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Gut microbiota has extensive and tremendous impacts on human physiology

and pathology. The regulation of microbiota is therefore a cardinal problem for

the mutualistic relationship, as both microbial overgrowth and excessive

immune reactions toward them could potentially be detrimental to host

homeostasis. Growing evidence suggests that IgA, the most dominant

secretory immunoglobulin in the intestine, regulates the colonization of

commensal microbiota, and consequently, the microbiota-mediated

intestinal and extra-intestinal diseases. In this review, we discuss the

interactions between IgA and gut microbiota particularly relevant to human

pathophysiology. We review current knowledge about how IgA regulates gut

microbiota in humans and about the molecular mechanisms behind this

interaction. We further discuss the potential role of IgA in regulating human

diseases by extrapolating experimental findings, suggesting that IgA can be a

future therapeutic strategy that functionally modulates gut microbiota.
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Introduction

IgA is the most dominant immunoglobulin class in humans. IgA-producing cells are

mainly distributed in the mucosa lining tissues such as the intestine and oral and nasal

cavities. IgA produced by these cells are usually dimerized within the cells through disulfide

bonds of its C-terminus with the joining chain (J chain). Dimeric IgA is bound with

polymeric Ig receptor (pIgR) on the basolateral surface of intestinal epithelial cells and

endocytosed. During transcytosis through intestinal epithelial cells, the extracellular

domain of pIgR is cleaved by endopeptidase in the transport vesicle, and this domain,

now called secretary component (SC), is secreted with bound IgA to the intestinal lumen.

IgA complexed with SC is designated as secretory IgA (SIgA). SIgA is protected from

bacterial proteases thanks to the presence of SC, and thus has a longer half-life than IgA (1).
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The targets of IgA are “foreign bodies” for us, such as

microbes, dietary antigens, etc. In the past decades, IgA has

been studied as a cardinal component of mucosal defense against

pathogens such as genera Salmonella and Vibrio based on the

assumption that the control of pathogens is the primary role of

IgA (2–6). More recently, many studies have also appreciated the

role of IgA in regulating gut commensal microbiome (7, 8).

Surprisingly, however, the lack of IgA in humans rarely causes

severe complications such as infectious diseases (9, 10), in part

because of compensation by other immunoglobulin classes such

as IgM (11, 12). Nevertheless, growing evidence also links IgA

deficiency and altered microbiome in humans (11, 13).

Considering the tremendous impact of the human microbiome

on health and diseases, ranging from local intestinal diseases to

systemic disorders relating to the central nervous system,

systemic metabolism, and autoimmunity, it is tempting to

presume that regulation of the microbiome by IgA may

modulate the susceptibility of these human diseases other than

infections. In addition, understanding the biology of IgA may

lead to a novel opportunity to artificially modulate the

susceptibility for the diseases through microbiome regulation.

In this review, we summarize the current knowledge regarding

the relationship between IgA and gut microbiome and discuss

how IgA controls the microbiome and, as a consequence,

our health.
The role of IgA in humans: What is
known and unknown?

IgA has long been studied in the context of infectious diseases

and their pathogens, such as genera Salmonella and Vibrio, their

toxins like Cholera toxin. For example, IgA can bind to Salmonella

and suppress their motility (14) and invasion (5). IgA also

facilitates agglutination, enchaining, and therefore, clearance of

Salmonella (4). In addition, IgA can neutralize Cholera toxin and

mitigate its pathogenicity (6). IgA not only directly acts on these

pathogens to limit their pathogenicity but also facilitates immune

reactions against these pathogens through retro transcytosis (15).

In this transport mechanism, IgA binds to antigens such as

bacteria and then bind to surface receptors of microfold cells

(M cells) such as Dectin-1 on the Peyer’s patches (15), although a

later study shows that Dectin-1 is dispensable for retro

transcytosis of IgA-coated Salmonella (16).

However, these studies largely rely on animal studies. The

effects of IgA on pathogens have not been fully elucidated in

humans. Selective IgA deficiency, which is defined as

undetectable levels of IgA in the serum, stool, etc. while other

immunoglobulin classes remain intact, is the most common

primary immunodeficiency in humans. It affects one in 200 to

1,000 individuals in Caucasians, although the prevalence is varied

among populations (9, 10). Although selective IgA deficiency is
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frequently complicated with other immune-related diseases such

as Graves’ disease, type 1 diabetes, and celiac disease (17, 18), it

has been reported that IgA deficiency mainly increases the risk of

infectious diseases. For example, Jorgensen et al. have reported

that IgA deficiency increases the incidence of upper and lower

respiratory tract infection and allergic diseases compared with

healthy individuals (19). Aytekin et al. have also analyzed 118

patients with selective IgA deficiency in Turkey and revealed that

83.9% of patients develop some infectious diseases during 7 years

(median) of the observation period (20). Recurrent infections are

observed in up to one-third of symptomatic patients (21).

