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After long-term anti-retroviral therapy (ART) treatment, most human

immunodeficiency virus (HIV)/Acquired Immure Deficiency Syndrome (AIDS)

patients can achieve virological suppression and gradual recovery of CD4+ T-

lymphocyte (CD4+ T cell) counts. However, some patients still fail to attain

normal CD4+ T cell counts; this group of patients are called immune non-

responders (INRs), and these patients show severe immune dysfunction. The

potential mechanism of poor immune reconstitution (PIR) remains unclear and

the identification of uniform biomarkers to predict the occurrence of PIR is

particularly vital. But limited information is available on the relationship

between circulating markers of INRs and immune recovery. Hence, this

review summarises alterations in the intestine microbiota and associated

markers in the setting of PIR to better understand host-microbiota-

metabolite interactions in HIV immune reconstitution and to identify

biomarkers that can predict recovery of CD4+ T cell counts in INRs.

KEYWORDS

human immunodeficiency virus (HIV), acquired immure deficiency syndrome (AIDS),
poor immune reconstitution (PIR), plasma markers, fecal markers, innate immunity,
microbial translocation
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026070/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026070/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1026070&domain=pdf&date_stamp=2022-10-17
mailto:treatment@chinaaids.cn
https://doi.org/10.3389/fimmu.2022.1026070
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1026070
https://www.frontiersin.org/journals/immunology


Xiao et al. 10.3389/fimmu.2022.1026070
1 Introduction

With the widespread use of anti-retroviral therapy (ART),

the viral load (VL) of most human immunodeficiency virus

(HIV)/Acquired Immure Deficiency Syndrome (AIDS) patients

has been controlled, and peripheral blood CD4+ T-lymphocyte

(CD4+ T cell) counts have returned to relatively normal levels,

but approximately 15-30% of ART-treated people living with

HIV (PLWH) still have low CD4+ T cell counts despite adequate

control of viral replication (1, 2). People who suffer from this

poor immune reconstitution (PIR) are called immune non-

responders (INRs) (3). Persistently low CD4+ T cell counts can

not only accelerate the progression of Acquired Immune

Deficiency Syndrome (AIDS), but also accompany a high

mortality rate from AIDS and non-AIDS-related illnesses,

causing substantial difficulties in the management of infected

individuals (4) (Figure 1). There are no universal criteria for PIR.

The Department of Health and Human Services (DHHS) defined

that HIV/AIDS patients with CD4+ T cell count still below 350 or

500 cells/µl after 4-7 years of ART are considered to be INRs (5).

Previous studies examining respiratory fungal communities in

HIV/AIDS patients with lung disease have found a strong

relationship between lung microbiome and immune status. As

CD4 counts decreased, the species diversity of lung bacteria

increased but the number declined. At the same time, the quantity

and variety of fungus grew as one’s immunological condition

deteriorated (6). The primary hallmark of HIV infection is the
Frontiers in Immunology 02
loss of CD4+ T cells. This is most evident in the gut-associated

lymphoid tissue (GALT), which houses themajority of lymphocytes

in the body (7). Even in the presence of ART, this failed recovery of

immune ecological function is associated with an increased risk of

microbial translocation, triggers of immune activation, and low-

grade chronic inflammation (8, 9). In addition to the intestinal flora,

its metabolites and other relevant markers regulate important host

activities, such as energy metabolism, intercellular communication,

and host immunity (10). Although the pathogenesis of PIR is

unclear, it may involve peripheral inflammation, intestinal

epithelial impairment, immune damage, and intestinal homing of

aberrant immune cells (11). Host metabolic factors are associated

with poor CD4+ T cell recovery in HIV. It has been found that

adipose tissue may affect peripheral CD4+ T cell recovery and that

excessive activation of CD4+ T cell glycolysis may lead to CD4+ T

cell depletion in HIV infection, and these changes may be reflected

in circulating metabolite profiles (12, 13).

Intestinal “translocation” of bacteria or other microorganisms

refers to the non-physiological passage of gastrointestinal flora

through the intestinal epithelial barrier and lamina propria,

eventually reaching local mesenteric lymph nodes, and from

there to the body circulation (14). Under normal conditions,

translocated microorganisms and microbial products are

phagocytosed in the lamina propria and mesenteric lymph

nodes (15). However, if the host immune system is

compromised, these defense mechanisms may fail, allowing

bacteria to escape and survive in distant extra-intestinal sites
FIGURE 1

Opportunistic infections and diseases that are likely to complicate in INRs. INRs, immune non-responders.
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(16). The intestinal flora and the immune system interact and

influence each other. The intestinal flora is closely related to the

development of T helper 17 (Th17) cells and plays a crucial part in

maintaining the integrity of the intestinal mucosa and the

function of the intestinal mucosal barrier (17). The intestinal

flora promotes the development of intestinal B cells and protects

the intestinal mucosa from exogenous pathogens (18). At the

same time, intestinal flora can induce the differentiation of

immunosuppressive Treg cells and down-regulate the immune

response of the body (19), and can also regulate the immune

function of NK cells. Most importantly, intestinal flora can

promote tolerogenic differentiation of T cells and enhance the

immune tolerance of the intestinal mucosa.

