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Introduction: Despite the many benefits immunotherapy has brought to

patients with different cancers, its clinical applications and improvements are

still hindered by drug resistance. Fostering a reliable approach to identifying

sufferers who are sensitive to certain immunotherapeutic agents is of great

clinical relevance.

Methods: We propose an ELISE (Ensemble Learning for Immunotherapeutic

Response Evaluation) pipeline to generate a robust and highly accurate

approach to predicting individual responses to immunotherapies. ELISE

employed iterative univariable logistic regression to select genetic features of

patients, using Monte Carlo Tree Search (MCTS) to tune hyperparameters. In

each trial, ELISE selected multiple models for integration based on add or

concatenate stacking strategies, including deep neural network, automatic

feature interaction learning via self-attentive neural networks, deep

factorization machine, compressed interaction network, and linear neural

network, then adopted the best trial to generate a final approach. SHapley

Additive exPlanations (SHAP) algorithm was applied to interpret ELISE, which

was then validated in an independent test set.

Result: Regarding prediction of responses to atezolizumab within esophageal

adenocarcinoma (EAC) patients, ELISE demonstrated a superior accuracy (Area

Under Curve [AUC] = 100.00%). AC005786.3 (Mean [|SHAP value|] = 0.0097)

was distinguished as themost valuable contributor to ELISE output, followed by

SNORD3D (0.0092), RN7SKP72 (0.0081), EREG (0.0069), IGHV4-80 (0.0063),

and MIR4526 (0.0063). Mechanistically, immunoglobulin complex,

immunoglobulin production, adaptive immune response, antigen binding and

others, were downregulated in ELISE-neg EAC subtypes and resulted in
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unfavorable responses. More encouragingly, ELISE could be extended to

accurately estimate the responsiveness of various immunotherapeutic agents

against other cancers, including PD1/PD-L1 suppressor against metastatic

urothelial cancer (AUC = 88.86%), and MAGE−A3 immunotherapy against

metastatic melanoma (AUC = 100.00%).

Discussion: This study presented deep insights into integrating ensemble deep

learning with self-attention as a mechanism for predicting immunotherapy

responses to human cancers, highlighting ELISE as a potential tool to generate

reliable approaches to individualized treatment.
KEYWORDS

deep learning, immunotherapy, cancer, PD1/PD-L1, ELISE
Introduction

Avoiding immune surveillance by reconstructing the tumor

microenvironment and compromising antigen presentation

machinery to seize growth advantages has been widely recognized

as a hallmark of human cancers (1), which makes adoptive cell

transfer and therapies targeted to immune checkpoints the new

therapeutic pillars within oncology (2). Many immunotherapies

have received durable clinical responses, including pancreatic (3),

gastric (4), bladder (5), and lung cancer (6); however, limited

response rates and unclear underlying mechanisms hinder further

immunotherapy development, so only subsets of cancer patients

can benefit from them (7). For instance, although nivolumab

renewed melanoma clinical treatment, about 39% of patients had

progressed at the 5-year follow-up (8). Failure of immunotherapies

to reach tumor remission is ascribed tomanymolecular and cellular

mechanisms, such as altered tumor microenvironment (9, 10) and

defects in antigen presentation machinery (11), which makes the

key points of clinical success of future immunotherapeutics likely to

lie in the pre-evaluation of individual responses in order to tailor

strategies (9).

The emerging deep learning technologies have the potential

to drive away the shadows hanging over immunotherapy and

offer a glimmer of hope, since it has already powered recent

disease diagnosis and prognosis prediction (12). For example,

prognostication of clear cell renal cell carcinoma significantly

benefits from deep learning, even in a previous study where a

very simple neural network was deployed (13). The

immunotherapeutic responses prediction is a classification

issue that can be greatly improved with many state-of-the-art

(SOTA) neural network architectures that have demonstrated

their outstanding performances in computational science fields

but have yet to be applied in medical areas. For example, Autoint

(Automatic feature interaction learning via self-attentive neural
02
networks), a deep neural network with residual connections and

a multi-head self-attention, can map both numerical and

categorical features into the same low-dimensional space to

explicitly model the feature interactions, and has demonstrated

its SOTA performance in the benchmark comparison (14).

