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The most common bone cancer is osteosarcoma (OS), which mostly affects

children and teenagers. Early surgical resection combined with chemotherapy

significantly improves the prognosis of patients with OS. Existing

chemotherapies have poor efficacy in individuals with distant metastases or

inoperable resection, and these patients may respond better to novel

immunotherapies. Immune escape, which is mediated by immunosuppressive

cells in the tumour microenvironment (TME), is a major cause of poor OS

prognosis and a primary target of immunotherapy. Myeloid-derived suppressor

cells, regulatory T cells, and tumour-associated macrophages are the main

immunosuppressor cells, which can regulate tumorigenesis and growth on a

variety of levels through the interaction in the TME. The proliferation, migration,

invasion, and epithelial–mesenchymal transition of OS cells can all be impacted

by the expression of non-coding RNAs (ncRNAs), which can also influence how

immunosuppressive cells work and support immune suppression in TME.

Interferon, checkpoint inhibitors, cancer vaccines, and engineered chimeric

antigen receptor (CAR-T) T cells for OS have all been developed using

information from studies on the metabolic properties of immunosuppressive

cells in TME and ncRNAs in OS cells. This review summarizes the regulatory

effect of ncRNAs on OS cells as well as the metabolic heterogeneity of

immunosuppressive cells in the context of OS immunotherapies.
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Introduction

Osteosarcoma (OS) is a malignant mesenchymal tumour

that most commonly affects children and adolescents and has a

high rate of metastasis and mortality (1). OS primarily affects the

epiphysis of the long bones in the extremities, with lung

metastases occurring most frequently (2). Current treatments

for OS include surgical resection and adjuvant chemotherapy,

which typically result in a survival rate of less than 5 years for

patients with distant metastases (3). Metastatic OS has been

successfully treated with immunotherapy, and the mechanisms

underlying this success are related to the heterogeneity of

immunosuppressive cells in metastatic tumours and the

interaction of stromal and immunosuppressive cells in the

tumour microenvironment (TME) (4).

The TME in OS is complex and diverse and plays a critical

role in tumorigenesis and development. The TME consists of

stromal cells and other key factors, including cancer-associated

fibroblasts (CAFs), immune cells, extracellular matrix, and

vasculature (5). To promote the occurrence and development of

tumour cells, stromal cells secrete cytokines, growth factors, and

chemokines (6). Immune cells such as lymphocytes and natural

killer cells can effectively control tumour invasion, which can be

suppressed by immunosuppressive cells such as myeloid-derived

suppressor cells (MDSCs), regulatory T cells (Tregs), and tumour-

associated macrophages (TAMs) (7). Immunosuppressive cells

and stromal cells in the TME mutually promote the growth and

maturation of OS cells (8).

The proliferation, angiogenesis, and apoptosis of OS cells are

closely related to noncoding RNAs (ncRNAs), including

microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and

circular RNAs (circRNAs) (9, 10). miRNAs can regulate the

proliferation and apoptosis of OS cells via their aberrant

expression (11). Overexpression of mir-542-5p can enhance

proliferation, but miRNA-1236-3p can decrease proliferation and

promote apoptosis in OS cells (12, 13). lncRNAs can enhance OS

progression, such as SNHG3, whose overexpression can speed up

the migration and invasion of OS cells (14). circRNAs function as a

miRNA sponge, regulating transcriptional or post-transcriptional

gene expression and contributing to the control of OS incidence

and development (15). lncRNA and circRNA can regulate the

biological activity of OS cells by forming miRNA sponge, which act

as competitive endogenous RNA (ceRNA) (10, 16). Studies on the

metabolic properties of immunosuppressive cells and ncRNAs in

OS cells promote the use of immunotherapy in the treatment of

OS, including interferon treatments, checkpoint inhibitors, cancer

vaccines, and engineered chimeric antigen receptor T (CAR-T)

cells (4, 17). Among these, CAR-T cell treatment offers a significant

advancement in T-cell-based immunotherapy and is predicted to

be a game changer in OS immunotherapies (18). We summarize

the metabolic properties of immunosuppressive cells in the TME
Frontiers in Immunology 02
and functional ncRNAs in OS in this paper. The targets, efficacy,