Due to the harmful impact of PIR and the complexity of the

underlying mechanisms, it has become essential and urgent to

shed light on some biomarkers that reflect immune activation

and persistent low-grade inflammation in PLWH on ART (20).

However, limited information is available on the relationship

between circulating markers and immune recovery in ART-

treated PLWH. Meanwhile, with the progression of science and

technology, the utilization of body fluids as a sample source to

obtain relevant disease information is a breakthrough after high-

throughput sequencing technology was applied to molecular

diagnosis, which has the advantages of low cost, low adverse

effects, and repeatable sampling (21). Therefore, we conducted

this review to outline the variations in circulating biomarkers

and the link between these markers and immune recovery in

INRs, which may help to understand and monitor immune

recovery after ART initiation in PLWH.
2 Intestinal flora disorders in INRs

HIV infection alters the composition of the intestinal flora

non-specifically and diminishes its abundance, characterized by

a rise in pathogenic bacteria and a fall in beneficial bacteria,

dominated by the absence of bifidobacteria, anaerobic vibrios,

clostridia, and Akkermansia (7). One study found that fecal flora

alpha diversity declined in PLWH and was independently

associated with the patients’ immune status, and that patients

with lower CD4+ T cell counts had decreased alpha diversity,

suggesting that remodeling the intestinal flora may restore

immune function in PLWH (22). Microbial diversity plays a

crucial role in host immune homeostasis, and the introduction of

ART could not fully restore the diversity of the gut microbiota

(23). The metagenomic sequencing results of Yirui Xie’s team

showed that the INRs and IRs could not be fully restored from

the dysregulated gut microbiota in HIV infection. This was

demonstrated by the relative greater abundance of Fusarium,

Ruminococcus, and Aeromonas megaterium; while Escherichia

coli, Algae, Bifidobacterium, Rectobacterium, and Rhodobacter

were less abundant in IRs and INRs than in uninfected controls

(UCs) (24). Esther Merlini et al. observed that INRs were
Frontiers in Immunology 03
deficient in probiotic-like lactic acid bacteria both before and

after treatment, which was associated with the failure of ART to

control microbial translocation of polymicrobial flora in the

peripheral blood circulation, and the polymicrobial flora did not

change substantially in any way as a result of treatment (25).

Edda Russo et al. also detected a rise in algae and a reduction in

bacteria in the feces of INRs (26). Danfeng Lu et al. reported

lower levels of luminococci in INRs than in IRs and observed

differences in alpha diversity between the two groups (27). Judit

Villar-Garcıá et al. revealed significantly higher inflammatory

markers in INRs and more Trichodermaceae and Bacillariidae

families in the intestinal flora than in IRs (28). And Gabriella

d’Ettorre et al. conducted 48 weeks of probiotic supplementation

in INRs and noticed a decrease in both inflammatory markers

and T cell activation levels. Even if viral replication is effectively

suppressed, further research is needed to restore the diversity of

the intestinal flora in PLWH (29). Wei Lu et al. found that

Faecalibacterium prausnitzii, unclassified Subdoligranulum sp.

and Coprococcus were enriched in INRs. These species were

butyric acid-producing and strongly correlated with CD4+ T cell

counts and T cell immune activation (30). Soo Ching Lee et al.

found a significant enrichment of Clostridium perfringens in

INRs and a negative correlation between Clostridium

perfringens abundance and CD4+ T cell count but a positive

correlation with CD4+ T cell activation and CD4 Treg cell count

(31). Krystelle Nganou-Makamdop et al. found that the ratio of

Serratia to other bacterial genera changed rapidly following

ART. The high ratio in the first year led to inflammation and

the first wave of immune reconstitution. In the second year,

systemic T cell homeostasis was restored as a result of innate

cytokine downregulation and a decrease in Serratia abundance

(32). In summary, gut flora may be a breakthrough for HIV

immune reconstitution, and detecting circulating flora

metabolites and other related markers is probably the most

direct way to observe it (Figure 2).
3 Fecal markers

The intestinal microecology is a critical part of the body’s

immune system, with intestinal epithelial cells, intestinal flora,

and immune cells interacting with each other to maintain the

balance of the intestinal microecology (33). HIV infection causes

CD4+ T cell depletion, which primarily affects the intestine,

severely damages the intestinal epithelium, and enables

microbial translocation. Additionally, the modification can

activate innate and adaptive immune responses in the blood

and gut. Thus, long-term immune activation induces low-grade

inflammation in the gut and systemically, resulting in

enteropathy (34, 35). Immune activation, pro-inflammatory

cytokines, biomarkers of gut damage, microbial translocation,

and systemic inflammation are reduced after ART initiation, but

remain higher than in uninfected controls (36, 37).
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3.1 Short-chain fatty acids

Short-chain fatty acids (SCFA) are vital bacterial metabolites

that regulate the production of immune mediators for the repair

and maintenance of epithelial integrity (38). In addition, SCFA

regulates T cell activity and reduces the overexpression of

histone deacetylases, such as butyric and valeric acid (39).