However, these studies also show that critical infectious

diseases are not common in patients with selective IgA

deficiency, and it appears that its susceptibility to infectious

diseases is not as severe as other primary immunodeficiency

diseases such as common variable immunodeficiency (22). This

fact may be attributable to compensation by other

immunoglobulin classes such as IgM. There are five

immunoglobulin classes in humans: IgM, IgG, IgA, IgD, and

IgE. Although IgA is the most dominant immunoglobulin in the

intestine, IgM and IgG are also responsible for regulating

intestinal immunity and infections (23, 24). Several reports

have revealed that IgM is highly detected in the stool of IgA

deficient patients (25), implying the compensatory role of IgM in

regulating the intestinal environment. However, the relationship

between enhanced IgM secretion and pathogen control in

humans has not been fully understood.

Recent studies also highlight the impact of IgA deficiency on

gut commensal bacteria (11, 13, 25). As in mice, human IgA can

react to gut commensals (26). In addition, Sterlin et al. have

specifically addressed the microbial reactivity of two human IgA

subclasses: IgA1 and IgA2 (27). Interestingly, both IgA1 and

IgA2 similarly bind to small intestinal bacteria, whereas genera

from phylum Bacteroidetes, especially Flavobacterium, are

preferentially bound by IgA2. Potentially concordant with this

observation, IgA2 is more common, especially in the colon (28).

The major difference between two IgA subclass is the length of

hinge region, with IgA1 having an extended hinge, which may

confer advantage in antigen binding (29). However, the longer

hinge region also allows pathogenic bacteria to cleave and impair

IgA1 function through their proteolytic enzymes (30). It has also

been reported that IgA1 and IgA2 show different glycosylation

profiles, with IgA1 having more sialic acids (31). The difference

in the glycosylation profiles seems to affect their functional

properties, as serum IgA2 shows more proinflammatory

profiles than IgA1. Although these studies did not specifically

address the difference of IgA1 and IgA2 in the intestine, we can

extrapolate these data to speculate that IgA1 and IgA2 may play

a different role in regulating microbiota in humans. To support

our speculation, it has been reported that IgA2 but not IgA1 is

able to bind to M cells on the Peyer’s patches, which play an

important role in initiating the production of antigen-specific

IgA (32).
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In line with the role of IgA in regulating pathogens, IgA

deficiency seems to increase the abundance of pathobionts, i.e.

members of commensal bacteria potentially harmful to host

homeostasis under certain conditions. For example, Fadlallah

et al., have reported that Escherichia coli, a known pathobiont

and target of IgA binding, are increased in the stool of patients

with selective IgA deficiency (11). Similarly, Moll et al. have

shown that E. coli is one of the major gut colonizers in healthy

individuals and more prominent in patients with selective IgA

deficiency (13). Although direct associations have not been

elucidated, selective IgA deficiency is associated with the

elevation of proinflammatory cytokines such as interleukin

(IL)-6 and IL-17, which may be attributable to the increase in

pathobionts (11). Again, IgM seems to compensate for part of

IgA roles in regulating commensal bacteria; however,

Enterobacteriaceae including E. coli is not targeted by IgM

(11). In addition, Magri et al., have shown that dual coating of

microbes by SIgA and SIgM is a cardinal feature in humans

rather than mice (24), suggesting a compensatory role of IgM.

However, the extent of compensation by IgM is not fully

understood, as IgM appears to be less specific to gut

commensals (25).

Interestingly, many studies have linked IgA deficiency to

several non-infectious diseases such as autoimmune diseases (17,

18), which have also been associated with the gut commensal

microbiota. It also appears that autoimmunity in turn affects the

regulation of microbiota since anti-IgA antibodies in selective

IgA deficiency are associated with the expansion of pathobionts

like E. coli (13). These findings raise the possibility that IgA may

modulate the susceptibility of human diseases through the

regulation of commensal microbiota, and it encourages

researchers to understand the impact of commensal

microbiota on our health and how IgA can interact with

these bacteria.
How does IgA regulate the
commensal microbes?

We here discuss how IgA interacts with the gut microbiota.

