBM, RF, ANN]

and parameters, the best supervised classification approach

converged on two models leveraging the hierarchical nature of

cell classification. The first model predicted 3 broad classes of

tumor, stroma and immune cells. This was followed by a second

model where both the tumor and stromal classes were retained

and higher-granularity classification was provided to the

immune cell class. Expert cell annotations were provided,

amassing a training dataset of 169,101 cell labels [Tumor Cell,

Macrophage, Dendritic Cell, Stromal Cell, B Cell, Cytotoxic T

Cell, Helper T Cell, Neutrophil, Unclassified Immune,

Regulatory T Cell, and Monocyte]. For annotation, cells were

assigned to a single class by visualizing FOVs in QuPath and

leveraging expression of 18 antibodies from the panel design.

The phenotypic classification assignment schema is summarized

in Supplemental Table 2.

In both instances of model training, the datasets were split

into 2/3 for training and 1/3 testing. . During model

development and training, various modeling approaches were

attempted, thus the top performing approach was a Gradient

Booster Classifier (GBM) for the first model and a SVM for the

second (26). The first GBM model parameterized by 500

estimators, max depth of 4, and a learning rate of 0.25. The

resulting first GBM classifier obtained a training accuracy of

96.61% and a test accuracy of 92.63% across 3 classes. The
Frontiers in Immunology 04
second SVM classifier obtained a training accuracy of 75.54%

and a test accuracy of 69.41% across 9 classes.

For functional classification of PD1, a gating strategy was

preferred, in pursuit of a more specific binary classification. To

remove noisy artifacts and normalize a single signal to a binary

threshold more aggressively, an arcsnih transformation was

employed to reduce the spectrum of values from 16-bit

quantification. Since PD1 was known to represent a minor

fraction of cells in the entire dataset, first the peak of each

distribution per collection of FOVs belonging to the same

biospecimen was identified, then moved to zero. StandardScaler

was used to scale the entire dataset (26). The resulting distribution

was then threshold on two axes, cell quantification mean and

standard deviation. The gating values for these thresholds were

identified as the value representing the fixed false positive rate,

between a small representative set of annotations provided, by

multiple annotators and visually validated.

Classification labels for both cellular phenotypes and

expression of functional markers were returned to QuPath and

merged with the spatial coordinates of each cell, its segmentation

profile and classification label to visualize and quantify single

metrics in all downstream analytics. This per-cell assignment

was then mapped back to the FOV and compared to the original

MxIF overlay for visual assessment and validation.
Cellular communities

Originally referred to as “Neighbor Coordination” by the

originators (14), we shifted the terminology to “Cellular

Community” to distinguish this from the term neighborhoods,

as they are derived separately and distinctly. The term

community refers to the diversity of proportions of cell types

which are spatially arranged around each single cell, thus

creating a relational structure to define a cell’s environment.

Wherein, that relationship is established between cells, based on

some number of nearest cells. Two parameters are required to

implement the original method as provided, which are; the N

number of cells to aggregate via sklearn.neighbors method

NearestNeighbors, and c number of clusters to result from the

sklearn.cluster method MiniBatchKMeans (14, 26), Strategy in

optimal parameter selection was not provided, however the code

does allow for efficient prototyping. We reasoned the number of

community clusters should be reflective of the number of

phenotypic cell classes + 1 resulting in c=10. We further

reasoned that the number of cells comprising a community

should represent tumor microenvironment including distinct

tumor-immune interactions. Community sizes were assessed at

various sizes k=5,25,50,75,100, with k=75 resulting in distinct

macro-architectures within the tumor tissue ((i.e. primarily

tumor-dominant communities vs tumor communities with

either lymphocyte or myeloid dominant immune cell subsets).
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Index cell-centric cellular neighborhoods

Analysis of the TIME was performed using SpatStat package

in R programming language, using cell neighborhood analysis

(CNA) algorithm (27). This algorithm uses SpatStat function to

traverse through every point on a 2-dimensional plane and

create a neighborhood of a requested size (57 pixel diameter).

