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Sepsis is a life-threatening organ dysfunction resulting from dysregulated host

responses to infection. Macrophages play significant roles in host against

pathogens and the immunopathogenesis of sepsis, such as phagocytosis of

pathogens, secretion of cytokines, and phenotype reprogramming. However,

the rapid progression of sepsis impairs macrophage function, and conventional

antimicrobial and supportive treatment are not sufficient to restore dysregulated

macrophages roles. Nanoparticles own unique physicochemical properties,

surface functions, localized surface plasmon resonance phenomenon, passive

targeting in vivo, good biocompatibility and biodegradability, are accessible for

biomedical applications.Once into thebody,NPs are recognizedbyhost immune

system. Macrophages are phagocytes in innate immunity dedicated to the

recognition of foreign substances, including nanoparticles, with which an

immune response subsequently occurs. Various design strategies, such as

surface functionalization, have been implemented to manipulate the

recognition of nanoparticles by monocytes/macrophages, and engulfed by

them to regulate their function in sepsis, compensating for the shortcomings of

sepsis traditional methods. The review summarizes the mechanism of

nanomaterials targeting macrophages and recent advances in nanomedicine

targeting macrophages in sepsis, which provides good insight for exploring

macrophage-based nano-management in sepsis.
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Introduction

Sepsis is a life-threatening organ dysfunction associated with dysregulated host

response to infection (1, 2). Sepsis kills as many as one in four similar to acute myocardial

infarction, stroke, or multiple injuries and ranks third in diverse disease mortality (1, 2).

There are approximately 48.9 million sepsis patients worldwide, with a mortality rate of
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19.7% (3). However, due to its complex pathogenesis, targeted

therapies still need to be explored (2).

Monocytes/macrophages are important players in the

pathogenesis of sepsis (4, 5). Induced by pathogens and

cytokines in the environment, macrophages differentiate to

diverse functional phenotypes and perform different functions,

including killing of pathogenic microorganisms, cytokine and

chemokine production (6). During sepsis, the complicated

pathogenesis brings changes in macrophage function, which

include phenotype reprogramming, alterations in inflammatory

signaling pathways, macrophage overactivation causes

inflammatory factor storm, etc (7, 8). These changes complicate

the pathophysiological status of clinical patients, leading to the

dramatically reduced effects of conventional gene therapy and

drugs (9–14).

Nanomaterials are a class of materials consisting of organic or/

and inorganic particles with a size of about 1 to 100 nm, and the

representative classes of nanomaterials includes polymeric

materials, liposomes, biomimetic materials, exosomes and metal/

inorganic materials and so on (15), it has been considered a

promising tool in sepsis treatment. Nanomaterials can be used as

drug carriers transport inflammation-modifying drugs, because it

can enhance drug targeting delivery and bioavailability, modulating

pro-/anti-inflammatory roles (16). For macrophage, nanomaterials

act as contrast and diagnostic devices that can detect the

physicochemical properties of macrophage phagosomes and

realize macrophage labelling, imaging, and long-term follow-up

(17–22), the features of nanomaterials may help to improve the

diagnostic and therapeutic techniques for patients with sepsis, by

such as targeting macrophage activation, modulating inflammatory

pathways, reprogramming macrophage polarization, etc (23–26).

However, their characteristics and functional mechanisms targeting

macrophages during sepsis have not been addressed fully in sepsis

(16, 27). Herein, we review the following: i) the rationality of

nanomaterials targeting macrophages; ii) the mechanisms for

nanomaterials or technologies targeting sepsis-associated

macrophages; and iii) the prospects of nanomaterials for the

diagnosis and management of sepsis.
The dysregulated function of
macrophages in sepsis

During early sepsis, lipopolysaccharides (LPS) is recognized

by toll-like receptor 4 (TLR4) of macrophages, which activate the

nuclear factor-kB (NF-kB) pathway and mitogen-activated

protein kinase (MAPK) pathway, causing inflammation-active

mediators (such as IL-1, IL-6, IL-18, TNF-a) releasing and

facilitating the clearance of pathogenic microorganisms (28).