Unfortunately, vast evidence in this field is established in mouse

experiments. Nevertheless, we think it is possible to extrapolate

these experimental findings to human settings, particularly

thanks to the recent development of IgA-sequencing (IgA-seq)

analysis. Previously, it was necessary to examine the affinity of

IgA with microbes one by one, while IgA-seq analysis, which

takes advantage of next-generation sequencing techniques,

provides an overall picture of IgA bound to commensal

microbes and enables researchers to comprehensively

understand IgA-microbe interactions in both humans and

mice. The detailed molecular mechanisms by which IgA binds

to microbial antigens are also discussed elsewhere (7, 8, 33).
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In line with the central role of immunoglobulins, IgA mainly

regulates the colonization, invasion, growth, and motility of

commensal bacteria. The importance of intestinal IgA in the

regulation of commensal microbiota is initially recognized by

Fagarasan et al. In their study, they used mice deficient in

activation-induced cytidine deaminase (AID), a critical

regulator of both class switching and somatic hypermutation

of the immunoglobulin locus, and thereby lacking

immunoglobulins other than IgM. The authors found an

overgrowth of gut microbiota in AID deficient mice (34). AID

deficiency particularly expands segmented filamentous bacteria

(SFB) colonization in the intestine (35). Later, the same group

also reported that a point mutation in AID which leads to loss of

somatic hypermutation but not class switching resulted in

similar consequences (36), suggesting the importance of

affinity maturation in immunoglobulins, particularly IgA.

Similarly, it has been reported that PD1-deficient mice show

decreased IgA-binding bacteria and dysregulation of gut

microbiota, which result from abnormal follicular T-cell

function (37). More recently, Nagaishi et al. have specifically

addressed the alterations of gut microbiota and intestinal

homeostasis in IgA-deficient mice (38). They showed a skewed

microbiota composition in IgA-deficient mice, including an

expansion of SFB. IgA-deficient mice also exhibited

spontaneous inflammation in the ileum, which was canceled

by antibiotic treatment. These studies indicate that IgA,

especially those produced by the T cell-dependent pathway

and therefore characterized by its high affinity, could

functionally regulate the growth of intestinal bacteria,

especially pathobionts.

With the widespread use of IgA-seq techniques, it has

become recognized that the patterns of IgA-binding bacteria in

specific diseases and environments are different. Palm et al. first

showed in 2014 that the pattern of IgA-binding bacteria is

altered in patients with IBD and that colonization of IgA-

binding bacteria from IBD patients but not healthy individuals

in germ-free mice exacerbates intestinal inflammation in the

colitis model (39). Similarly, IgA binding to pathogenic E. coli is

increased in the feces of patients with spondyloarthritis (40).

IgA-coated bacteria are also altered in multiple sclerosis (41, 42),

kwashiorkor (43), obesity after bariatric surgery (44), and certain

types of cancer (45). These results suggest that IgA may have the

ability to bind to and control potentially harmful commensal

bacteria that are involved in human pathogenesis.

It is also important to note that IgA can activate the immune

system against gut microbes via retro transcytosis into the

Peyer’s patches (15). Although antigens derived from

pathogens are transported through M cells scattered in the

epithelium covering the Peyer’s patches and recognized by

dendritic cells located right beneath M cells, several studies

show that M cell-dependent transcytosis also appears

important for commensal bacteria such as E. coli and SFB

(46–48). Mikulic et al. have experimentally shown that IgA
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coating of Lactobacillus rhamnosus, a symbiotic gut microbe,

plays a role in conditioning dendritic cells, which facilitates

tolerogenic responses such as induction of regulatory T cells

(49). These findings suggest that IgA not only regulates

commensal bacteria through a direct interaction but also

affects the gut environment by modulating the intestinal

immune system through M cell-mediated uptake of

commensal microbes.

Interestingly, IgA can promote the colonization of gut

microbes in certain situations. This is especially true for

Bacteroides, a major symbiotic genus in the gut. For example,

Nakajima et al. have reported that IgA facilitates colonization of B.

thetaiotaomicron (50). As a mechanism, the authors have

suggested that IgA alters the gene expression of B.

thetaiotaomicron related to polysaccharide utilization required

for colonization in the mucus layer, which they named Mucus-

Associated Functional Factor (MAFF). Another report has shown

that IgA fosters stable colonization of B. thetaiotaomicron by

altering its epitope expressions and thereby silencing excessive

inflammatory responses (51). Donaldson et al. have reported that

IgA mediates the adhesion of B. fragilis to intestinal epithelial cells

in a capsular polysaccharide-dependent manner (52). IgA is also

found to facilitate biofilm formation of E. coli in an in vitro setting

(53, 54). The mechanism by which IgA regulates commensal

microbes in opposite ways is not fully understood; however, it has

been proposed that adhesive molecules produced by the host (e.g.,

IgA and mucus) and mucus flow could select for and against

certain microbes (55). In addition, replication rates of microbes

and the bound break of IgA enchainment may also explain this

difference (56, 57). In this model, the host produces IgA to all

types of bacteria; however, those characterized by higher

replication rates may remain enchained even after their division,

since their replication rates are faster than SIgA-crosslinking

breaks of enchained clusters. This model may explain why SIgA

is likely to affect fast-growing bacteria such as pathobionts and

eliminate them from the intestine.