CNA then counts cells of every class in each neighborhood and

records coordinates and counts in a matrix. In the current study,

neighborhoods were created around each tumor cell and CTL,

named tumor centric cellular neighborhood (TCCN) and

cytotoxic T cell-centric cellular neighborhood (CTCN)

respectively. Derivation of the size of the CN for this study is

summarized in Supplemental Figure 2.
Statistical analyses

Statistical tests were performed on a per-patient basis. Due

to the difference in population size between the two response

groups, the non-parametric Pearson’s chi-squared correlation

statistic was used to compare differences between patients that

experienced melanoma recurrence from those that did not. The

adjusted p-values less than 0.05 were reported as significant.
Results

Patient population

The regional LN remains the most common first site of

metastatic disease in patients with melanoma (28). To intervene

and assess the extent of spread, patients presenting with Stage IB

or II melanoma may undergo surgical resection of the LN prior

to receiving immunotherapy regimens. From an initial cohort of

33 MM patients, 25 were identified as having 1) whole excisional

LN biopsy material; 2) sufficient regions (FOVs) in the tumor

core available; and 3) underwent a similar treatment course

receiving anti-PD1 therapy with adjuvant single-agent

nivolumab (either 240 mg every 2 weeks or 480mg every 4

weeks). Patient demographics and recurrence status for the final

cohort of 25 patients following anti-PD1 therapy is summarized

in Supplemental Table 1. Nine patients experienced recurrence

in 12 months of less, similar to recurrence rates in previous

reports (29). The two outcome groups did not statistically differ

in terms of gender, age, tumor characteristics at baseline or

average follow-up in days after nivolumab treatment. Median

follow-up from last day of anti-PD1 therapy to death or last

patient contact for the entire cohort was 30.2 months. Four

patients in the relapsed < 1 year cohort (recurrence group) died

related to disease, and no deaths were reported in the cohort of
Frontiers in Immunology 05
patients who did not experience relapse (>1 year) (no

recurrence group).
Cyclic MxIF applied to resected LN
biopsies enables classification and
quantification of the TIME in the
melanoma tumor core

By H&E clinical evaluation, TILs are assessed for their

presence or absence in the primary tumor but rarely further

differentiated or evaluated in the metastatic setting. In this study,

we sub-selected pathologist annotated tumor core regions

(n=416 FOVs) within metastatic LN resected tissue to

delineate the tumor, immune and stromal climate within this

specific microenvironment (Figures 1A, B). Utilizing cyclic

MxIF technology, the tumor core spatial landscape was

differentiated at increasing levels of resolution including the

tissue macroarchitecture and the phenotypic and functional

status of diverse cell subsets. Leveraging the expression of 45

biomarkers on a single tissue section, the cellular landscape was

visually assessed, phenotypically and functionally classified and

quantitatively measured (Figures 1C, D). The high precision

enabled at the 20X objective further enhanced the resolution at

which subcellular localization of biomarker expression was

visually assessed and quantitatively captured (Figures 1E, F).
Patient level differences in cell
composition

By a tiered classification approach, we first quantified the

frequencies of tumor, immune and stromal cell subsets on a per-

patient basis (Figure 2A). No significant differences were observed

between these cellular subsets when comparing patients based on

recurrence status. These results were compared to TIL grade scores

(30) provided by pathologists on a serial section H&E slide which

also showed no difference between the two response groups

(Supplemental Figure 3). We then further resolved the immune

cell subset into 8 phenotypic cell classes (B cells, helper T cells,

cytotoxic T cells, T regulatory cells, neutrophils, monocytes,

macrophages and dendritic cells) and quantified each immune

cell subset as a fraction of total immune cells (Figure 2B). Among

the 8 phenotypic cell classes assessed, no significant differences in

cell counts were observed between any of the classes based on the

recurrence response in patients following anti-PD1 therapy. Next,

we quantified TIL subsets by their functional expression of PD1

(Figure 2C). Expectedly, PD1 expression was detected in a small but

variable fraction of the TIL populations, however PD1 expression

did not differentiate patients based on recurrence status. Overall

quantification at the per-patient level of tumor, stromal, immune
frontiersin.org
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B CA