SCFA is an important connection between the immune system

and the microbiome, essential for maintaining homeostasis in

the gut, and ultimately plays a role in HIV infection (40). Edda

Russo et al. observed variations in the composition of fecal

microbiota between IRs and INRs. Fecal isobutyric acid,

isovaleric acid, and 2-methylbutyric acid were more

significantly increased in IRs, compared with INRs; and they

were highly expressed in both groups than in uninfected controls

(26). However, they did not change dramatically in the blood.

Changes in the gut flora system of PLWH receiving ART may be

a consequence and potential cause of systemic immune recovery.
3.2 Cytokines

HIV infection is accompanied by an increase in circulating

interleukin-18 (IL-18) and a concomitant decrease of its antagonist

interleukin-18 binding protein (IL-18BP). HIV infection is also

coupled with intestinal inflammation and a loss of intestinal

integrity, contributing to increased intestinal permeability and

microbial transport. Ossama Allam et al. discovered increased IL-

18, IL-1b, and IL-8 in intestinal biopsies of PLWH, which were not

related to the ability to reconstitute immunity (41). Mariana Del

Rocio Ruiz-Briseño et al. also observed significantly higher levels of
Frontiers in Immunology 04
IL-1b, IL-8, and IL-18 in the feces of all PLWH treated with ART,

but no significant difference in the levels of pro-inflammatory

factors in the feces of INRs and IRs (42).
3.3 Intestinal inflammation-associated
protein

HIV infection is characterized by the depletion of T helper

cell 17 cells (Th17 cells), influencing the development of

antimicrobial peptides, mucosal regeneration, and neutrophil

recruitment. Two key enzymes secreted by neutrophils are fecal

calprotectin and lactoferrin, both of which are non-invasive

indicators of intestinal inflammation and associated with a

variety of gastrointestinal inflammatory diseases (43–45).

Mariana Del Rocio Ruiz-Briseño et al. showed that

calprotectin and lactoferrin levels were both increased in

PLWH and that 17% of the INRs and 5.6% of the IRs

exceeded the threshold for lactoferrin associated with intestinal

inflammation (5.6 µ g/g in feces). Moreover, 50% of INRs

showed elevated lactoferrin and calcineurin concentrations,

and low CD4+ T cell counts were associated with fecal

calcineurin levels (42). When fecal calprotectin levels in HIV-

positive children receiving ART were evaluated in another study

from Uganda, these kids had excessive quantities of the protein,

which was correlated with the development of the illness (46).

Changes in gut homeostasis may manifest as activation of the

innate immune system and systemic T cells, both of which may

contribute to chronic inflammation. Lack of immune rebuilding

may be associated with persistent immune activation and

inflammation, particularly in the intestinal environment.
FIGURE 2

Altered intestinal flora in INRs. A noticeable increase in pathogenic bacteria and a significant decrease in probiotics were detected. INRs,
immune non-responders.
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4 Plasma markers

The destruction of the intestinal mucosa in PLWH causes

translocation of the flora and the continuous entry of

inflammatory mediators into circulation, creating a chronic

immune activation (47). The persistence of low virus levels in

their viral reservoirs, such as plasma and monocytes, despite

virological suppression with ART, may have contributed to the

ongoing immune activation. Such low levels of viremia are more

prevalent in patients with PIR (48). Sustained immune activation

may impair the initial T cell pool and lead to CD4+ T cell

depletion (49). Immune activation is higher in INRs and

increased T cell activation is predictive of disease progression

in HIV infection (50–53). Biomarkers, such as immune

activation, inflammation, and flora displacement in serum, are

among the main features of HIV infection and disease

progression. Serum samples are easily accessible, easy to store

and monitor, and more acceptable to patients (54, 55).
4.1 Soluble immune mediators