However, excessive activated macrophages cause a cascade of

amplified inflammatory responses, such as “cytokine storm”,

impairing host immune function and mediating organ
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dysfunction (29). Meanwhile, macrophage reprogramming, also

known as LPS tolerance, causes a reduction in the ability of

macrophage to release pro-inflammatory cytokines participating

in sepsis immunosuppression (30–34). LPS tolerent macrophage

show decresed expression of costimulatory molecules (CD86,

etc.), decreased expression of MHC-II-like molecules, and

elevated CTLA4 expression, resulting in an antigen-presenting

deficiency, decreased ability to produce IL-6, TNF-a and IFN-g,
and an increased ability to produce IL-10 and TGF-b, which
induces immunosuppression (29, 35–44). In addition, pathogens

induce macrophage apoptosis, pyroptosis, necroptosis,

and parthanatos that make it impossible for immune cells

to proliferate effectively, thus making it difficult for the host to

effectively respond to pathogens (33, 45). The above dysregulated

macrophage function, including macrophage overactivation,

macrophage phenotypic reprogramming, and programmed

macrophage death can be regulated by nanomaterials to achieve

macrophage-targeted therapy in sepsis.
The rationality of nanomaterial
targeting macrophage

NPs are synthesized by chemical reduction, wet chemical

methods, ligand-mediated self-assembly, electrostatic assembly,

polymer encapsulation, and nanoprecipitation and so on (46,

47).Nanomaterials have unique advantages over ordinary drugs,

which include tunable properties (e.g., structural size and

composition, carried charge and surface chemical properties),

surface functions (e.g., target ligands and molecules) and specific

binding features (48, 49). The core of nanomaterials is

nanoparticles, which are particles of nanoscale size (from 1nm

to 100nm) (47). Engineered NPs are classified into polymeric

NPs, liposomes, biomimetic NPs, exosomes and metal/inorganic

NPs (47, 50). Different material compositions (such as SPIONs,

metallic fabrics, and organic materials), surface coatings (such as

positively/negatively charged on the surface or coated by PEG)

and shapes (such as nanospheres, nanorods, nanostars,

nanocubes, nanodisks, etc.) give NPs different properties that

affect the efficiency and mode of action of nanomaterials into

cells (47, 51) (Figure 1).

Polymeric NPs not only protect “antigen” from enzymatic

digestion but also have APC targeting, easy surface modification,

biodegradable, nontoxic and nonimmunogenic features. Drugs

can be loaded on the surface or inside polymeric nanospheres

and nanocapsules to avoid enzymatic digestion while crossing

biological barriers to the target region (54). Liposomes compose

phospholipids and cholesterol and can encapsulate both lipid-

soluble and water-soluble drugs, preventing the drug from

rapidly degrading and reducing adverse reactions by

preventing direct contact with the systemic circulation (52,

53). Based on the properties of receptor-ligand binding, target
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cell-specifical ligands can be assembled on the surface of

liposomes to facilitate receptor-mediated liposome endocytosis

and promote the entry of liposomes and their loaded drugs into

target cells (52, 53). Biomimetic NPs are NPs formed by

attaching natural ligands or functional components, such as

cell membranes, to the surface of engineered NPs (16). Cell

membrane coating nanotechnology has been developed to

synthesize biomimetic NPs by covering the surface of

synthesized NPs with cell membranes prepared using

techniques such as osmotic pressure difference, chemical

interference, electroporation, and ultrasonic treatment (55).

Macrophage membrane-coated biomimetic NPs combine the

unique biochemical functions of macrophages that can achieve

targeted drug delivery with low immunogenicity (16, 56).

Exosomes defined as a type of extracellular vehicles between

30 and 150 nm can transfer the encapsulated biomolecules (such

as DNA, RNA, proteins, lipids and metabolites) from the donor

cell to the recipient cell, thus triggering cell phenotypic changes

participating in a variety of immune responses (57–63).