FIGURE 2

Single cell quantification of tumor core regions is not sufficient to differentiate based on recurrence outcome. Abundance plots of 3-tier
classification (tumor, immune and stromal cells) across all FOVs on a per-patient basis (A). Abundance plots of immune cell phenotypic classes
(B) and abundance plots of TIL subsets based on PD1 expression (C). Distribution of patients displayed on box plot as green circles (no
recurrence) and red triangles (recurrence).Acronyms are as follows B cells (B), Cytotoxic T cell (CTC), Dendritic cells (DC), Macrophages (MAC),
Neutrophils (NEUT), Pan-T cells (Pan-T), Stromal cells (SC), T helper cells (THC), T regulatory cells (Treg). ns indicates no significance.
FIGURE 1

Cylic MxIF applied to whole excisional lymph node biopsies provides phenotypic and functional status of single cells in the tumor core. (A)
Virtual H&E of whole excisional LN biopsy at 10X objective with pathologist-annotated tumor mass fields of view indicated (red boxes). (B)
Virtual H&E of single field of view (FOV) at 20X objective. (C) MxIF overlay of the same FOV visualizing 9 cellular phenotypes with 12 antibodies.
(D) Phenotypic classification overlay, filled colors indicate assigned cell class. (E) Inset from yellow outline in panel (D) indicating expression
profile of individual cells. (F) Composite expression profile of all markers in the panel design for a single cell highlighted in Panel (E).
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classes and PD1-expressing TIL subsets were insufficient in

differentiating patients by recurrence outcome.
Macro-architecture assessment of the
tumor core region using cellular
communities

To spatially position single cell quantification within the tumor

core region of the metastatic LN, we next evaluated cells within their

surrounding cellular community. This data-driven approach was

first described by Schurch et al. and individually annotates each cell

based on a pre-defined number (n) of surrounding cells (nearest

neighbors) (14). This n-cell composite is then computed for every

cell across all FOVs for the entire patient cohort and combined to

enable unsupervised clustering of a pre-defined number of

community clusters (k) (Figure 3A). The resulting community

subtypes can then be defined by their most enriched phenotypic

cell class(es). For our study, we assessed communities of varying n

size (5-250 neighbors) and k number of community clusters (5–50).

A neighborhood size of 75 neighbors with 11 community clusters

resulted in optimal clusters representative of macro-architecture of

the tumor core.
Frontiers in Immunology 07
The resulting community clusters were further defined by their

most enriched (>10%) phenotypic cell class(es). A heat map

showing the relative contribution of each cell class to each

community subtype and the relative frequency of each

community subtype demonstrates the intrinsic cellular

heterogeneity that contributes to each community cluster and the

distribution across the patient dataset (Figure 3B). Expectedly, two

communities encompassing 66% of all communities were

predominantly occupied by tumor cells (95% and 83% tumor

respectively) reflective of the tumor core. Visualization of the

community clusters projected back on the single cell resolved

tumor core FOVs provides a macroarchitecture construct

reflective of the regional structures within the tumor core as well

as the diversity across patients and clinical outcomes (Figure 3C).

Comparing the frequency of community clusters between

patients stratified on recurrence status, community #6 was

significantly enriched in patients who did not experience

recurrence following immunotherapy (Figure 3D). Community 6

was comprised of primarily tumor (59%) andDCs (26%) suggesting

a role for active antigen presentation within the tumor core to

mediate successful anti-tumor immune responses in the context of

immunotherapy. Cellular communities provide a regional overview

of the tumor-immune climate that spans the patient cohort and
B

C D

A

FIGURE 3

Regional interactions within cellular communities. (A) Representative illustration of cellular community definition. Each cell is defined by its 75
nearest neighbors. (B) Heatmap depicting cellular composition of 11 community clusters and relative frequency of each community cluster
across the dataset. (C) Representative FOVs illustrating macroarchitecture of community clusters in recurrence and no recurrence cohorts.
Community colors correlate with the heat map groups in panel (B, D) Box plot comparing community cluster frequencies between patients
based on recurrence status. ns indicates no significance, ** indicates p value <0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1024039
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Maus et al. 10.3389/fimmu.2022.1024039
provides a framework for assessing regional differences between

cellularly diverse tumor cores.
Phenotypic and spatial paracrine
interactions within cell-centered
neighborhoods