and drug resistance of several recently developed immunotherapies

are compared.
Noncoding RNAs in osteosarcoma

The pathophysiology of OS is related to aberrant oncogene

activation and tumour suppressor gene inactivation induced by

somatic mutations and epigenetic processes (19). Recent studies

have increasingly focused on the dysregulation of ncRNAs,

including miRNAs, lncRNAs, and circRNAs (9, 20).
MicroRNAs

miRNAs regulate cell proliferation, differentiation,

apoptosis, and development by binding to the 3’ untranslated

region (3’-UTR) of target mRNAs and are able to degrade or

induce translational silencing in OS cells (21). miR-223-3p has

been shown in studies to limit cadherin-6 expression by directly

binding to the 3’-UTR of cadherin-6 and to inhibit the invasion,

migration, growth, and proliferation of OS cells (22). The

expression of miR-18b-5p, which is mediated by HIF-1a, is
substantially increased in OS and is associated with a poor

prognosis (23). In addition, miR-18b-5p promotes the

incidence and development of OS by inhibiting the expression

of the tumour suppressor gene PHF2 (23). miRNA-98-5p is

under-expressed in OS and inhibits cell cycle progression and

migration potential by down-regulating CDC25A, thereby

inducing OS apoptosis (24). Overexpression of miRNA-1236-

3p in HOS cells reduces proliferation, stops the cell cycle in the

G0/G1 phase, and promotes apoptosis (13). A differential

analysis of miRNA expression in OS (Figure 1A) shows that

the expression of let-7A-2 and miR-323 is decreased, whereas

the expression of miR-182 is increased, suggesting that miR-182

could be a possible therapeutic target in OS. The detailed

information of differentially expressed ncRNAs in A-C is

presented in Table S1.
Long noncoding RNAs

The expression of lncRNA MELTF-AS1 is significantly

increased in OS and promotes OS metastasis by upregulating

the expression of MMP14 (25). lncRNA ODRUL can act as a

competitive endogenous RNA (ceRNA) sponge of miR-3182

and promotes the proliferation, migration, invasion, and

tumour growth of OS by upregulating the expression of

matrix metalloproteinase (MMP) II (26). The oncogenic
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effects of LncRNA CBR3-AS1 are executed by regulating the

network of the miR-140-5p/DDX54-NucKS1-mTOR

signalling pathway, which encourages stemness and

epithelial–mesenchymal transition (EMT) of OS (27). The

overexpression of lncRNA EBLN3P promotes the progression

of OS cells, which is indicative of the stimulating effects of

EBLN3P (28). In OS cells, the expression of the lncRNAs

ENSG00000233086.8 and ENSG00000269821 is much higher

(Figure 1B). By examining the molecular pathways and

regulatory mechanisms further, one may be able to control

the development of OS.
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Circular RNAs

circECE1 is highly expressed in OS tissues and cells, and its

association with c-Myc promotes tumour proliferation and

metastasis by boosting glucose metabolism in OS cells to

prevent speckle-type POZ-mediated ubiquitination and

degradation of c-Myc (29). C-Myc-targeting checkpoint

inhibitors have been demonstrated to impede OS development

via modulating the production of ncRNAs (30). Studies have

shown that knockdown of circRNA circ_001422 significantly

inhibits the proliferation and metastasis of OS cells and
A B

D

C

FIGURE 1

The sequencing results of ncRNAs from normal tissues and OS tissues of human are downloaded from GEO datasets of National Center for
Biotechnology Information (NCBI) for difference analysis. (A) Differential expression analysis of miRNAs (GSE70367). (B) Differential expression
analysis of lncRNAs (GES156344). (C) Differential expression analysis of circRNAs (GSE96964). (D) Metabolic characteristics of MDSC, TAMs and
Treg cells in TME and crosstalk of them with NK cells, T cells and OS cells. MDSC promotes the growth of OS cells by secreting inflammatory
factors, damages T cells and NK cells by secreting ROS, and competitively consumes arginine with T cells. Treg cells inhibit T cell function by
expressing FOXP3 and myc. CD36 receptor and miR-307c in TAMs promote M2 polarization, and FAO is the main energy metabolism.
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promotes apoptosis. Regulating the miR-195-5p/FGF2/PI3K/