RNA-seq data are typically ultra-high-dimensional data, which

are difficult to be fitted accurately by a single algorithm.

Secondly, the data distribution of gene expression profiles

approximates a Poisson distribution. However, considering the

different sequencing platforms, the actual distribution may be a

mixture of multiple distributions. Therefore, a combination of

different algorithms is needed

In the present study, we proposed ELISE (Ensemble Learning

for Immunotherapeutic Response Evaluation) by combining

Linear Neural Network (LNN), Deep Neural Network (DNN),

Deep Factorization Machine (DeepFM), Compressed Interaction

Networks (CIN), and Autoint. ELISE inputted a pre-selection

phase to erase irrelevant features and employed MCTS algorithm

to output the best model. ELISE was validated to be a general

pipeline for predicting immunotherapeutic responses to many

human cancers and featured high potential for predicting any

immunotherapeutic response against any tumor.
Materials and methods

Patients

Responses data of atezolizumab on resectable EACs were

obtained viaGene Expression Omnibus (GEO) (GEO Access ID:

GSE165252), which presented RNA expression data in the form

of normalized counts. In the present study, GSE165252 were

converted to TPM (Transcripts Per Million, or Transcripts Per

kilobase of exon model per Million mapped reads) using R
frontiersin.org
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software (version 4.1.0), as normalized counts are not acceptable

for any prediction models.

Responses data and RNA-seq data of PD-1/PD-L1

suppressor on metastatic urothelial cancers and MAGE−A3 on

metastatic melanoma, were respectively obtained via GEO

Access IDs GSE176307 and GSE35640.
ELISE architecture

The feature selection phase was conducted with R software,

implementing logistic regression as per our previous study (15),

for selecting features that impact outcomes significantly.

Features met p-value < 0.001 in their corresponding logistic

regression model were retained and considered as the important

features for clinical outcomes.

The remaining phases of ELISE were conducted with Python

software (version 3.8). LNN and DNN are the base neural

network architecture, differing in the number of hidden layers

according to our previous study. LNN and DNN performed well

in some cases, so both were included in ELISE (12). DeepFM

combines the power of factorization machines for

recommendation and deep learning for feature learning in a

new neural network architecture (16). CIN aims to generate

feature interactions in an explicit fashion at the vector-wise level

(17). AutoInt can be applied to both numerical and categorical

input features, and maps these into the same low-dimensional

space. Then, a multi-head self-attentive neural network with

residual connections was used to explicitly model the feature

interactions in the low-dimensional space (14). All these neural

networks were applied using package DeepTable in python, and

MCTS used for hyperparameters tuning (github.com/

DataCanvasIO/DeepTables).

For each trail in the model training, ELISE used MCTS to

decide what models should be trained, and then optimized their

hyperparameters based on the observation of hyperparameters

optimization history. After all models were trained, they were

considered as “weak learners”. ELISE stacked all predictions of

“weak learners” to output final prediction.

Area Under Curve (AUC) of receiver operating characteristic

curve (ROC) and calibration were employed to evaluate

performance of ELISE in the test and train cohorts. These

analyses were conducted in R with pROC and rms packages.
Interpretability

SHAP provides a game theory-based approach to interpret

any deep learning models’ output, connecting optimal credit

allocation with local explanations using the classic Shapley

values from game theory and their related extensions (18). We
Frontiers in Immunology 03
employed SHAP to interpret ELISE using the shap package

in python.
Dissecting molecular mechanisms

Gene set enrichment analysis (GSEA) was employed to

elucidate the dysregulated biological processes, molecular

functions, cellular components, and signaling pathways of

ELISE subtypes. The differential expressed genes (FDR < 0.05,

log2 Fold-Change >1) were involved in GSEA analyses. GSEA

relied on Gene Ontology dataset and KEGG dataset curated in

GSEA official database (19).