4.1.1 Soluble CD14
Solub le CD14 (sCD14) , a l igand for bacter ia l

Lipopolysaccharide (LPS) (56), is detached with the activation

of monocytes and macrophages. sCD14 is considered a soluble

marker of microbial translocation, inflammation, and innate

immune activation, and is associated with all-cause mortality in

HIV infection (57, 58). PLWH have been found to have higher

levels of sCD14 than UCs (59, 60). A multinational prospective

study detected systemic inflammation in African HIV patients

with controlled viral loads, and found that plasma sCD14 and C-

reactive protein (CRP) concentrations were negatively correlated

with subsequent recovery of CD4+ T cell counts during ART

(61). Gema Méndez-Lagares et al. also revealed that ART did not

normalize sCD14 levels in PLWH. Instead, compared to UCs,
Frontiers in Immunology 05
PLWH had significantly higher plasma sCD14 levels before ART

initiation, one year after ART initiation, and five years after ART

initiation. In addition, baseline CD4+ T cell counts were

negatively correlated with baseline sCD14 levels (62). Also,

Richard M Dunham et al. discovered that plasma sCD14 levels

were significantly higher in INRs than in UCs, but the difference

between INRs and IRs was insignificant. And sCD14 levels were

negatively correlated with peripheral CD4+ T cell levels, a

relationship that appeared to be more robust when

considering INRs alone (63). Because monocytes/macrophages

of neonatal or cord blood origin are highly replicative and more

infectious for HIV, the degree of monocyte/macrophage

activation and resulting inflammation in perinatally infected

children may differ from that in infected adults (64, 65). In HIV-

infected children, LPS and sCD14 levels were also increased and

persisted even after viral control, and lymphocyte activation was

improved by ART (66).

In summary, systemic inflammation and monocyte/

macrophage activation were associated with limited CD4+ T

cell recovery during ART. Long-term innate immune activation

may contribute to an HIV-associated inflammatory state, and

reduced inflammation may improve CD4+ T cell recovery

during ART (Table 1).

4.1.2 Soluble CD163
Soluble CD163 (sCD163), a soluble molecule linked to

inflammation and monocyte/macrophage activation, is another

hallmark of innate immunity. Following inflammatory

stimulation, sCD163 can be detached from macrophages by

proteolytic cleavage of sheddase ADAM-17 and is therefore

considered a marker of inflammation (70). A multicenter

cohort study reported that levels of inflammatory and immune

activation biomarkers, including sCD163, declined following

ART initiation (71). Some studies have also reported no

elevated sCD163 levels in PLWH after ART (72, 73). Stefanie

Kroeze et al. have identified in a multinational African cohort of
TABLE 1 Overview of studies on plasma levels of sCD14 in INRs.

Author Research Centers INRs vs.
UCs

IRs vs.
UCs

INRs
vs. IRs

Relationship between sCD14
and CD4 counts

Ref.

Richard M.
Dunham

SCOPE or OPTIONS queue from UCSF, San Francisco, USA + ns NM – (63)

Carey L. Shive Cleveland University Hospital, USA + ns ns NM (67)

Xiao-Peng Dai The Fifth Medical Centre of the General Hospital of the
Chinese People’s Liberation Army, China

+ + + NM (68)

Mariana del Rocio
Ruiz-Briseño

University Hospital
“Fray Antonio Alcalde”, Guadalajara, Mexico

+ ns ns NM (42)

Esther Merlini San Paolo Hospital, University of Milan, Italy NM NM + NM (25)

Esther Merlini San Paolo Hospital, University of Milan, Italy + + NM NM (69)

Stefanie Kroeze Eight study sites in Kenya, Nigeria, South Africa, and Uganda NM NM NM – (61)
frontiersi
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late HIV that monocyte/macrophage activation (sCD163,

sCD14), inflammation (C-X-C motif chemokine 10 (CXCL10)

and CRP), and microbial translocation (lipopolysaccharide-

binding protein (LBP)) were persistently elevated (74), which

raised the possibility of inadequate CD4+ T cell recovery and

virus relapse (61). Rebeccah A McKibben et al. found elevated

levels of sCD163, sCD14, and C-C Motif Chemokine Ligand 2

(CCL2) in PLWH receiving treatment and that these metrics

were associated with atherosclerosis. This led to the conclusion

that monocyte/macrophage activation may increase the risk of

cardiovascular disease in PLWH (71).