AKT axis produces the opposite impact of overexpression

(31). circMYO10 has been confirmed as a promoter of OS

progression by regulating the miR-370-3p/RUVBL1 axis and

chromatin remodel l ing, consequently boost ing the

transcriptional activity of the b-catenin/LEF1 complex (32).

The number of circRNAs with decreased expression was much

greater than those with enhanced expression (Figure 1C), a

finding that could be leveraged to design targeted therapies once

the regulatory mechanisms of these circRNAs have

been elucidated.

Recent research has increasingly focused on the impacts and

mechanisms of microRNAs, whereas research into lncRNAs and

circRNAs is still in its infancy (Table 1) (102). More research

points to the importance of noncoding RNAs in OS, both in

terms of diagnosis and treatment (9). An alternative mechanism

for OS chemotherapeutic resistance has been proposed through

the construction of ceRNA networks, in which noncoding RNAs

bind to mRNAs (103). Differential expression of noncoding

RNAs and the formation of ceRNA networks may lead to the

development of more effective treatment techniques and the

ability to overcome drug resistance in OS (Figure S1).
Immunosuppressive cells
in osteosarcoma

Myeloid-derived suppressor cells

Immature bone marrow cells (IMCs) differentiate into

mature macrophages, dendritic cells, and granulocytes under

physiological conditions and transform into immunosuppressive

MDSCs when regulated by chemokines in the TME (104).

MDSCs generate pro-inflammatory substances such as NO,

IL-1, and IL-6, which expose OS cells to a persistently

inflammatory environment and dramatically enhance the risk

of DNA damage and tumour cell proliferation, which may

contribute to the progression of OS (105, 106). Through the

activation of the activator for transcription 3, miR-21 and IL-6

can synergistically enhance the development of MDSCs and

influence treatment resistance (107). Reactive oxygen species

(ROS) produced by oxidative stress can activate the NF-kB and

Nrf2 pathways, allowing tumour cells to survive (108). MDSCs

generate excessive ROS via NOX2 and suppress the antitumor

effects of T cells and natural killer (NK) cells, hence mediating

OS immune escape while maintaining oxidative balance via

glycolysis upregulation (109, 110).

The TME alters the lipid metabolism of MDSCs to enhance

the uptake of fatty acids and the activation of fatty acid oxidation

(FAO), thereby improving the immunosuppressive activity of

MDSCs and promoting tumour growth (110). In addition to

LXR agonists, liver-X nuclear receptors (LXRs) regulate
Frontiers in Immunology 04
cholesterol and lipid metabolism via the transcription target

Apolipoprotein E (111). LXR agonists have been demonstrated

to play a role in MDSC depletion, which could be related to FAO

inhibition in MDSCs (112). By increasing the activities of

arginase-1, MDSCs compete with T cells for the consumption

of arginine, which leads to T cell dysfunction (113). L-arginine

supplementation may improve the anticancer impact of

cyclophosphamide (CP) and minimize T cell dysfunction

caused by increased MDSCs generated by CP (114).
Tumour-associated macrophages

TAMs are the primary immune cells in the TME, which are

usually produced from bone marrow monocytes, and the

presence of TAMs is indicative of a poor prognosis in OS

patients (115, 116). TAMs, via stimulating the COX-2/STAT3

axis and causing epithelial– mesenchymal transition, can

increase OS pulmonary metastasis (117). C–C motif

chemokine ligand 18 secreted by TAMs has been shown to

promote the proliferation and metastasis of OS cells via the

EP300/UCA1/Wnt/b-catenin pathway, which significantly

reduces the survival rate of OS patients (118). Studies have

demonstrated that miR-363 inhibitors can promote the

migration of TAMs after transfection of OS cells (119).