Estimation of stromal and immune cells in malignant tumor

tissues using expression data (ESTIMATE) algorithm is a

sophisticated algorithm which is designed for measuring the

degree of infiltration of cancer cells and different normal cells by

exploiting the unique properties of tumor cell transcriptional

profiles (20), with its robustness having been validated in various

cancers. The present study employed ESTIMATE algorithm

which was provided by ESTIMATE package in R. This was

used to quantify the global tumor microenvironment into four

characterized indictors, including stromal score, immune score,

ESTIMATE score, and tumor purity, representing infiltration

abundance of stromal cells, immune cells, overall normal cells,

and tumor cells, respectively. Since the resultant data had a

skewed distribution, a grouped comparison was performed with

a Wilcoxon test, and Spearman coefficients evaluated their

correlation. All p-values were corrected using Benjamini–

Hochberg method to avoid false positive results.

According to our previous study, we used single sample

GSEA (ssGSEA) to dissect immune cell infiltration between

ELISE subtypes (12).
Statistical analysis

Raw data were collated by R software. The statistical analyses

were based on R and Python software. The statistical results and

interactive network data analysis were visualized with Cytoscape

version 3.7.1 (Cytoscape Consortium, San Diego, California,

USA). According to the previous study (15), Pearson’s and

Spearman’s correlation coefficients were utilized to calculate

continuous and categorical variables, respectively.
Results

ELISE methodology

We proposed ELISE as a computerized approach for

individualized prediction of immunotherapeutic response to human

cancers based on their transcriptomic data (Figure 1). ELISE consists
frontiersin.org
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of four core components: Feature Selection, Feature Embedding,

Deep Learning Models, and Hyperparameter Optimization

modules. The collated transcriptome data and clinical

immunotherapy response data were first loaded into the Feature

Selection module, which employed iterative univariable logistic

regression to parallelize and evaluate the impact of all input

features on the outcomes, where features with p-values less than

the pre-defined screening threshold were subsetted as input data of

the next module, Feature Embedding (Figure 1A). Subsetted features

were either directly loaded into a dense layer of the next training

model, LNN, or those features were discretized or categorized to the

embedding layer (Figure 1B). The subsequent module is Deep

Learning Models (Figure 1C), which incorporated five of the most

prevalent neural network architectures available recently, including

DNN, Autoint, DeepFM, CIN, and LNN. After pre-defining the

hyperparameter search space or directly adopting the default settings,

the Hyperparameter Optimization module was initiated for

hyperparameter optimization via MCTS algorithm (Figure 1D). In

each trial, the module trained a different number of neural networks,

performed individual hyperparameter tuning for each network, and

subsequently stacked all networks using the concatenate or add

strategy and offered the final prediction. Notably, ELISE employed

a sigmoid function as the activation function, a binary cross-entropy

as the loss function, an AUC as the evaluation metric, and an Adam

optimizer in all trials.

ELISE was designed to process different normalized data, no

matter TPM or RSEM. The potential user just needs to ensure
Frontiers in Immunology 04
their data in a standalone task is homogeneous, i.e., normalized

via the same method. For evidence these hypotheses, we

implemented ELISE for three different tasks. Data

normalization methods among these tasks were different, but

each task’s data was normalized via the same method to ensure

their homogeneous.
ELISE performed with outstanding
accuracy in predicting atezolizumab
responses to EAC

A total of 76 EAC suffers were randomly split into initial

train and test cohorts at a proportion of 8:2, and 10% of those in

the initial train cohort were randomly shuffled out as the

validation cohort with the remaining 90% defined as the final

train cohort. Then, ELISE trained the prediction model only

with the train cohort, which was validated using the validation

cohort and then independently tested within the test cohort.