It is generally recognized that the synthetic pathways of IgA

largely determine its functional characteristics. The T cell-

dependent pathway is supported by CD4 T cells that results in

differentiation of high-affinity IgA-producing cells, while the T

cell-independent pathway is mainly supported by dendritic cells

and results in the production of low-affinity IgA (58–60). There

is evidence showing that the high affinity IgA resulting from T-

cell help and somatic hypermutation is the cardinal feature of

IgA function in regulating gut microbiota. For example, as we

discussed earlier, a point mutation in AID that impairs somatic

hypermutation elicits dysregulation of gut microbiota (36).

Kabbert et al. have also analyzed the characteristics of human

IgA and reported that somatic hypermutation rather than

polyreactivity, another aspect of IgA, is associated with

microbial reactivity (26). Furthermore, Okai et al. have

reported that oral administration of high-affinity IgA can alter

gut microbiota composition (61). In a report by Bunker et al., the
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authors compared the microbiota composition in wild-type and

T cell-deficient mice and showed that IgA produced through the

T cell-dependent pathway was capable of binding to microbes

that colonize close to epithelial cells, such as SFB and

Mucispirillum (62). It has been proposed that although these

bacteria are generally considered as pathobionts, their proximity

to epithelial cells makes them more likely to be captured by

antigen-presenting cells and consequently more likely to be

presented their antigens to CD4 T cells, leading to the

production of high-affinity IgA toward them in the T cell-

dependent pathway (62). Indeed, mice with impaired T-cell

function, including those deficient in T-cell receptor beta and

delta chains, have altered affinity and specificity of IgA, resulting

in changes in the composition of intestinal bacteria (37, 62, 63).

Yang et al. have also reported that IgA specificity to commensal

microbe is dependent on CD4 T cells (63). We similarly reported

that acetate, one of the SCFAs, is potent in enhancing T cell-

dependent IgA production and that it has a substantial impact

on the composition of mucosa-associated bacteria in an IgA-

dependent manner (64). We also showed that acetate facilitates

the clearance of E. coli in the mucus layer, which also appears

dependent on its IgA coating. On the other hand, the role of IgA

produced by the T cell-independent pathway in regulating gut

microbiota has not been well elucidated. It is widely considered

that T cell-independent IgA generally binds to a wide variety of

bacterial antigens.

Meanwhile, an IgA repertoire analysis reveals that V gene

usage among IgA-producing B cells in the intestine is restricted

and that somatic hypermutation profile is less likely shared

among clonally related cells, suggesting that antigen selection

and affinity maturation may be uncommon (65). In addition,

IgA-coated bacteria are detected in T-cell deficient mice to a

similar extent to their wild-type counterpart despite a severe

reduction in SIgA (60, 62, 66), suggesting a capability of T cell-

independent IgA in binding commensal bacteria. Polyclonal and

low affinity antibodies, mainly IgE and IgG1, are also considered

to play a role in host defense against certain gut pathogens such

as helminth (67). These studies may support the role of low-

affinity IgA in regulating gut homeostasis. Nevertheless, the role

of T cell-independent IgA in regulating gut bacteria has not been

fully elucidated. It has been recognized that T cell substantially

impacts microbiota composition through IgA production (68).

Furthermore, Grasset et al. showed that IgA in TACI-deficient

mice, which lack T cell-independent IgA, did not alter gut

microbiota in the colonic tissue and stool contents (60). These

studies show that although T cell-independent IgA can bind to

gut microbes, its role in regulating microbiota composition, in

contrast to T cell-dependent IgA, remains elusive. Although not

proven, this may be attributable to the low affinity of T cell-

independent IgA, since sufficient affinity to gut bacteria appears

required for their discharge from the intestinal lumen (56, 57). It

is also important to note that apart from somatic hypermutation,

N-linked glycosylation of the variable domain in antibody also
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affects antigen binding (69). In addition, the affinity of glycan-

glycan interactions with bacterial components such as

lipopolysaccharides could be sufficiently high (70). Although

this is a hypothesis requiring future investigation, glycan-glycan

interactions may be another perspective of IgA in regulating

microbiota. Taken together, the function of IgA on the gut

microbiota is likely to be defined by its mode of induction and

structure, and in particular, its affinity appears to have a

significant impact.