TAMs can be divided into classically activated macrophages

(M1), with antitumor activity, and selectively activated

macrophages (M2), with tumour-promoting activity, both of

which can coexist in the TME (120). It has been found that M2

can promote the deterioration of OS cells through the SOCS3/

JAK2/STAT3 axis, and OS cells can enhance the M2 polarisation

of TAMs (121). LncRNA RP11-361F15.2 enhances M2

polarisation mediated by cytoplasmic polyadenylate element

binding protein 4 through miR-30c-5p and further promotes

the occurrence of OS (122).

TAMs substitute glycolysis with FAO as a source of energy

by expressing a high amount of the scavenger receptor CD36,

which enhances lipid accumulation and reprograms TAMs into

M2 types (123). S100A4 has been reported in mice to upregulate

FAO and mediate TAM polarization to M2, as well as to have

carcinogenic activity (124).
Treg cells

Extensive Treg cell infiltration into tumour tissues is often

associated with a poor prognosis, whereas their removal

enhances antitumor immune responses (125). FOXP3+

expression in Treg cells has been shown to predict the

prognosis of osteosarcoma in vivo and in vitro and could

potentially be used as a diagnostic marker in clinical practice

(126–128).
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TABLE 1 Regulation of miRNAs, lncRNAs and circRNAs in OS cells.

Non-coding
RNA

Expression Function Ref

miR-873 upregulate Related to tumor size, clinical stage and distant metastasis in OS. (33)

miR-23b-3p upregulate Inhibit OS cell proliferation. (34)

miR-367 upregulate Inhibit the proliferation, migration and invasion of OS cells. (35)

miR-21 upregulate Play a main role in proliferation, migration, invasion and apoptosis. (36)

miR-107 upregulate Promoted U2OS cell viability, migration, and invasion whereas inhibit apoptosis. (37)

miR-590-3p downregulate Inhibit proliferation and metastasis in OS cells. (38)

miR-520a-3p downregulate Tumor suppressor. (39)

miR-491 downregulate Stimulate OS cell lung metastasis and suppresses CDDP-induced tumor growth inhibition and apoptosis. (40)

miR-449a downregulate Decrease cyclin A2 levels and inhibit proliferation rate, migratory potential, and colony-forming ability of OS cells. (41)

miR-432-5p downregulate Regulate SA and IA by targeting PDGFB genes. (42)

miR-425-5p downregulate Suppress OS cell proliferation, invasion and migration in vitro. (43)

miR-424 downregulate Decrease cyclin A2 levels and inhibited proliferation rate, migratory potential, and colony-forming ability of OS cells. (41)

miR-377 downregulate Inhibit tumor growth and reduce tumor size. (44)

miR-363-3p downregulate Inhibit the proliferation, migration, and invasion of U2OS and MG63 cells. (45)

miR-342-3p downregulate Inhibit the proliferation, migration, and invasion of OS cells. (46)

miR-26a downregulate Suppress the malignant behaviors of OS cells. (47)

miR-223-3p downregulate Inhibit cell invasion, migration, growth, and proliferation. (22)

miR211 downregulate Increase the percentage of cell apoptosis, and suppress cell proliferation as well as cell migration/invasion. (48)

miR-133b downregulate Attenuate cell proliferation and invasion. (49)

miR-520b downregulate Inhibit cell proliferation, migration, and invasion. (50)

miR-326 downregulate Promote the proliferation and invasion of MG63 cells as well as the growth and metastasis in nude mice. (51)

lncRNA MALAT1 upregulate Promote OS cell viability, invasion and migration. (52)

lncRNA TP73-AS1 upregulate Suppress OS cells proliferation and invasion in vitro as well as tumor growth in vivo. (53)

lncRNA HNF1A-
AS1

upregulate Inhibit cell proliferation and G1 /S transition, and suppress migration and invasion in OS cells. (54)

lncRNA-BC050642 upregulate Promote cell proliferation, induce colony formation and meanwhile inhibit cell apoptosis. (55)

lncRNA ODRUL upregulate Inhibit OS cell proliferation, migration, invasion, and tumor growth in vitro and vivo. (26)

lncRNA ITGB2-AS1 upregulate Inhibit the proliferation and induce apoptosis of OS cells. (56)

lncRNA ANRIL upregulate Associate with increased rates of metastases at diagnosis and death. A significant predictor of reduced overall survival
rate.