The studies above have focused on comparing HIV-

suppressed patients after ART with UCs, and few studies have

focused on plasma sCD163 in INRs. Xiaopeng Dai et al. found

that plasma sCD163 levels were shown to be higher in INRs

compared with UCs, and that ART boosted sCD163 levels in IRs

(68). Additionally, the percentage of platelet-CD4+ T cell

aggregates was positively linked with the expression of sCD14

and sCD163, which were connected to an enhanced risk of

cardiovascular disease (CVD) and can function as indicators of

the evolution of HIV illness (75–77).
4.2 Fatty acid metabolites

Shi Qian et al. reported significant differences in levels of

more than 30 metabolites among INRs, IRs, and UCs using

untargeted metabolomics, with lipids accounting for the

majority. Compared with UCs, PLWH had reduced levels of

certain sterols, while INRs had higher levels of fatty acids and

acyl carotenoids than UCs and IRs. Of these, acylcarnitine was

the primary differential metabolite. Myristyl carnitine (MC),

palmitoylcarnitine (PC), stearoylcarnitine (SC), and

oleoylcarnitine (OC) were significantly elevated in the plasma

of INRs, and their expressions were inversely connected to CD4+

T cell counts (78).
4.3 Amino acid metabolites

4.3.1 Tryptophan
Tryptophan is an essential amino acid metabolized

predominantly via the kynurenine pathway and indoleamine

2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme for its

catabolism (79). The ratio of plasma concentrations of

kynurenine to tryptophan (KTR) was used as an indirect

measure of IDO activity (80). Julie C. Gaardbo et al. found that

PLWHs retaining high KTR exhibited a lower percentage of naïve

T cells and preserved an unfavorable distribution of CD4 and

CD8 cells, which was consistent with impaired immune

reconstitution. In addition, KTR was positively correlated with

immune activation, senescence, and apoptosis (81). An in vitro

study by Peter Terness et al. also showed that downstream
Frontiers in Immunology 06
products of tryptophan catabolism have toxic effects on T cell

responses, inhibiting T cell proliferation and inducing death (82).

Indole-3-propionic acid (IPA), a tryptophan deamidation

product produced by the intestinal microbiota, has anti-

inflammatory effects and is down-regulated during HIV

infection. IPA is vital for intestinal barrier integrity and immune

cell functionality, and reflects impaired homeostasis within the

gastrointestinal epithelium (83). Furthermore, reduced plasma IPA

levels were associated with reduced gut microbial diversity (84).

Therefore, the decrease in circulating IPA in PLWH after ARTmay

be a result of changes in gut microbial activity, dysbiosis, and

ongoing low inflammation (85–87). Sofia Nyström et al. found IPA

to be one of the most significant metabolites that distinguished

PLWH from UCs. Plasma expression of IPA and tryptophan was

lower in PLWH than in UCs (88).

4.3.2 Cysteine
Cysteine supplies the redox-active sulfhydryl radicals of

glutathione, one of the most significant natural antioxidants

(89), and oxidative stress has previously been seen in PLWH

(90, 91). Cysteine is necessary for T cell growth, which produces

reactive oxygen species (ROS) (92). Thomas R. Ziegler et al.

found no differences in amino acid concentrations in plasma of

INRs and IRs, but PLWH had significantly lower concentrations

of total, essential, branched and sulphur amino acids, and 12

individual amino acids than UCs (93). In contrast, Sofia Nyström

et al. found that plasma cysteine levels were higher in HIV

patients with rapid immune recovery than those with slow

immune recovery. Cysteine levels were also elevated in the HIV

rapid immune recovery group, compared to UCs. The rapid

immune recovery group also had higher concentrations of several

metabolic pathways, including homocysteine degradation,

cysteine metabolism, and taurine and hypotaurine etabolism,

and there was a significant connection between cysteine levels

and CD4+ T cell count (88). In short, elevated plasma cysteine

levels may contribute to the maintenance of redox homeostasis

and rapid recovery of CD4+ T cell function, and facilitate effective

immune reconstitution after ART.

4.3.3 Glycine and serine
ROS levels impact cellular status, with low levels

contributing to cell proliferation and high levels leading to

cellular senescence or death (94, 95). When cellular

metabolism increases and ROS elevates, serine metabolism can

maintain cell survival by synthesizing reductive substances to

resist excess ROS (96–98). Glycine and serine metabolism is

one of the most prominent changes correlated to HIV, where

serine and polysaccharides can affect the proliferation and

immune function of CD4+ T cells in UCs (99). Serine

hydroxymethyltransferase catalyzes the conversion of serine to

glycine, which in turn directly regulates methionine and serine

to replenish single-carbon metabolism (100). The intricate

mechanism of single-carbon metabolism is what indirectly
frontiersin.org
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regulates cysteine levels and is crucial for preserving cellular

redox equilibrium (101). In PLWH with slow immune recovery,

levels of these amino acids were reduced (88). Thus, altered

serine and glycine metabolism may aid immune recovery by

regulating inflammation-induced oxidative stress in PLWH.
4.4 Cytokines

4.4.1 Interleukin-6
Interleukin-6 (IL-6), a multipotent cytokine widely distributed

in the human body, is involved in the growth and differentiation of

a variety of cells and plays a vital role in the body’s acute phase

response and immune response against infection (102). Carey L

Shive et al. found that plasma IL-6 and sCD14 levels were higher in

INRs than in IRs, and that IL-6 levelswere positively correlatedwith

the expressions of T cell exhaustion and senescence markers (67).

RichardMDunhamet al. assessed IL-6mRNAand protein levels in

the colon. They found that although IL-6 levels were higher in IRs

than inUCs and tended to be higher in INRs than inUCs, therewas

no statistical difference between IRs and INRs, nor was there a

correlation between blood IL-6 levels and colonic IL-6 mRNA

levels (63).