Another important aspect is the regulation of IgA-microbe

interactions by environmental factors. Microbe-derived small

molecules such as metabolites are important regulator of

intestinal immunity (Figure 1). As we discussed above,

microbial metabolites (e.g., SCFA) augment intestinal IgA

production and regulate their reactivity with microbes (64, 71,

72). Other dietary components and nutrients such as dietary

antigens (73), glutamine (74), vitamin A (75, 76), and dietary fat

(77) are also considered important regulators of intestinal IgA.

ATP, which could be released during tissue damage and

presumably during the invasion of pathogens, is another

important environmental stimulus that regulates IgA

production and mucosal colonization (78). Nutrient status can

also impact gut microbiota and their properties of being bound

by IgA. For example, under starvation, Lactobacillus spp. that

minimally express surface antigens for IgA binding can

selectively expand, resulting in altered IgA-microbe

interrelationships at the community level (79).

Finally, recent studies also appreciate the commensal fungi

as important modulators of the immune system and host

diseases such as IBD (80–82). Importantly, IgA appears to

regulate the commensal fungi as well. For example, Ost et al.

have shown that intestinal IgA can bind to and suppress hyphae

of Candida albicans, which can be potentially harmful to

intestinal homeostasis (83). Interestingly, IgA reactive with C.

albicans induced by a vaccination can reduce the severity of
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DSS-induced colitis. Similarly, Doron et al. have also reported

that SIgA in mice and humans preferentially binds to C. albicans

hyphae (84). Notably, SIgA reactive with hyphae-producing

antigens such as Sap6 and candidalysin were significantly

reduced in the mucosa of Crohn’s disease, implying a

protective role of candida-specific IgA in disease pathogenesis.
Potential mechanisms by which
intestinal IgA regulates host
pathophysiology

Considering that gut microbiota has tremendous impacts on

human physiology and pathology and that IgA effectively alters

the composition of the microbiota, it is tempting to assume that

IgA may modulate the pathogenesis of intestinal and extra-

intestinal diseases in humans. Understanding the underlying

mechanisms by which IgA impacts disease susceptibility may

also be important for the clinical application of IgA in future. As

most human findings in IgA-microbe interactions are purely

associative and correlative, we discuss experimental findings to

extrapolate the role of IgA in regulating microbiota-

mediated diseases.
Intestinal diseases

As we discussed above, it is not surprising that intestinal

diseases such as IBD are more prominently influenced by the gut

microbiota. It has been shown that IBD is characterized by

overgrowth of pathobionts such as E. coli and Klebsiella in the

intestine, which may be functionally involved in the progression of

disease activity and complications (39, 40, 85–87). These bacteria

seem to directly penetrate the mucosal layer and thereby excessively
FIGURE 1

The gut microbiota and their small molecules. The gut microbiota possesses millions of genes and produces thousands of small molecules.
Here we summarized representative microbe-derived small molecules, including organic acids, amino acids and their derivatives, vitamins,
secondary bile acids, and lipids. SCFAs, short-chain fatty acids; BCAA, branched-chain amino acids; GABA, gamma-aminobutyric acid.
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fuel immune reactions (39). In line with the protective role of IgA

against pathobionts, many human studies have revealed that IgA is

bound preferentially to pathobionts and/or colitogenic bacteria in

IBD (39, 40, 88). A report has also shown that SIgA is increased in

IBD (89), implying that IgA is produced in response to the

expansion of pathobionts. Furthermore, a recent paper by

Shapiro et al., revealed that IgA coating to Oscillospira is linked

with a delay in time to surgery in IBD patients, suggesting that IgA-

coated bacteria can be clinically applied as an IBD biomarker (88).

Together, these human findings warrant the application of IgA to

IBD for therapeutic and/or diagnostic purposes. In this regard, Okai

et al. have reported that administration of a high affinity and

polyreactive IgA, named W27, can bind to a wide variety of gut

commensal bacteria including pathobionts and that this high-

affinity IgA can mitigate colitis in experimental models (61).

Similarly, Xiong et al. have shown that oral administration of

W27 ameliorates a colitis model in marginal zone B and B-1 cell-

specific protein (MZB1)-deficient mice, which largely impairs the

secretion of IgA into the gut lumen (90). The effects of W27 have

also been tested in an in vitromodel of the human microbiota, with

a prominent effect on the growth inhibition of E. coli (91). These

findings suggest that limit of bacterial growth and/or faster

discharge from the intestinal lumen is facilitated by exogenous

IgA administration, and that this may serve as a protection against

colitis. However, it is important to note that IgA binding to

pathobionts is not always a good thing; for example, in Crohn’s

disease, NOD2 mutation facilitates retro transcytosis of IgA-coated

bacteria through M cells, which may fuel intestinal inflammation

and permeability (92).