(57)

lncRNA XIST upregulate Responsible for OS cell proliferation and invasion. (58)

lncRNA TUG1 upregulate Play an important role in the proliferation and metastasis of osteosarcoma. (59)

lncRNA TUG1 upregulate Regulate OS cell metastasis, angiogenesis, and proliferation in vivo and vitro. (60)

lncRNA TNK2-AS1 upregulate Inhibited proliferative, migratory, and invasive capacities while promoting apoptosis in OS cells. (61)

lncRNA SNHG4 upregulate Suppress cell viability and invasive potential. (62)

lncRNA SNHG3 upregulate Promote invasive and migratory potentials of OS cells. (14)

lncRNA SNHG1 upregulate Inhibit cell growth and metastasis of OS in vitro and vivo. (63)

lncRNA SNHG16 upregulate Contributes to the proliferation, migration and invasion of OS cells. (64)

lncRNA OIP5-AS1 upregulate Increased doxorubicin resistance of OS cells. (65)

lncRNA OIP5-AS1 upregulate Repress the proliferative ability and accelerated the apoptosis. (66)

lncRNA MIR100HG upregulate Suppress cell proliferation, cell cycle progression while promote cell apoptosis. (67)

lncRNA LINC01123 upregulate Promote cell progression. (68)

lncRNA LINC00324 upregulate Accelerate the proliferation and migration of OS cells. (69)

lncRNA
KCNQ1OT1

upregulate Facilitate proliferation and suppressed apoptosis of OS cells. (70)

lncRNA JPX upregulate Elevate the cell viability and proliferation. (71)

lncRNA HULC upregulate Promote OS cell proliferation, migration and invasion and induce cell apoptosis. (72)

(Continued)
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Glycolysis and oxidative phosphorylation, which are essential

for Treg cell metabolism, require FAO (129). Treg cells in tumours,

in contrast to normal tissues, have considerably decreased glucose

uptake and are dysfunctional in a high-glucose environment (130).

P13K inhibitors can reduce the immunosuppressive effects of Treg

cells by upregulating glycolysis and reducing FOPX3 expression

(131). miR-34a targets the 3’ UTR to inhibit the expression of

FOXP3, which is controlled by the NF-kB pathway and

downregulated by IL-6 and TNF-a (132). It has been

demonstrated that the transcriptional regulator c-Myc influences
Frontiers in Immunology 06
oxidative phosphorylation in Tregs via regulating mitochondrial

activity, hence limiting accumulation and functional activation

(133). Targeting c-Myc and associated signalling pathways as a

means of treating OS has drawn a lot of interest (29, 134).

Immunosuppressive cells can regulate the occurrence and

development of OS through crosstalk with stromal cells in the

TME (Figure 1D), which are regulated by ncRNAs in OS cells,

according to the studies on the metabolic heterogeneity of

immunosuppressive cells and the regulatory mechanisms

of ncRNAs.
TABLE 1 Continued

Non-coding
RNA

Expression Function Ref

lncRNA HOXD-AS1 upregulate Suppress cell proliferation, colony formation, migration, and invasion, and promote cell cycle arrest at G1 stage and
apoptosis in OS cells.

(73)

lncRNA HOXD-AS1 upregulate Inhibit the OS cells proliferation and induce G1/G0 phase arrest in vitro, and repress tumor cell growth in vivo. (74)

lncRNA FOXD2-
AS1

upregulate Repress the malignant biological properties of OS cells in vitro and vivo, including proliferation, invasion, apoptosis and
tumor growth.