Feature Selection module identified 442 RNAs as the most

important contributors to atezolizumab responses (all p <

0.001, Figure 2A). The retained features were loaded into Deep

Learning Module for launching the training process, in which

the drifting features were corrected with Adversarial Validation

algorithm. After ten trials, MCTS identified the ninth trial as the

best trial with the smallest validation loss and relatively small

train loss; the train history and the best hyperparameters are
B

C

D

A

FIGURE 1

ELISE pipeline. (A) Inputted data. (B) Feature embedding. (C) Neural networks. (D) Hyperparameters tuning.
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presented in Figure 2B. Specifically, the ninth trial was stopped

early at the epoch 74 with a train loss of 0.0011 and a validation

loss of 0.0329 (Figure 2C).

The independent test cohort was then employed for testing

ELISE performance. The existing expert consensus is that a

prediction model is considered to feature high discrimination

when its AUC is higher than 75% (21). As expected, ELISE

presented outstanding discrimination in terms of atezolizumab

responses prediction, which could be evidenced by the AUC of

100.00% in the test cohort and AUC of 99.90% in the training

cohort (Figures 2D, E). Calibration plots also demonstrated that

ELISE performed a good calibration (Figures 2F, G), which

means ELISE could correctly estimate the absolute risk (21).

ELISE ultimately distinguished EAC patients into two subtypes,

the ELISE-pos subtype (ELISE-identified subtype with positive

response to immunotherapies) and the ELISE-neg subtype

(ELISE-identified subtype with negative response to

immunotherapies), in which the ELISE-pos subtypes displayed

a predominant proportion of patients with immunotherapeutic
Frontiers in Immunology 05
response and the ELISE-neg subtype held the opposite, with

most patients without an immune response (Figures 2H, I).
Interpreting ELISE

Deep learning models are deemed “black boxes,” despite the

good predictions made; however, it is difficult to understand the

logic behind the predictions (22). The correct interpretation of

these “black boxes” is of great importance, as they engender

appropriate user trust and support the understanding of the

process being modeled (23). However, the prevailing method to

interpret deep learning or machine learning model in the

medical field remains Variable Importance algorithm (12, 24),

which is a biased method that fails to explain how the features

affect the specific or overall predictive ability of the models (23,

24). A novel algorithm, SHAP, has been proposed to overcome

these limitations (23). SHAP is a game theoretic approach to

interpret the output of any deep learning model. It computes the
B

C D E F

G H I

A

FIGURE 2

ELISE applied to EACs. (A) Resultant data of feature selection. (B) Hyperparameter optimization. (C) Loss curves of the best trial. (D, E) presented
AUCs of ELISE in the train and test cohort. (F, G) are the calibration plot of ELISE in the train and test cohort, respectively. (H, I) displayed the
actual outcomes distribution in the ELISE-neg and ELISE-pos subtypes.
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global interpretation by calculating and combining the SHAP

values for a whole dataset and measures the impact direction of

each feature (23). In the present study, SHAP was used to

interpret ELISE and improve the user trust of it.

Figure 3A summarizes the top 20 SHAP-identified

important features, ranked according to Mean (|SHAP value|)

to quantify the impact of all features on ELISE prediction

(unfavorable immunotherapeutic response). AC005786.3

(Mean [|SHAP value|] = 0.0097) was distinguished as the most

valuable contributor to ELISE output, followed by SNORD3D

(0.0092), RN7SKP72 (0.0081), EREG (0.0069), IGHV4-80

(0.0063), MIR4526 (0.0063), etc. SHAP values includes an

essential property that always sum up the difference between

the players-present and players-absent game outcomes. For

ELISE, a deep learning model, SHAP values of all the input

features will always sum up to the difference between baseline

(expected) and real-time ELISE outcomes for the prediction

being explained (25). Thus, the SHAP algorithm interpreted how

ELISE summed up each features’ contribution and made the
Frontiers in Immunology 06
final predication accordingly. The stacked force plot presented in