As we discussed above, commensalism of other

microorganisms such as fungi may also regulate the disease

severity and outcome of IBD (83, 84). Virus is yet another

pathogen that is controlled by IgA. The regulation of virus by

SIgA is particularly important for protection against

enteropathogenic virus such as norovirus and rotavirus (93–95).

Rotavirus vaccination failure is associated with lower plasma

rotavirus-specific IgA (96), suggesting that IgA induction through

vaccination functionally protect against rotavirus infection. How

IgA regulates commensal virome has not been fully elucidated.

Although many studies have suggested altered gut viromes in IBD

patients (97–99), one study show that IgA deficiency does not

substantially impact viral profile at least in the saliva (100).

In addition to IBD, it has been recognized that irritable

bowel syndrome (IBS) is also associated with altered gut

microbiota and their metabolites (101, 102), which is

characterized by an increase in pathobionts such as the family

Enterobacteriaceae (101). Both SIgA and IgA-coated bacteria are

increased in IBS patients, especially those of diarrhea-

predominant type (IBS-D) (103, 104). It also appears that IgA

coating toward the genus Escherichia–Shigella is particularly

promoted in patients with IBS-D and is positively correlated

with some clinical manifestations of IBS such as anxiety and

depression scores (103). These findings suggest that, like IBD,
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IgA may be produced and secreted upon an expansion of

pathobionts in IBS, although a protective role of IgA in the

pathogenesis of IBS remains elusive.
Cardiometabolic diseases

Cardiometabolic diseases is another good example of how

the regulation of microbiome by IgA can be a potential

treatment strategy. For example, IgA deficiency in a mouse

model of obesity (e.g., high-fat diet-induced obesity)

aggravates the metabolic phenotypes (77). In addition, IgA

positively correlated with the improvement of metabolic

parameters in the patients who underwent bariatric surgery

(77). Interestingly, serum IgA has shown to increase in

patients with type 2 diabetes, although fecal IgA has not been

studied (105, 106). These human studies raise the possibility that

IgA may somehow affect the pathogenesis of cardiometabolic

diseases. As we noted above, translocation of microbial

components such as LPS and flagellin elicits low-grade

inflammation in the liver and adipose tissue, resulting in

insulin resistance and obesity (107, 108). In this regard, it has

been reported that vaccination with flagellin is potent in

regulating the localization of gut microbes through induction

of flagellin-specific IgA (109). Furthermore, the vaccination

ameliorates colitis and diet-induced obesity. Fujimoto et al.

have similarly reported that immunization with a microbial

antigen with adjuvants (i.e. CpG and curdlan) shows potent

induction of anti-Clostridium ramosum IgA in the intestine, and

this specific antibody can ameliorate obesity and other metabolic

consequences (110). Since microbe-derived metabolites also play

an important role in the development of cardiometabolic

diseases, the regulation of microbial transcriptional activity

could be another therapeutic strategy. In this regard, several

papers reveal that host immune reactions including IgA binding

to gut microbes also alter the transcriptional activity and

metabolite production by gut microbes (50, 111). As we

discussed earlier, T-cell help is important for the production of

high-affinity IgA that can regulate microbiota. In this regard,

Petersen et al. have revealed that MyD88 deficiency in T cells,

which results in impaired T-cell help function in producing

intestinal IgA, aggravates obesity in a microbiota-dependent

manner (112). Collectively, these findings suggest that IgA is

involved in the pathogenesis of metabolic diseases and that IgA

can be a useful toolbox to alter the gut microbiota and thereby

host metabolism.

It should be stressed, however, that metabolic phenotypes

have not been reported in patients with IgA deficiency. We

therefore consider that IgA deficiency itself may minimally

contribute to host metabolism in humans, possibly due to

compensatory mechanisms by other immunoglobulin classes

and/or other factors influencing host metabolism (e.g.,

recurrent infections). Nevertheless, this does not exclude any
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possibilities that an IgA-based intervention targeting certain

commensal bacteria could effectively alter the microbial

community and thereby host metabolic diseases. Needless to

mention, more studies are required to prove the concept

in future.
Liver diseases

Gut microbes can penetrate and translocate into the host body

in certain conditions such as obesity and diabetes (113–115).

Therefore, the role of IgA as a defense against microbes seems also

important in organs other than the intestine. The liver is

considered a firewall against bacterial translocation. Moro-

Sibilot et al. have revealed that IgA-producing plasma cells are

distributed in the human liver, and liver-derived IgA appears to be

highly reactive to B. vulgatus, a human commensal species (116).