(75)

lncRNA DLEU1 upregulate Inhibit the cell proliferation, migration and invasion. (76)

lncRNA DANCR upregulate Promote tumor growth and lung metastasis of OS. (77)

lncRNA DANCR upregulate Increase OS cell proliferation, migration, and invasion. (78)

lncRNA CCAT2 upregulate Promote OS cell proliferation, cell cycle and invasion. (79)

lncRNA CBR3-AS1 upregulate Suppress OS cells proliferation, migration and invasion, and promote cells apoptosis. (80)

lncRNA APTR upregulate Repress human OS cell proliferation, invasion and migration, and induce apoptosis. (81)

lncRNA CAT104 upregulate Inhibit OS-732 cell proliferation, migration, and invasion, but promote cell apoptosis. (82)

lncRNA LINC01128 upregulate Reduce the proliferation, migration and invasion of OS cells both. (83)

lncRNA ZBTB7A upregulate Associate with OS metastasis. (84)

lncRNA RSF1 upregulate Suppress OS cells proliferation and invasion. (85)

lncRNA PUM2 downregulate Inhibit OS cells proliferation, migration, and stemness. (86)

lncRNA XIST downregulate Inhibit the proliferation of OS cells. (87)

lncRNA C2dat1 downregulate Reduce cell viability, invasion, and migration, whereas increase cell apoptosis in OS-732 cells. (88)

hsa_circ_0008934 upregulate Reduce proliferation, enhanced apoptosis, block cell cycle progression, and impair migration and invasion capacities of
SAOS2 cells.

(89)

hsa_circ_0007534 upregulate Suppress OS cell growth. (90)

circUSP34 upregulate Promote the proliferation, migration, and invasion of OS in vitro and vivo. (91)

circ-LRP6 upregulate Inhibit the proliferation, migration and invasion of OS cells. (92)

circUBAP2 upregulate Inhibit OS cell apoptosis. (93)

circTADA2A upregulate Increase malignant tumor behavior. (94)

hsa_circ_0002137 upregulate Suppress the progress of OS, including cell invasion, cell cycle and cell apoptosis. (95)

circPVT1 upregulate Suppress OS tumor growth and metastasis in vivo. (96)

circECE1 upregulate Suppress tumor proliferation and metastasis both in vitro and vivo. (29)

circ_0078767 upregulate Strengthen the proliferation, invasiveness, and migration of osteosarcoma cells. (97)

circ_001621 upregulate Promote OS proliferation and migration. (98)

circ_001422 upregulate Promote the proliferation and metastasis and inhibit the apoptosis of OS cells in vivo and vitro. (31)

circ_0001721 upregulate Facilitates cell progression in OS. (99)

circ-0000658 downregulate Promote cell cycle, proliferation, invasion and migration but inhibit the apoptosis of OS cells. (100)

circ-0000190 downregulate Exhibit an obvious reduction in tissues of OS patients. (101)
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Immunotherapy in osteosarcoma

Interferon therapy

Interferon (IFN) is a cytokine that white blood cells generally

secrete during infections (135). Due to its effects as an agonist of

antitumor activity in adaptive and innate immune cells, it leads

to the establishment of antiproliferative and antiangiogenic

activity in osteosarcoma and antagonizes inhibitory immune

subsets (135, 136). IFN-g induces PKR-dependent autophagy in
OS cells through signal transduction and activation of

transcription 1, phosphatidylinositol 3-kinase, and mitogen-

activated protein kinase-dependent pathways (137). miR-142-

5p enhances the transcription of IFN-g by downregulating the

expression of interaction protein domain 2 (138). miR-31

reduces interferon-g production, thereby attenuating Th1

response (139). The efficiency of IFN therapy could be

increased by modulating the aberrant expression of ncRNAs,

which has a good synergy for drug development in the treatment

of OS.
Checkpoint inhibitors

PD-1
In the tumour microenvironment of OS, PD-L1 on tumour

cells interacts with PD-1 on T cells to inhibit T cell functional

signalling, preventing the immune system from targeting

tumour cells (140, 141). The antitumor activity of PD-1 can be

aided by an SGLT2 inhibitor, and the synergistic effect stimulates

the infiltration of CD4+ and CD8+T lymphocytes into the OS

tumour microenvironment (142). miR-140 was found to directly

regulate the expression of PD-L1 by binding to its 3’-UTR,

suggesting that it could be exploited as a new therapeutic drug

targeting checkpoint inhibitors in OS (143). PBMC-loaded

vMyx-hTNF may synergistically interact with the immune

checkpoint inhibitor anti-PD-1, which has been reported in a

mouse model of lung metastatic osteosarcoma (144).