Figure 3B displayed features contributing to pushing the ELISE

individual prediction from the base value (the mean ELISE

prediction over the train set) to the final prediction (features

pushing the prediction higher are marked in red and those

pushing the prediction lower are in blue). The decision plot in

Figure 3C further highlights the contributions of the top 20

features’ observed values to ELISE outputs and how they push

the model prediction in each sample. The impacts of the top six

features on the output of ELISE were further quantified with

dependent plots (Figure 3D); AC005786.3 and EREG

demonstrated negative contributions to ELISE, predicting poor

responses to immunotherapies, with Spearman’s r to their

SHAP values of 0.73 and 0.80, respectively. On the contrary,

SNORD3D, RN7SKP72, IGHV4-80, and MIR4526 raised risk to

unfavorable responses, which were evidenced by their

Spearman’s r of -0.90, -0.89, -0.84, and -0.84, respectively.

SNORD3D, RN7SKP72, IGHV4-80, and MIR4526 held much

higher expression profiles within ELISE-neg subtypes than other
B

C D

E

A

FIGURE 3

Interpreting ELISE in EACs. (A) SHAP summary plot ranked and presented the top 20 important features. (B, C) exhibited how ELISE makes the global
and individual prediction. (D) Dependent plot indicated the affection directions of top 6 features. (E) Many top important features identified by SHAP
presented differential expression profiles between ELISE-neg and ELISE-pos subtypes. The symbols ** represents p < 0.01, and *** represents p < 0.001.
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ELISE-pos counterparts (Figure 3E), which was in the line with

resultant data of dependent plots and reaffirmed that they served

as risk factors to poor responses to immunotherapies given to

EAC patients.
Molecular mechanisms leading to poor
responses to atezolizumab in ELISE-neg
EAC subtype

It is of great clinical relevance to provide deep insight and

elucidate the molecular mechanisms underlying the failure to

immunotherapies in the ELISE-neg EAC subtype. GSEA was

employed to offer an atlas of dysregulated biological processes,

molecular functions, cellular components, and signaling pathways

of ELISE subtypes. As resultant data shown in Figure 4A, certain
Frontiers in Immunology 07
critical biological processes, molecular functions, and cellular

components involved in immunosurveillance and the cytotoxic

effect mediated by immune cells towards human EAC, including

immunoglobulin complex (NES: 0.656, adjusted < 0.001),

immunoglobulin production (NES: 0.607, adjusted < 0.001),

production of molecular mediator of immune response (NES:

0.532, adjusted < 0.001), adaptive immune response (NES: 0.462,

adjusted < 0.001), antigen binding (NES: 0.563, adjusted < 0.001),

and T cell receptor complex (NES: 0.548, adjusted < 0.001), were

upregulated in ELISE-pos EAC and downregulated in ELISE-neg

EAC subtypes. Further GSEA to analyze dysregulated signal

pathways also revealed that key immune pathways were enriched

in ELISE-pos EAC subtypes, which were downregulated in ELISE-

neg subtypes, such as antigen processing and presentation

(Figure 4B), and the proteins encoded by key RNAs involved in

the ELISE model had significant interactions (Figure 4C). These
B C

A

FIGURE 4

Dissecting underlying mechanisms leading to different outcomes. (A) Resultant data of GSEA (BP, CC, MF). (B) GSEA results (signaling pathways).
(C) Protein-protein interaction network.
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positive findings strongly indicate that critical molecules

synergistically mediate the downregulation of immune signaling

and result in failure of atezolizumab treatment on EACs.

Since the immune microenvironment in EACs plays a vital

role in their tumorigenesis, malignant progression, and remote

migration, we further investigated the tumor microenvironment

of ELISE-subtyped EACs. However, as displayed in Figure 5,

tumor purity, immune microenvironment, 29 types of immune

cellular component infiltrations, and stromal cells infiltration,

did not show any significant differences between ELISE-pos and

ELISE-neg subtypes. These results indicate that atezolizumab

may affect the immune microenvironments less, but still affects

immune cell functions and their downstream pathways in EACs.
ELISE is a general pipeline to predict
immunotherapeutic responses to human
multi-cancers

To evidence the general applicability and robustness of ELISE

in the prediction of pan-cancer responses to immunotherapies, it

was tested in two different human cancers, metastatic urothelial

cancer (UC) and metastatic melanoma.