They also show in mice that these IgA-producing cells in the liver

are derived from the Peyer’s patches. However, in an alcohol-

induced hepatitis model, they report that an increase in liver IgA-

producing cells is associated with worse outcomes and that

suppressing the migration of IgA-producing cells from the

Peyer’s patches to the liver can ameliorate liver injury.

Therefore, although IgA produced in the liver seems to react

with the commensal bacteria, the functional role in terms of IgA-

bacteria interactions, especially in the liver, remains elusive.
Inflammation in the central
nervous system

IgA is reportedly involved in autoimmune diseases such as

multiple sclerosis (MS). However, unlike IBD or cardiometabolic

diseases, it seems that IgA-producing cells themselves may affect

the pathogenesis of experimental autoimmune encephalomyelitis

(EAE), a disease model for MS, by producing immune suppressive

cytokines such as IL-10 (117). Interestingly, the authors also

showed a reduction of IgA-coated bacteria in severe MS

patients, which is also confirmed in another report (41). In

addition, they experimentally proved that increase in intestinal

and brain IgA by the colonization of Trichomonas musculis, an

intestinal protozoan, ameliorated EAE susceptibility

independently of T-cell subsets such as Th1 and Th17 (117).

Although this paper did not address the IgA reactivity with

specific bacteria, another study characterized the bacterial

reactivity of IgA in the central nervous system in MS patients

(42). In this study, the authors showed that IgA-producing cells

were reactive with a diverse array of gut microbiota but not with

self-antigens including those of human brains. These findings

reveal an intimate interaction between the gut and central nervous

system in MS, although the migratory mechanisms have not yet

been elucidated. It also remains elusive whether the specificity of

IgA to certain commensals affects the disease susceptibility.
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Aging

Aging is characterized by low-grade inflammatory responses

in multiple organs. Since it is also associated with sequential

alterations of gut commensal microbiome, many researchers

consider that microbes may be a source of inflammation during

the aging process. Interestingly, not only the commensals but

also IgA-coated bacteria are altered during aging. Sugahara et al.

have reported that while Bifidobacteriaceae was reduced in the

adult group (35 years old on average), Enterobacteriaceae and

Clostridiaceae were increased in the aged group (76 years old on

average) (118), implying that consistent with other reports (119),

dysbiosis is progressively aggravated during aging. Notably, IgA

binding to Enterobacteriaceae and Clostridiaceae was

significantly reduced in the aged group despite that the total

IgA amount in the stool remained unchanged (118). This may

explain why these pathobionts flourished in the aged group. It

has been reported that antigen uptake and antigen-specific

immune responses in the intestine are impaired with aging

(120–123). Although immunosenescence, i.e. age-related

impairment of immune cell functions, is generally considered

intrinsic to host organs, tissues and cells, diminished antigen-

specific responses may also be attributable to the alterations in

the gut environment as “beneficial” signals for immune

homeostasis from the intestinal lumen such as SCFAs is

reduced with aging (124). More studies are required to unveil

the interaction between gut microbiome and immunosenescence

and how this could impact the host pathophysiology.
Potential of IgA-oriented strategies
in human diseases

Given the promising roles of IgA in regulating and

modulating the gut commensal microbiota, it is tempting to

assume that IgA can be a novel therapeutic tool for many human

diseases. Here we propose four directions for future

development of IgA-oriented therapies (Figure 2). First,

prebiotics and probiotics can be harnessed to augment

intestinal IgA, although it has various effects on the mucosal

immune system (125, 126). As we discussed earlier, prebiotics

such as dietary fibers that increase intestinal SCFA levels can

potently augment intestinal IgA (71), in particular acetate

consistently shows this effect as reported in several papers (64,

72). In addition, other prebiotics including fructo- and galacto-

oligosaccharides also show robust effects on mucosal IgA

response in mice and humans (127–129). This seems relatively

easy for application since all we need is to consume these fibers

and/or SCFAs. However, a problem would be that prebiotics

cannot specify the target microbes of IgA. In addition, many

papers show that the effect of dietary fiber is highly variable,

probably due to the differences in individual microbiota profiles
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(130, 131), suggesting that it might be difficult to predict IgA

responses after administration of the dietary fibers.

The effect of probiotics on IgA production and secretion has

also been extensively researched. Lactic acid bacteria such as

Lactobacillus and Pediococcus strains have been shown to

increase IgA production by augmenting dendritic cells to

enhance secretion of IL-6 and/or IL-10, important cytokines

for IgA production (132, 133). Another study reveals that oral

administration of a heat-killed Lactobacillus strain increases

antigen-specific IgA secretion in OVA-immunized mice,

presumably through a T cell-dependent manner (134). In

addit ion, oral administrat ion of Lactobaci l lus and

Bifidobacteria strains to formula-fed infants increases their

cow milk-specific IgA-producing cells in blood samples (135).