C-Myc inhibitors
The ubiquitous dysregulation of the c-Myc oncogene in human

malignancies makes it a promising therapeutic target (145). Recent

research has demonstrated that c-Myc not only regulates cell

proliferation, apoptosis, and cancer metabolism, but also the

TME and immune responses (145). C-Myc inhibition reprograms

the cancer immune milieu by attracting T lymphocytes and

activating the CD40/CD40L system in OS, according to studies

(30). miR-449c has been demonstrated to directly target and

negatively inhibit the production of the oncogene c-Myc, hence

encouraging the advancement of the OS cell cycle (146). Her4 can

boost glucose intake and tumour growth by promoting OS

metabolic reprogramming via a c-Myc-dependent signalling
Frontiers in Immunology 07
pathway, suggesting that a c-Myc inhibitor may be useful in the

treatment of OS (147). The S1P/S1PR3 axis has been shown to

contribute to the formation of the YAP–c-Myc complex and

transcription of the glycolytic enzyme PGAM1 by suppressing

YAP phosphorylation and increasing its nuclear translocation,

according to studies (134).
SGLT2 inhibitors
Sodium–glucose cotransporter 2 (SGLT2) is essential for

epithelial glucose transport and is overexpressed in numerous

cancer types in order to supply cancer cells with glucose to

satisfy their high-energy needs (148). SGLT2 affects the

expression of miR-210 and stimulates anaerobic glycolysis,

hence modulating the energy metabolism of cancer cells (149).

SGLT2 inhibitors significantly inhibit osteosarcoma tumour

growth and induce immune cell infiltration in vivo by

upregulating STING expression and activating the IRF3/IFN-b
pathway, which could be attributable to the inhibition of AKT

phosphorylation (141).
Cancer vaccines

The protein EWS-FLI1, which is overexpressed in OS, has

become a specific Treg antigen for vaccine development (150).

EWS-FLI1 inhibits effector T cell responses and has been found

circulating in or infiltrating tumours in Ewing patients, resulting

in unfavourable clinical outcomes (150). Double sialic

ganglioside (GD2) is extensively expressed in osteosarcoma

(OS) and soft tissue sarcomas, and immunotherapies including

GD2 vaccines have been utilized to treat solid tumor (151). miR-

34a can target GD-2 to enhance tumour apoptosis, which is

anticipated to be a novel OS target (152). Previous studies

developed fusion cell vaccines by chemically fusing human

gdT cells with SAOS-2 cells, eliciting cytotoxic T lymphocyte

responses against two human OS cell lines that were specific to

cancer antigens (153). CD103+cDC1 vaccines produced in vitro

elicited systemic and long-lasting tumour-specific T cell-

mediated cytotoxicity, thereby inhibiting the growth of

primary and metastatic osteosarcoma (154).
Engineered chimeric antigen
receptor T cells

Chimeric antigen receptor T cell therapy has been shown to be

effective in leukaemia and lymphoma, and current studies have

increasingly focused on CAR-T therapy for solid tumours, such as

OS (155). The efficacy of B7-H3-CAR-T cell therapy in treating

solid tumours was initially proven in a model of childhood cancer

(156). Following that, the efficacy of B7-H3-CAR-T cells in OS and

preventing lungmetastasis progression was demonstrated in a dose-
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dependent manner in a mouse model with orthotopic OS of the

tibia and lung metastases (157). Human EpHA2-directed CAR-T

cells can target human OS cells in vitro, and the injection of CAR-T

cells can eradicate tumour deposits in the liver and lungs of

metastatic OS models in vivo (158). CD166 is selectively

expressed in OS cells and can be used as a new target for CAR-T

cell therapy, which has been demonstrated in mice models of OS by

injection of CD166.BBz CAR-T cells (159). Human epidermal

growth factor receptor 2 (HER2)-CAR-T cells have entered phase

II clinical trials, and the safety and efficacy of this therapy have been

demonstrated in a study of 19 patients with HER2-positive solid

tumours (160).