4.4.2 Interferon-inducible protein-10
Interferon-inducible protein-10 (IP-10), induced by type I

and type II interferons, is involved in transporting immune cells

to sites of inflammation and is considered a crucial pro-

inflammatory factor in the course of HIV disease. In acute

HIV infection, plasma IP-10 levels could predict rapid disease

progression and were negatively related to CD4+ T cell counts

(103). With ART intervention, IP-10 levels were reduced, but

not to normal levels. And IP-10 was consistently associated with

HIV disease progression (based on CD4+ T cell count) during

this period, suggesting that IP-10 could be used as an indicator of

HIV infection or as a target for HIV therapy (104). Carey L Shive

found that IP-10 was elevated in INRs and was accompanied by

a higher rate of T cell exhaustion and senescence (67).

4.4.3 Interleukin-7 and interleukin-7 receptor
Interleukin-7 (IL-7) is a cytokine that plays a crucial role in the

development, maintenance, and renewal of T lymphocytes (105).

Studies have reported elevated plasma circulating IL-7 levels in

PLWH and its negative correlation with CD4+ T cell counts (106,

107). In addition, the IL-7 level is a reliable indicator of the

virological reaction to ART in PLWH (107). Consistent with

adults, IL-7 levels were significantly higher in HIV-infected

children than in age-matched UCs and were negatively correlated

with CD4+ T cell percentage, but not absolute CD4+ T cell count

(108–110). In addition, an elevation in plasma IL-7 has also been

reported in INRs, consistent with a decrease in T lymphocytes,

which may be associated with temporary support of thymic output

or peripheral T cell renewal (106, 111, 112). Rethi and her
Frontiers in Immunology 07
colleagues demonstrated that T cells isolated from PLWH and

cultured in the presence of IL-7 had a survival disadvantage,

compared with T cells from UCs, suggesting that reduced

responsiveness to IL-7 may play a role in disease progression (113).

Marco Marziali et al. observed increased serum IL-7 and

decreased naive and thymic naive CD4+ T cells in INRs, which

was correlated with reduced IL-7Ra in both cell subsets. In

addition, increased immune activation, reduced Treg frequency,

and increased amplification of the Vb family were also detected;

suggesting that reduced IL-7Ra expression was linked to

sustained immune activation and altered Treg frequency, also

partially explaining the low levels of CD4+ T cell observed in

INRs (114). In conclusion, alterations in the IL7/IL7Ra pathway

may influence the elevation of CD4+ T cells in PLWH with

sustained viral load suppression and thus function in the

pathogenesis of PIR.

4.4.4 Interleukin-1a and tumor necrosis
factor-a

Interleukin-1a (IL-1a), engaged in the formation of acute

and chronic inflammation, can activate T, B, and natural killer

(NK) cells, increase the neutrophil number and promote the

expression of inflammatory cell adhesion molecules (115). TNF-

a binds to two receptors, the type I TNF receptor (TNFRI) and

the type II TNF receptor (TNFRII), which initiate apoptosis or

necroptosis (116). Danfeng Lu et al. demonstrated that INRs had

a poorer ratio of CD4/CD8, a worse nutritional condition, and

greater amounts of serum cytokines, including tumor necrosis

factor-a (TNF-a), interferon-gamma-inducible protein-10 (IP-

10) and interleukin-1a (IL-1a), indicating increased chronic

inflammation in INRs. Further, lower CD4+ T cell counts in

INRs were linked to decreased intestinal flora abundance and

higher serum pro-inflammatory cytokines. TNF-a and IL-1a
levels were also adversely correlated with CD4+ T cell

counts (27).

4.4.5 Lipopolysaccharide
Lipopolysaccharide (LPS) can trigger inflammation and

immune activation by stimulating toll-like receptor 4 (TLR4)

on monocytes and other naturally occurring immune cells and is

used as a biomarker for microbial translocation. Soluble CD14

(sCD14) plays an essential role in signaling by transferring LPS

to the TLR4 complex. Levels of LPS and sCD14 are commonly

correlated with intestinal injury, microbial translocation, and

inflammation (34). Mariana Del Rocio Ruiz-Briseño et al. found

that LPS levels of UCs, IRs, and INRs all showed high variability,

and no statistical significance was observed among the three

groups (42). However, Esther Merlini et al. found similarly

elevated plasma levels of LPS and its ligand sCD14 in both

partial immune responders (PRs) and INRs, and this elevation

was not reduced by ART (25). These results suggested that

microbial translocation could not be fully controlled by ART and

was associated with insufficient CD4+ T cell reconstitution.
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4.4.6 Hypersensitive C-reactive protein
Hypersensitive C-reactive protein (hsCRP) is an inflammatory

biomarker that is widely used in a variety of diseases and this

immediate reaction raises the risk of disease progression and

cardiovascular disease (95). One study found that INRs displayed

significantly higher levels of hsCRP, compared with UCs. Although

hsCRP is non-specific, its measurement, together with other

immune activation and inflammation-related biomarkers,

provides information on the status of systemic inflammation

(42). In INRs, increases in hsCRP and sCD14 suggest that low-

grade systemic inflammation continues despite virological control,

whichmay affect the body’s ability to restore CD4+ T cells. Another

study found that 17% of IRs and 33% INRs had hsCRP levels above

3 mg/dL; greater risk of death, cardiovascular disease, and the

emergence of opportunistic infections were connected to this

threshold (117).