To investigate the paracrine interactions occurring between

individual cells and their nearest spatial neighbors, we next applied

a cell-centric neighborhood approach. We previously established

the biologic value of tumor-centric cellular neighborhoods through

identification of immune signatures in distinct regions of the

metastatic LN (20). In this study, we applied the same cell-centric

neighborhood approach to two index cell types: tumor cells (TC)

and CTLs (CT) (Figure 4A). Neighborhood composition was

compared between patient cohorts by evaluating the percent of

neighborhoods populated with immune cell phenotypes classified

on a per-patient basis. In tumor-centric cellular neighborhoods

(TCCN), patients who did not experience recurrence had a higher

proportion of TCCN populated with most immune cell subsets

(CTL, DC, helper T cells and Tregs) compared to patients who did

not recur. Notably, B cells and macrophages had an increased

representation in neighborhoods of patients who experienced

recurrence (Figure 4B).
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Next, we considered neighborhood composition when a

CTL was the center of the cellular neighborhood (CTCN).

Unlike in TCCNs, CTCN had an increased presence of

immune cell subsets including B cells, CTLs, Tregs, helper T

cells and macrophages in neighborhoods derived from patients

who experienced recurrence compared to those who did not. In

patients that did not experience recurrence only DCs were

enriched in CTCN. This finding suggests that CTLs in

responders may be preferentially surrounded by antigen-

presenting DCs while non-responders were more frequently

surrounded by other immune cell subsets and may have fewer

opportunities to engage with the intended target of tumor cells.

To determine the tumor cell contribution to TCCN and CTCNs,

the frequency of neighborhoods was plotted against the number

of tumor cells in each neighborhood type by response cohort

(Figure 4C). In TCCN, the average number of tumor cells in a

neighborhood was 7 for patients that did not recur compared to

an average of 5 tumor cells per TCCN in patients that

experienced recurrence. In the CTCN setting, the average

number of tumor cells per neighborhood was comparable

between patient cohorts.

We then evaluated the paracrine, pairwise cellular interactions

present within these distinct cell-centric neighborhoods (Figure 5).

Building from previous work evaluating pairwise interactions in

size-defined neighborhoods (14), we adapted the nomenclature of
B CA

FIGURE 4

Phenotypic composition of cell-centered neighborhoods differs based on index cell and clinical recurrence status. (A) Illustration and
visualization of all TCCN and CTCN with at least one immune cell (TCCN) or tumor cell (CTCN) present in tumor FOVs. In TCCN, index (center)
tumor cell is indicated in blue, in CTCN index CTL is indicated in green, tumor cell neighbors are brown, immune cell neighbors are magenta.
(TCCN n=983,823 and CTCN n=37,402) (B) Box plot comparing neighborhood frequencies of immune composition between patients based on
recurrence status. Distribution of patients displayed on box plot as green circles (no recurrence) and red triangles (recurrence). (C) Distribution
of tumor cell counts in TCCN and CTCN in patient cohorts. Acronyms are as follows B cells (BC), Cytotoxic T cell (CTC), Dendritic cells (DC),
Macrophages (MAC), T helper cells (THC), T regulatory cells (Treg). NS indicates no significance, * indicates p value <0.01.
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homotypic and heterotypic neighborhoods for our cell-centric

neighborhood definition to represent neighborhoods comprised

of a single immune cell class (homotypic) or a combination of at

least two unique immune cell classes beyond the index cell

(heterotypic). In patients that experienced recurrence, homotypic

TCCN and CTCN neighborhoods comprised of either

macrophages or tumor cells were dominant, while DCs and CTLs
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homotypic neighborhoods were most frequent in patients that did

not experience recurrence.