Exosomes possess the advantages of inherent stability, high

delivery efficiency, and ability to cross biological barriers (62,

64–66). Inorganic nanomaterials have superior optical and
Frontiers in Immunology 03
magnetic characteristics and a high surface-area-to-volume

ratio, thus making them ideal for molecular detection, drug

delivery, immunomodulation, etc. For example, nanoscale noble

metals (e.g., AuNPs) exposed to light exhibit localized surface

plasmon resonance (LSPR) phenomena, resulting in the

improved sensitivity of molecular detection (67, 68).

Moreover, cerium nanoparticles significantly attenuated the

total superoxide flux in macrophages (69).

Through nanoprecipitation, emulsion polymerization,

electroporation, film dispersion, ultrasonic dispersion, reverse-

phase evaporation method, etc., scientists can program the

physicochemical properties of NPs. Engineered NPs are both for

loading drugs targeting macrophages to improve their

bioavailability and for modifying the structure of nanomaterials

to modulate macrophage function by supramolecular chemistry.

NPs exerting their intracellular or extracellular biological activities

after being recognized and endocytosed by macrophages

(Figure 2) (46, 47, 55, 70). Plasma contains various proteins,

which can bind to the nanoparticles (NPs), and once NPs enter

the host and contact with plasma proteins, they acquire a new

biological characteristic called protein corona (PC) (71). PC

changes the physicochemical properties of NPs, including
FIGURE 1

The various properties of nanomaterials in nanomedicines. Nanomaterials are subdivided into polymorphic nanoparticles (NPs), liposomes,
biomimetic NPs, inorganic NPs, and cell-derived exosomes, which range in size from approximately 1 to 100 nm and have different shapes,
including nanospheres, nanorods, nanostars, nanocubes, nanodisks, etc.; consist of different materials, including SPIONs, metallic fabrics, and
organic materials; and are both positively/negatively charged on the surface or coated by PEG. These physicochemical properties influence how
efficiently nanomaterials enter the cell and the mode of action that affects cellular activity. The size and shape of the nanomaterial can
determine the way it enters the cell, such as clathrin-mediated endocytosis (120nm), and clathrin- and caveolae-independent endocytosis
(~60nm) (51).. The surface charge of nanoparticles affects the cell membrane state, for example, the binding of negatively charged nanoparticles
to cellular lipid bilayers causes local gelation, while the binding of positively charged nanoparticles to cellular lipid bilayers causes the flow of
phospholipid bilayers (52). Polyethylene glycolization reduces premature removal of NPs from the cycle (53).
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FIGURE 2

The interaction of NPs with macrophages and NPs modulating macrophage anti/pro-inflammatory function. (A) Once NPs enter the body, they
bind to plasma proteins and enter macrophages. Some endosomes containing NPs degrade the processed NPs and release them extracellularly
to exert active effects; the other endosomes fuse with lysosomes to form endolysosomes, which exert intracellular effects. (B) First, NPs can
eliminate macrophage activation by phagocytosis and confinement of pathogen-associated molecular pattern molecules (PAMPs); second, they
inhibit PAMPs interacting with pattern recognition receptors (PRRs); third, NPs entering the cytoplasm inhibit the transduction of inflammatory
signaling pathways; and finally, NPs inhibit the release of active products of inflammatory pathways and control the cell and tissue damage
caused by overactivated macrophages. (C) NPs modulate macrophage proinflammatory activity. NPs can enhance PRR activation to initiate
macrophage inflammation. After entering the cytoplasm, NPs activate downstream pathways and inflammasomes to induce proinflammatory
factor production. NPs, nanoparticles; PAMPs, pathogen-associated molecular pattern molecules; ROS, reactive oxygen species; ILs,
interleukins; TNFs, tumor necrosis factors; MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor-kappa B.
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surface charge, size, aggregation state and antigenic epitopes; and

these changes preferentially in turn affect the pharmacokinetics,

biodistribution and therapeutic effects of NPs (71). Binding to

certain proteins lead to recognition of NPs by the mononuclear

phagocyte system (MPS) (72). For example, IgG, fibrinogen and

complement proteins, promote the uptake of NPs by the MPS

utilizing the corresponding receptors expressed on the phagocyte

surface, such as scavenger receptor on Kupffer cell. In addition,

IgG and complement C3b promote the uptake of NPs by

monocytes (73).