4.4.7 Transforming growth factor-b
Transforming growth factor-b (TGF-b) is an essential anti-

inflammatory cytokine that promotes the development of

regulatory T cells (118). Carey L. Shive et al. found that plasma

TGF-b levels in INRs were low and the proportion of circulating

CD4+ regulatory T cells was reduced, which may make it

challenging to control inflammation. In addition, T cell

exhaustion and senescence phenotypes were negatively correlated

with TGF-b expression and positively correlated with plasma IP-10

and IL-6 levels (67). Thus, theremay be amechanistic link between

low TGF-b levels, reduced CD4+ T cell recovery, impaired Treg

function, and dysregulated T cell phenotype.

4.4.8 Vascular-cell adhesion molecule
Vascular-Cell Adhesion Molecule (VCAM) is not expressed

in the resting state, butmainly on the surface of cytokine-activated

vascular endothelial cells, mediating the adhesion of lymphocytes

and leukocytes to vascular endothelial cells. Under pathological

conditions like inflammation, the number and function of VCAM

can be significantly upregulated and involved in tissue damage

(119). Rodney K Rousseau et al. discovered that soluble VCAM

was the only plasmamarker elevated in INRs, in comparison with

complete responders (CRs). All other plasma biomarkers,

including TNF, sCD14, CRP, intercellular cell adhesion

molecule (ICAM), monocyte chemotactic protein-1 (MCP-1),

gamma-interferon (IFNg), I-FABP, D-dimer, IL-8, IL-6, andKyn/

Trp, were not significantly different between INRs and CRs (120).

4.4.9 Others
Regarding intestinal permeability, Mariana Del Rocio Ruiz-

Briseño et al. measured serum intestinal fatty acid binding

protein (I-FABP) and soluble growth stimulated expression

gene 2 protein (sST2) levels. Although no significant

differences were detected, both I-FABP and sST2 were elevated

in IRs and INRs, which may reflect intestinal injury that

exacerbated the inflammatory phenotype in PLWH (42).
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Soluble TNF receptors (sTNF-RI and sTNF-RII, detached

upon TNF binding) were measured in plasma as biomarkers

of TNF activity. sTNF-RI and sTNF-RII levels did not differ

between IRs and INRs. Levels of sTNF-RII were higher in INRs

than in UCs, and were more comparable to those observed in

viremic subjects (121).
4.5 Fibrosis markers

InHIVearly infection, lymphoid tissuefibrosis can cause CD4+

T cell depletion and immune system dysfunction, and this process

may not fully reverse even if ART is started (122, 123). Hyaluronic

acid (HA), a component of the extracellular matrix generated

during wound healing, is present in elevated concentrations in

fibrotic diseases. C-X-C Motif Chemokine Ligand 4 (CXCL4)

concentrations rise in response to pro-fibrotic stimuli, and

decreased CXCL4 levels in PLWH may imply that HIV

effectively evades immunity (124–127). Pre-ART HA and CXCL4

concentrations were found not to vary according to final immune

reconstitution status. In INRs, HA concentrations were higher and

CXCL4 concentrations were lower after treatment. In paired pre/

post-treatment samples, there was a tremendous increase in HA

and a more significant decrease in CXCL4 in INRs, compared with

UCs. It is hypothesized that increased circulating HA and lower

circulating CXCL4 concentrations due to lymphoid tissue fibrosis

were associated with PIR (128).
4.6 MicroRNAs

Small endogenous RNAs called microRNAs (miRNAs)

control post-transcriptional gene expression. Studies have

revealed that due to their chemical stability and anti-RNase

action, endogenous circulating miRNAs are reliable blood

biomarkers (129–131). Circulating miRNAs in serum may be

used as indicators of early HIV infection (132), HIV disease

progression (133–135), HIV-associated neurological disorders

(136–138), and HIV-related liver injury (139, 140). Yuping Fu

et al. recognized that numerous miRNAs were found to be

downregulated in INRs, compared with IRs; and the miRNA

let-7d-5p was identified as a possible biomarker for INRs (141).

In contrast, Junnan Lv et al. found that the expressions of five

miRNAs (miR-580, miR-627, miR-138-5p, miR-16-5p, and

miR-323-3p) were upregulated in the plasma of INRs,

compared with IRs. One year after ART, the expressions of

these miRNAs were negatively correlated with the increase in

CD4+ T cell count and percentage. These five miRNAs were

utilized to create a predictive algorithm that could successfully

and precisely distinguish INRs from IRs to predict PIR following

ART. Furthermore, miR-16-5p might prevent the growth of

CD4+ T cells by regulating calcium flow (142). These prognostic

miRNA biomarkers may enhance the early detection of PIR.
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4.7 Others

Gut bacterial-derived solutes (GBDSs), such as p-cresol

sulfate (PCS) and indoxyl sulfate (IS), could impair

mitochondrial fitness and thus result in an INR-specific

reduction in CD4+ T cells; and fecal samples of INRs were

enriched with bacterial genera capable of producing PCS (23).