We also considered heterotypic immune cell pairings

within the TCCN and CTCN finding distinct pairings

between the two response groups. Most notably, the

macrophage-CTL pairing was the most frequent in the

CTCNs of patients that experienced recurrence while the
B

A

FIGURE 5

Homotypic and heterotypic cellular interactions within TCCN and CTCN. (A) Frequency of tumor-only and immune-populated neighborhoods
were computed in TCCN of patients that recurred vs those that did not. Frequency of immune-populated TCCNs were further categorized
based on presence of a single immune cell subset (homotypic) or two distinct immune cell classes (heterotypic) within the neighborhood. (B)
Frequency of tumor only, immune homotypic and immune heterotypic neighborhoods were similarly assessed in CTCN of patients that
experienced recurrence vs those that did not. p values indicated on right side of each bar. 0 represents p value< 0.00001.
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DC-CTL pairing was most frequent in both CTCN and TCCNs

of patients that did not recur. Taken together, these pairwise

interactions further delineate distinct paracrine immune

interactions signatures across patients with similar clinical

responses to anti-PD1 therapy and suggest a role for

lymphocyte-myeloid interactions in the context of the TIME.
Evaluating the PD1-PDL1 functional axis
in the context of the TCCN

To evaluate the PD1-PDL1 signaling axis in the context of

neighborhoods, we next considered PD1 and PDL1 expressing

cells in the TIME. Tumor-expressing PDL1 was observed in a

subset of tumor FOVs (Figure 6A) derived from patients

irrespective of recurrence status but was only expressed in a

minority of cases and therefore not considered for quantitative

analysis. Visualization of representative FOVs indicates PD1

expressing immune cells were present in PDL1 expressing tumor

areas (Figure 6B) and TCCNs comprised of at least 1 PD1-

expressing TIL were projected on the representative FOV map

(Figure 6C). We then quantitatively considered PD1 expressing
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TIL neighbors in tumor-centric neighborhoods (Figure 6D).

PD1 expressing B cells, T helper cells and Tregs showed an

enriched frequency in TCCN of patients that did not experience

recurrence. Unexpectedly, PD1 expressing CTLs were enriched

in TCCNs of patients that experienced recurrence. This finding

suggests other TIL subsets beyond CTLs may be responsible for

mediating anti-PD1 mechanistic effects in the tumor core setting

and further supports the underlying mechanism that PD1

expression or TIL presence alone is insufficient in predicting

clinical outcomes to anti-PD1 therapy.
Discussion

Although previous work demonstrates TIL presence is

prognostic in various solid tumor settings (1–5), our data

suggests that TIL diversity and paracrine inter-cellular

immune interactions at the level of the TIME may be more

relevant to the outcomes of PD1 directed immunotherapy in the

setting of metastatic melanoma. In our patient level analysis, cell

number quantification and conventional TIL scoring by H&E

assessment of the tumor core found that cellular subset
B C

D

A

FIGURE 6

Functional expression of PD1-PDL1 contextualized in the TCCN of the tumor-immune climate. (A) Virtual H&E of representative tumor FOVs. (B)
MxIF overlay details tumor-immune landscape (TILs, myeloid cells, tumor cells) and PD1 and PDL1 expression in the same FOVs. (C) R plots
identify spatial TCCN with at least one PD1+ neighbor (index tumor cell: teal, PD1+ cell: yellow, immune cell: purple, tumor cell: brown). (D)
Box plot comparing frequency PD1+ TIL subsets as neighbors in TCCN between patients based on recurrence status. Distribution of patients
displayed on box plot as green circles (no recurrence) and red triangles (recurrence). Acronyms are as follows B cells (BC), Cytotoxic T cell
(CTC), T helper cells (THC), T regulatory cells (Treg). * indicates p value <0.01.
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frequencies alone were insufficient in differentiating patients