For prediction of responses to PD1/PD-L1 suppressor

against metastatic UCs, ELISE included 89 subjects’ RNA

expression profile data, in which 70% were assigned to a train

cohort, 10% to a validation cohort, and the remaining 20% to an

independent test cohort. During the feature selection phase,

ELISE distinguished 624 RNAs as the most critical factors that

caused high responses to immunotherapies of metastatic UCs

(Table S1) that were then fed into the model training phase.

ELISE employed 10 trials to select and ensemble a final
Frontiers in Immunology 08
prediction model and chose Trial 6 as the best trial

(Figure 6A). The best hyperparameters included: models

ensembled (DNN, Autoint, and DeepFM), parameters

activated (Auto Categorization, Cat Remaining Numeric,

Output Use Bias, Class Weight), parameters disabled (Auto

Discrete, Batch Normalization), Stacking by Add, Embedding

Output Dim of 4, Embedding Dropout of 0, Early Stopping

Patience of 50, Batch Size of 64, DNN Units of 200, Hidden

Units of 300, Reduce Factor of 1, DNN Dropout of 0.3, and

Space Vectors of [21, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1, 0]. Loss

curves of Trial 6 are presented in Figure 6B, and early stopping

was activated at Epoch 64. Finally, ELISE performed well in pre-

evaluating responses to PD1/PD-L1 suppressor against

metastatic UCs, which could be evidenced by high AUCs in

the train cohort (Figure 6C) and the test cohort (Figure 6D).

ELISE prediction, also as expected, was highly in line with the

actual responses to PD1/PD-L1 suppressor upon metastatic UCs

in the train cohort (Figure 6E) and the test cohort (Figure 6F).

When applied to foresee MAGE−A3 responses to metastatic

melanoma, ELISE also performed outstandingly. ELISE trained a

prediction model with RNA expression data of 56 melanoma

suffers, in which 713 RNAs were identified as the most

significant impactors for raising unfavorable responses to

MAGE−A3 treatment (Table S2). After all trials were

completed, Trial 2 was triumphed as the best trial (Figure 6G),

offering the best hyperparameters of models ensembled (DNN,

LNN, and DeepFM), parameters activated (Auto Categorization,

Auto Discrete, Class Weight, Batch Normalization), parameters

disabled (Cat Remaining Numeric, Output Use Bias), Stacking

by Concatenation, Embedding Output Dim of 4, Embedding

Dropout of 0.5, Early Stopping Patience of 100, Batch Size of 32,

DNN Units of 100, Hidden Units of 100, Reduce Factor of 0.8,
FIGURE 5

Tumor microenvironments and immune cell infiltration.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1025330
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2022.1025330
DNN Dropout of 0, and Space Vectors of [25, 1, 0, 1, 0, 1, 1, 0, 1,

2, 0, 0, 0, 1, 0, 1]. ELISE reached high AUCs in the train and test

cohorts of 97.58% and 100%, respectively, which demonstrated

that ELISE presented high discrimination in predicting MAGE

−A3 responses against metastatic melanoma.
Frontiers in Immunology 09
Subsequently, ELISE was tailored to predict responses to

PD1/PD-L1 suppressor against metastatic UCs, picked for

interpretation owing to the large sample size of the metastatic

UCs cohort, to demonstrate the general interpretability of ELISE

in the human pan-cancers. As demonstrated in Figure 7A, SHAP
B

C D E F

G

H

I J K L

A

FIGURE 6

ELISE applied in UCs and melanoma. (A) Hyperparameter optimization in UCs. (B) Loss function curves in UCs. (C, D) AUCs of ELISE applied in
UCs in the train and test cohort. (E, F) are the calibration plots of ELISE in the train and test cohort, respectively. (G) Hyperparameter
optimization in MELANOMAs. (H) Loss function curves in MELANOMAs. (I, J) AMELANOMAs of ELISE applied in MELANOMAs in the train and test
cohort. (K, L) are the calibration plots of ELISE in the train and test cohort, respectively.
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algorithm ranked all inputted features according to their mean |