Ghneim K et al. found that senescent INRs were associated with

higher HIV persistence and were driven by the plasma

metabolome and microbes with a rich butyrate/bile acid (BA)

(143). BA tolerance is an essential property of intestinal

colonizing bacteria (144), and the interactions between BA

metabolism and the intestinal microbiota are complex.

Accumulating toxic bile acids may lead to inflammation (145),

and targeting the BA-microbiota axis may be a potential way to

improve HIV immune function (146).
5 Limitations of this review

This review also has some limitations. First, there are few

studies related to circulating markers in INRs, especially in feces.

In addition, the accuracy and potential value of these biomarkers

in evaluating CD4+ T cell recovery in INRs need to be validated
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in larger sample cohorts. Finally, due to the difference in sample

size, the disparity of diagnostic criteria, and the methodological

heterogeneity of the included studies, we did not assess the

quality and risk of bias of the included studies as a whole, nor did

we perform a meta-analysis of individual biomarkers in

this review.
6 Conclusions and perspectives

ART increases CD4+ T cell counts and partially rebuilds the

immune system in PLWH, but still fails to resolve microbial

translocation or monocyte/macrophage activation, thereby

increasing long-term morbidity and mortality in non-AIDS-

associated inflammatory conditions (Figure 3). Furthermore, we

revealed that the systematic study of diverse circulating markers

might deepen the understanding of the immunopathogenesis of

HIV and provide new tactics for clinical treatment (Table 2).

Considering the vital role of circulating markers in immune

programming and regulation, future studies on changes of gut

flora and circulating biomarkers in INRs should be conducted in

more detail to elucidate the regulatory mechanisms of the

circulating microenvironment on CD4+ T cell reconstitution.

Overall, this review offers a new perspective on the impact of
FIGURE 3

Schematic summary of microbial translocation, immune cells involved, and altered circulating markers in UCs, IRs, and INRs. UCs, uninfected
controls; IRs, immune responders; INRs, immune non-responders; SCFA, short chain fatty acids; sCD14, soluble CD14; sCD163, soluble CD163;
IL-6, interleukin-6; IL-7, interleukin-7; IL-7R, interleukin-7 receptor; IL-1a, interleukin-1a; IL-1b, interleukin-1b; IL-8, interleukin-8; IL-18,
interleukin-18; IP-10, interferon-inducible protein 10; LPS, lipopolysaccharide; hsCRP, hypersensitive C-reactive protein; TGF-b, transforming
growth factor-b; VCAM, vascular adhesion molecules; HA, hyaluronic acid; CXCL4, C-X-C motif chemokine ligand 4; MC, myristyl carnitine; PC,
palmitoylcarnitine; SC, stearoylcarnitine; OC, oleoylcarnitine; ↑, increase in comparison with uninfected controls; ↓, decrease in comparison with
uninfected controls.
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TABLE 2 Summary of circulating marker changes in INRs.

Samples Feces Plasma

flammation-
proteins

Soluble immune
mediators

Fatty acid
metabolites

Amino acid
metabolites

Cytokines Fibrosis
markers

MicroRNA Others

tectin↑ sCD14↑ Myristyl Carnitine↑ 3-Indolepropionic
acid↓

IL-6↑ HA↑ miRNA let-
7d-5pi↓

PCS↑

errin↑ sCD163↑ Palmitoylcarnitine↑ Cysteine↓ IP-10↑ CXCL4↓ miR-580↑ IS↑

Stearoylcarnitine↑ Serine↓ IL-7↑ miR-627↑ BA↑

Oleoylcarnitine↑ Glycine↓ IL-7R↓ miR-138-5p↑ butyrate↑

IL-1a↑ miR-16-5p↑

TNF-a↑ miR-323-3p↑

LPS↑

hsCRP↑

TGF-b↓

VCAM↑

D14; sCD163, soluble CD163; IL-6, interleukin-6; IL-7, interleukin-7; IL-7R, interleukin-7 receptor; IL-1a, interleukin-1a; IL-1b, interleukin-1b; IL-8, interleukin-8; IL-18,
sCRP, hypersensitive C-reactive protein; TGF-b, transforming growth factor-b; VCAM, vascular adhesion molecules; HA, hyaluronic acid; CXCL4, C-X-C motif chemokine
mparison with uninfected controls; ↓, decrease in comparison with uninfected controls.
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HIV infection, ART, and the microbiota immune axis on

immune recovery at the metabolic level.
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