based on recurrence risk. By combining cell quantification with

its surrounding spatial context, cellular communities identified

an enriched community cluster comprised of primarily tumor

cells and DCs in patients that did not experience melanoma

recurrence. This predilection for DC interactions was further

supported when assessing paracrine interactions in cellular

neighborhoods centralized around either CTLs (CTCN) or

tumor cells (TCCN). Patients with a favorable outcome

showed an increase in DC-CTL interactions in both CTCN

and TCCN while patients that experienced recurrence showed

an enrichment for B cells and macrophages in comparable

neighborhoods. Overall, these findings suggest that myeloid

cells may play a critical role in modulating the effector-target

interaction between CTLs and tumor cells in the metastatic LN

setting (Figure 7).

DCs are the central antigen presenting cells with the capacity to

prime and polarize T cells for antigen-specific effector functions

(31). Within the TIME, mature DCs are required to activate tumor-

specific CTLs for tumor cell lysis via granzyme release (32).

However, accumulating evidence suggests that DCs in the TIME

may become compromised in their antigen presenting capacity (9).

Additional studies have shown an overall increase in other

myeloid cell subsets in the TIME including tumor-associated

macrophages and myeloid-derived suppressor cells fostering an

immunosuppressive microenvironment (29). Our novel findings

add to this emerging tumor-immune landscape to suggest that the

spatial positioning of specific myeloid cell subsets in relation to

tumor and CTLs may be critical for differentiating favorable
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immune responses to anti-PD1 therapy. Notably, overall

abundance frequencies of myeloid cell subsets did not

differentiate patients based on recurrence status following anti-

PD1 therapy. However, in patients that did not experience nodal

recurrence, we observed TCCNs and CTCNs were preferentially

occupied by DCs over macrophages, and the pairwise interaction

between DCs and CTLs in tumor-centric neighborhoods was more

pronounced when compared to patients that experienced

recurrence. These findings highlight the value of evaluating

tumor-immune interactions within the spatial context of a given

TIME suggesting a non-binary model governing the outcome of

CTL-tumor cell interactions. The presence of a modulator cell

influencing the outcome of the CTL-tumor cell contact also creates

an opportunity for new therapeutic target development.

The PD1-PDL1 signaling axis continues to be a promising

immunotherapy target in multiple solid tumors (33). The role of

PD1 in promoting tolerogenic responses in T cells is well

established (34). Accumulating evidence indicates immune

checkpoint inhibitor therapies targeting PD1 can reactivate T

cells and improve host immune responses (35). A recent study

conducted by Johnson et al. utilized serial tissue sections and

low-plex spatial imaging to identify predictive biomarker

signatures in patients with melanoma undergoing anti-PD1

therapy. The interaction scores between PD-1/PD-L1 and

IDO/HLA-II correlated with improved progression-free and

overall survival (36). To see whether signatures indicative of

these favorable responses could be identified at the resolution of

paracrine interactions in advance of PD1 therapy, we evaluated

TIL expression of PD1 and tumor cell expression of PDL1 in
FIGURE 7

Summary of regional and paracrine level differences within metastatic lymph nodes based on recurrence status. Regional cellular communities
identified a cluster comprised of primarily DCs and tumor cells to be enriched in patients that did not experience recurrence. Paracrine tumor-
centric neighborhoods showed increased immune cell diversity while CTL-centric neighborhoods were enriched for DCs in patients that did not
recur. Immune cell interactions within neighborhoods favored DC and CTL in patients that did not recur and macrophages and CTL in patients
that did experience recurrence. Illustration was created using Biorender.
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TCCNs. Representative FOVs with PDL1-expressing tumor cells

illustrated regions with PD1 infiltration but quantitative

assessment of PD1-expressing TIL subsets showed a diversity

in TIL subsets associating with recurrence outcomes. Overall,

this data suggests exploration of the PD1 mechanism of action in

TILs beyond CTLs in the tumor setting is warranted.