These findings suggest that application of probiotic strains may

augment IgA secretion and function to protect barrier function.

From a different perspective, considering that IgA-seq analysis
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can distinguish a certain group of microbes, we may be able to

isolate an IgA-coated microbe as a next-generation probiotic

strain that possesses interesting functions in the intestine. In this

regard, Sun et al. have analyzed the differences between IgA-

coated and -uncoated Lactobacillus and shown that IgA-coated

species can modulate gut barrier function (136).

The adaptive immune system, and more specifically T-cell

help, is recognized as a cardinal component for specific IgA

production, which is important for the regulation of pathobionts

in the intestine. From this perspective, triggering the adaptive

immune system with vaccination via either oral or systemic

route is another possible strategy for IgA-oriented therapy. For

example, immunization of flagellin via intraperitoneal injection

is efficacious in inducing anti-flagellin IgA in mice (109).

Interestingly, this systemic immunization also alters gut

microbiota and several microbiota-associated host pathologies

such as high-fat diet-induced obesity (109). In addition,
FIGURE 2

Potential application of IgA to human diseases. IgA-oriented therapies that modulate the gut microbiota could be utilized to control disease
susceptibility. First, prebiotics (e.g., dietary fiber) and probiotics increase intestinal IgA production and modulate IgA-coating bacteria. In turn,
IgA-coated Lactobacillus could be isolated and harnessed as a probiotic strain that directly interacts with the mucus layer and epithelial cells.
Although these methods are relatively easy to implement, their effects on the intestinal immune system are not specific to IgA production. In
addition, it is difficult to induce IgA reactive with specific microbes of interest. By contrast, vaccination and monoclonal IgA administration are
more sophisticated in the sense that these methods leverage “specificity” toward certain microbes, a cardinal feature of adaptive immunity. As
the efficacy of these methods has been shown in mouse models (e.g., colitis and high-fat diet-induced obesity), these approaches that target
specific microbes of interest would be promising.
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Fujimoto et al. have shown that intramuscular injection of

antigens with adjuvants could efficiently induce antigen-

specific IgA responses (110). They showed that vaccination

with C. ramosum-derived antigens induced anti-C. ramosum-

specific IgA in the feces and reduced the abundance of this

microbe in the colonic mucosa, while this vaccination did not

alter the microbial community structure. Given that mucosal

vaccination is believed to efficiently induce IgA especially and

effectively protect against respiratory diseases such as influenza

virus infection (137), the development of a mucosal vaccination

strategy that regulates the microbiota may also be useful.

Monoclonal antibodies targeting specific molecules have

been clinically applied to many human diseases such as

cancers for many years (138). Likewise, monoclonal IgA

antibodies that show potent effects on the gut microbiota

could be selectively expanded and administered orally to the

patients. This concept was first shown by Okai et al.; as we

discussed above, they nicely revealed the efficacy of high-affinity

and polyreactive IgA in regulating the gut microbiota and

improving colitis after its oral administration (61). Another

group has also shown a similar effect of oral monoclonal IgA

administration (90). In a Salmonella infection model, oral

administration of monoclonal IgA named Sal4 efficiently

blocks the invasion of Salmonella into the Peyer’s patches

(139). As both vaccination and oral administration are

sophisticated strategies leveraging cardinal features of adaptive

immunity, i.e. high affinity and specificity especially with

pathobionts, it is tempting to anticipate future application to

human diseases relating to gut microbiota. For further

development, it also seems important to address the safety and

stable delivery of vaccines/IgA in humans and to define target

antigens/microbes appropriate for vaccines/IgA. Taken together,

these pioneering studies point to a promising possibility that IgA

can be exploited as an efficient regulator of the gut

commensal microbiota.
Conclusions

In this review, we discuss how IgA regulates microbiota in

the intestine and how this interrelationship impacts host

physiology and pathology, especially in the context of human

homeostasis. IgA-based strategies aiming to modulate the gut

microbiota such as prebiotics, vaccination, and exogenous

administration have been increasingly studied and regarded as
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a promising therapeutic toolbox for human diseases mediated by

the gut microbiota. Nevertheless, much evidence of IgA-microbe

interactions has been established based upon experimental

findings, emphasizing the necessity to explore the role of IgA

in humans. In this regard, a clinical application of IgA-based

strategies may serve not only therapeutic purposes but also

human evidence to show causality between IgA and the gut

microbiota in basic science, which would further accelerate our

understanding of human pathophysiology at the system level.
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