To treat OS, immunotherapy particularly targets immune

cells and immunosuppressive cells in the TME. ncRNAs play a

crucial regulatory role and have the potential to be exploited as

synergistic agents for checkpoint inhibitors as well as novel

targets for interferon treatments and cancer vaccines. The

evidence of clinical data in interferon therapy and checkpoint

inhibitors is shown in Table S2. CAR-T cells are a new

therapeutic for solid tumours that can eradicate tumour cells

from primary and metastatic lesions and may provide a unique

immunotherapy treatment for patients with metastatic OS.
Discussion

The most frequent primary malignant tumour in children and

adolescents is OS, which has a high rate of metastasis and a poor

prognosis (161). A difference in the reduction in expression of let-

7a-2 and miR-323 was identified in the differential analysis of

ncRNAs in OS cells. let-7a-2 and miR-323 are regarded as sensitive

prognostic indicators in a number of malignancies and may have a

significant role in the clinical diagnosis of OS (162–164). The

expression of circRNAs in OS is mainly decreased, of which

circRNA_104892, circRNA_104893, and circRNA_104891 show

significant differences in the degree of reduction. Reduced

expression of circRNAs often inhibits osteosarcoma migration

and invasion and promotes apoptosis, which could be combined

with therapeutic targets for OS (165). lncRNA SNHG16 can

function as ceRNA of miR-1285-3p to reduce the expression of

miRNA, thus promote the proliferation, invasion and migration of

OS cells (166). lncRNA regulates the progression of osteosarcoma

through the miRNA axis, and there is no evidence for the direct

regulation of lncRNA expression (167–170). lncRNA and circRNA

can regulate the biological characteristics and metabolism

reprogramming of OS by sponging miRNAs to represent as

ceRNA (70, 94). The construction of co-expression networks of

ncRNAs would be beneficial for studying OS aetiology.

OS immunotherapy primarily targets immunosuppressive

cells in the TME, which are regulated by cytokines, chemokines,

and an anaerobic environment (171). Gemcitabine effectively

inhibited the progression of osteosarcoma by inducing cell

apoptosis and inhibiting the accumulation of MDSCs (172).
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Additionally, when it binds to specific inhibitors of indoleamine

2, 3-dioxygenase, it can more effectively prevent the recruitment

of MDSCs and the differentiation of Treg cells (172). The

necessity to find novel targets has led to an increase in the

number of studies on regulatory factors in OS cells. Meanwhile,

when compared to a single inhibitor, a combination of inhibitors

can greatly boost therapeutic efficacy. The energy uptake of

immunosuppressive cells is more dependent on FAO and is also

regulated by glucose levels in the TME (123, 130).

The development of combination chemotherapy has

significantly increased the OS survival rate; however, the

evolution of drug resistance has become a critical issue that must

be addressed (173). Immunotherapy is a new strategy in the

treatment of OS that targets immune cells to activate the immune

system and relies on autoimmune responses to fight tumour tissues,

an approach that may also be useful in combatting drug resistance

(4, 173). Multiple types of checkpoint inhibitors have shown

significant anticancer efficacy. The synergistic effects of

checkpoint inhibitors and their combination with chemotherapy

are promising options for combating drug resistance (4). Therapies

based on OS-related antibodies have shown promise when

combined with checkpoint inhibitors (154). In recent years, CAR-

T cell treatment for OS has demonstrated encouraging results.

(HER2)-CAR-T cells have entered phase II clinical trials and are

expected to advance the treatment of OS (160).

In conclusion, this review summarizes the role of ncRNAs in

OS cells, including their differential expression, as well as the

metabolic heterogeneity of immunosuppressive cells in the

TME. Emerging immunotherapies have been studied and

compared in recent years, and their roles in the clinical

diagnosis and treatment of OS have been investigated.
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