Lymph nodes are critical secondary lymphoid organs and

centralize the immune cells required for mounting virtually every

host immune response (37). As such, the cellular architecture of

the LN is highly organized for its primary purpose of immune cell

differentiation, maturation and effector functions (37). Under

homeostatic conditions these distinct architectural structures

create functional multi-cellular units of B-cell enriched LN

follicles and T cell-DC enriched LN cortex regions. The spatial

arrangements of these tissues are directly related to their cellular

function. In this study, we demonstrate that the tumor-immune

climate within the LN may also be spatially regulated. Within the

tumor core, TCCNs derived from patients that did not experience

recurrence showed a greater diversity in immune cell composition

and immune cell interactions including DC interactions with

CTLs, macrophages and Tregs. In contrast, TCCNs derived

from patients that experienced recurrence were occupied

primarily by macrophages and B cells with the macrophage-

CTL interaction being the most pronounced. These distinct

paracrine immune signatures illustrate the diversity of cellular

interactions that are promoted in otherwise comparable TIME

based on immune cell quantification alone. As multiplex

bioimaging platforms continue to evolve, cross-disciplinary

applications also expand. Recent work conducted by Gong et al.

applied pharmacology-based computational modeling to study

the spatial heterogeneity at the level of tissue organs and patients

in solid tumors including non-small cell lung cancer. Combining

predictive modeling with high resolution multiplexed bioimaging

platforms provides a new frontier for biomarker development and

stratifying patients to clinical regimens (38). Ongoing studies will

consider the functional status of these different immune cell

subsets through expression of maturation, activation and

differentiation markers as well as expanded evaluation of

distinct histologies within the LN landscape. In evaluating the

functional diversity of immune cell subsets in the context of the

TIME we hope to further resolve the extensive heterogeneity in

tumor-immune landscapes to derive predictive immune

signatures related to immunotherapy responses.

Our novel study has several strengths. To our knowledge, this is

the first study to apply multiplex imaging technologies to

interrogate the phenotypic diversity and spatial dynamics of TIL

subsets in the metastatic tumor setting. High accuracy single cell

segmentation and a 10-class phenotypic classification model was

achieved by leveraging our 45-antibody panel design and a

machine-based modeling approach. Furthermore, we adapted

existing spatial tools to evaluate the single-cell TIME at various
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levels of resolution (patient, regional, paracrine, pairwise and single-

cell functional). Our novel observations that the myeloid

compartment may play a more direct role in modulating the

CTL-tumor interaction in the LN TIME highlights the need for

studying cellular network interactions beyond pairwise associations

to contextualize immunotherapy in this dynamic tissue landscape.

We also recognize limitations to our approach. While we

assessed 416 pathologist-classified tumor core FOVs across a

cohort of 25 patients, our dataset remains exploratory. We chose

to focus on the tumor-enriched areas of the metastatic LN to better

represent conventional TIL evaluations in primary tumor setting,

however, this significantly reduces the number of immune cell

observations per FOV and future studies will be needed to validate

these findings in similar tumor regions and other

histopathologically relevant areas of the TIME. Similar to

previous reports (39), 9 patients (36%) in this cohort experienced

melanoma recurrence following anti-PD1 therapy in less than 12

months. Future studies will be required to validate our findings in

larger cohorts. While 10 phenotypes were classified with acceptable

accuracy, future studies will continue to diversify immune cell

subsets and the functional status of these subsets by leveraging

additional markers in the panel design.

The importance of our study is that it offers a more detailed

evaluation of TILs and spatial-immune signatures in the metastatic

setting and informs recurrence risk following immunotherapy.

Beyond the known associations between immune-infiltrated

tumors and favorable responses to immune checkpoint

inhibitors (21), our findings highlight the diversity of cellular

interactions that contribute to heterogeneous responses to

immunotherapy in addition to the intended effector-target

mechanism of action. Further exploration of the myeloid cell

contribution to this interaction, the maturation and functional

polarization of these cells as well as the spatial arrangement of

immune cells in the overarching tissue context will provide critical

insights to improve the current immunotherapy landscape.
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