SHAP values| to discover important features that made the

decisive contributions to unfavorable immunotherapeutic

responses. CDKN2A was outstanding as the most pivotal

contributor with the highest mean |SHAP values| of 0.0551,

followed by AQP2, FRMPD2, GBP6, GNG4, OR52N1 etc.

Furthermore, SHAP algorithm stacked contributions of all

participants to directly visualize how ELISE made the

individualized prediction according to the original inputted

features values, shown in Figures 7B, C. As learned from

Figure 7D, AQP2, FRMPD2, GBP6, and GNG4 served as

catalysts to increase resistance to PD1/PD-L1 suppressor

within metastatic UCs. Conversely, CDKN2A and OR52N1

declined the PD1/PD-L1 resistance, which demonstrates that

suffers with metastatic UCs will be more sensitive to PD1/PD-L1
Frontiers in Immunology 10
suppressor with the increased expression of CDKN2A

and OR52N1.
Discussion

The present study conducted based on real-world patient

data represents, to the best of our knowledge, the first attempt to

develop a general pipeline for predicting responses of various

immunotherapies against human pan-cancers. The contribution

of our findings to the related scientific fields is not only the

proposed ELISE pipeline that has already been attested for its

generalization and robustness, but also offers an interpretable

tool that could highly foster user trust and has the prevailing

advantages for clinical application. With the assistance of the
B

C D

A

FIGURE 7

Interpreting ELISE in UCs. (A) SHAP summary plot ranked and presented the top 20 important features. (B, C) exhibited how ELISE makes the
global and individual prediction. (D) Dependent plot indicated the affection directions of top 6 features.
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present ELISE, oncologists and clinicians will be able to pre-

evaluate individual responses to specific immune treatment

more rapidly and decide on tailored therapeutic approaches

with a high confidence level provided by ELISE.

As a state-of-the-art bioinformatic tool, deep learning has

achieved an overwhelming advantage in disease diagnosis and

treatment response prediction (12, 15, 26). Traditionally,

diagnosing cancers relies highly on histopathology or

cytopathology, which mainly involves assessment under

microscopy to detect aberrant cells within a clinical sample,

evaluate biomarkers of certain cancers and determine cancers’

subtype, stage, and grade (27, 28). However, the high-throughput

feasibility and reliability of such approaches has been compromised

by their nature of labor-intensive and human subjectivity (29).

Benefiting from deep learning, clinicians are now able to

automatically or semi-automatically stage many malignant

tumors, including prostate (30), colon (31), and skin cancer (32),

with comparable accuracy to pathologists. Notably, deep learning

plays a critical role in cancer treatment decisions that cannot be

ignored, as one of the promises of precision oncology is

individualizing treatment to achieve tumor remission and prolong

the overall survival of patients (29, 33, 34). A large-scale study

investigated over 650 drug sensitivity data on thousands of cell lines

and raised a deep learning tool called “DrugCell”, which is designed

as an interpretable model to predict response to therapies and is

successfully validated with in vitro and in vivo data (35). More

encouragingly, deep learning techniques have raised many

opportunities to discover and identify drugs sensitive to human

cancers, such as cimetidine sensitive to lung adenocarcinoma (36),

emetine to atypical meningiomas (37), and vinorelbine to TTN-

mutated tumors (38). These enlightening shreds of evidence prove

that deep learning could be greatly beneficial in predicting

immunotherapeutic responses.

With these exciting techniques, we propose ELISE, one of the

present study’s most important findings, for offering highly

accurate pre-evaluation of immunotherapeutic responses. ELISE

powers many immune treatments for human cancers, and

theoretically could be employed for predicting any

immunotherapeutic response against any tumor. Taking EACs

as an example, ELISE demonstrated high discrimination when

employed to predict atezolizumab responses (AUC = 100.00% in

the test cohort). When applied to predict other immunotherapies

on different tumors, including PD1/PD-L1 suppressor against

metastatic UCs and MAGE−A3 responses to metastatic

melanoma, ELISE also performed outstandingly, which could be

evidenced by our findings in Figure 6. Compared to other studies,

ELISE exhibited its overwhelming advantages in terms of

therapeutic outcomes prediction. For predicting atezolizumab

responses of EAC patients, ELISE reached AUC value of

100.00%, yet previous study only achieved AUC value less than

80.00% (39). These positive results are attributed to the design of

the ELISE pipeline. ELISE employed feature selection and feature

embedding modules to pre-erase “noise” i.e., features with less or
Frontiers in Immunology 11
no influences upon outcomes, ensembled many state-of-the-art

deep learning networks architecture including LNN, DNN,

Autoint, DeepFM, and CIN, and implemented a state-of-the-art

hyperparameters optimization algorithm, MCTS, for tuning

hyperparameters and stacking networks to generate the best

model. Moreover, ELISE does not require specific data

normalization processes if batch effects are pre-removed; in fact,

it can process any RNA expression data, regardless of TPM data

(Figure 3) or RSEM data (Figure 6).

Autoint is a deep neural network with residual connections

and multi-head self-attention; it works with the same low-

dimensional space, which is mapped from both numerical and

categorical features, to explicitly model the feature interactions

(14). With the assistance of multi-head self-attentive neural

networks, Autoint can further refine interactions of high-order

features and satisfactorily fit large-scale RNA expression data in

an end-to-end fashion (14). DeepFM, which was designed as an

end-to-end wide & deep learning framework for CTR prediction,

offers a novel, state-of-the-art neural network architecture that

integrates factorization machines and deep learning for

recommendation and feature learning (16). CIN aims to

generate feature interactions in an explicit fashion at the

vector-wise level (17). Besides, DNN and LNN have widely

been employed for modeling medical data and reached

remarkable performances in many cases (12, 38). Furthermore,

for hyperparameters tuning, MCTS is a notoriously advanced

algorithm that has led to remarkable successes of many

landmark artificial intelligences, including AlphaGo. In the

ELISE pipeline, all these state-of-the-art network architectures

and hyperparameters optimization method were included,

which endowed ELISE with outstanding performance when

predicting immunotherapeutic responses to cancers.

ELISE allows model interpretation via SHAP algorithm to

transparentize the decision process of the “black box”model and

increase clinician trust. Taking metastatic UCs as an example,

SHAP algorithm elucidated each inputted features’ contribution

to ELISE output, determined their affecting direction, and

offered the global and individual interpretation for ELISE

decision processes. CDKN2A, in the present study, was

distinguished as the most important contributor with a

negative correlation to unfavorable responses to PD1/PD-L1

suppressor, consistent with previous publications. CDKN2A

encodes p16, an endogenous inhibitor of the cyclin-dependent

kinases CDK4 and CDK6, which restrict the G1/S phase

transition and induce cell senescence (40). A large-scale

clinical study attested that CDKN2A is identified as a

significant transcriptional correlate of response, highlighting

the association of non-immune pathways to the outcome of

checkpoint blockade (41). These data emphasize the high

consistency that ELISE provides to prior experiences of

routine clinical practices and lab works.

The present study is limited due to the inherent

disadvantages of retrospective cohort studies, and ELISE
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warrants further validation and improvement in large and well-

designed prospective clinical trials. Moreover, the potential of

ELISE is limited by the samples size, despite we searched the

related dataset as much as possible. A well-designed study will be

conducted if more samples are obtained in the future. Besides,

we could not access survival difference between different ELISE

group due to their survival data was not available. The survival

analyses will be preformed as planed if more survival data

is available.
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