Nanomaterials are successfully used in diverse diseases

(Table 1), especially sepsis (Table 2) (56, 85, 116). Nanomaterials

targeting macrophages mainly lie in the therapeutic aspect,

including as drug carrier or nanodrug to regulate macrophage

anti-inflammatory/pro-inflammatory function (Figure 2),

macrophage reprogramming (Figure 3) and programmed

macrophage death (Figure 4) (16, 22, 112, 113, 115, 117). In the

regulation of macrophage anti-inflammatory/pro-inflammatory

function, PAMPs and pattern recognition receptor (PRR) shows

great potential (35). The process of recognition and phagocytosis of

nanomaterials by macrophages approximates the mutual

recognition of PAMPs and PRRs (35). NP delivery platforms in

combination with PAMPs or their synthetic mimics hold great

promise in immunomodulatory therapy using synthetic or natural

polymers, lipid-polymer hybrids and self-assembled compounds to

constitute nanodelivery systems that capture or adsorb TLR ligands

and modulate innate immune responses (118, 119). CpG sequences

are typical PAMPs, which when bound to PLG can be widely

recognized and phagocytosed by antigen-presenting cells (APCs),

including macrophages, to enhance the host immune response

(120). TLR receptors of dendritic cells and monocytes have been

shown to recognize alginate-coated chitosan nanogels, affecting the

TLR ligands Pam3Cys-SK4 or CpG-ODN involved in the

regulation of their immune function, inducing the release of IL1-

b, IL-6, TNF-a, and IFN-a (121). After enter themacrophages, NPs

which load immunomodulatory drugs can promote/inhibit NK-kB/
MAPK pathway to modulate macrophage function (84,

122).What’s more, PRRs assemble into inflammasomes after

detecting pathogenic microorganisms or DAMPs in the

cytoplasmic matrix of the host cell (123). In macrophages, PRRs

assemble into inflammasomes upon detection of pathogenic

microorganisms and danger signals in the cytoplasmic matrix of

host cells. Silica nanoparticles (SiO (2) NPs) Silica enters the cell and

generates ROS, which activate the inflammasome, including

caspase-1, ASC multimerization, and promote IL-1b and IL-18

expression in macrophages (124, 125). Multi-walled carbon

nanotubes (MWCNTs) and asbestos induce NLPR3

inflammasome activation in macrophages, and this activation

depends on reactive oxygen species (ROS) production, histone B

activity, P2X7 receptors, and Src and Syk tyrosine kinases (126). In

addition, the specific deposition of imaging agents in macrophages

can be detected with the aid of an imaging device, enabling time-

and space-specific monitoring of macrophages (Figure 5).
Frontiers in Immunology 05
Nano drug carriers
targeting macrophage

Drugs can be encapsulated and sequestered by NPs or

covalently attached to the surface of NPs, enhancing drug-

targeted delivery and release and/or improving drug

biodistribution and/or bioavailability to modulate the anti-

inflammatory/pro-inflammatory activity of macrophages,

macrophage reprogramming and macrophage pyroptosis (17).

In addition, the release time and site of the modified nanodrug can

be controlled after being triggered by environmental

physicochemical properties (e.g., pH and enzyme action), thus

regulating the eff ects of the drug in plasma and cells (49, 127).
Polymeric NPs as drug carriers target
macrophages

Polymeric NPs can facilitate targeted drug delivery due to

easy surface modification, biodegradable, nontoxic and

nonimmunogenic features (128–130).

Polymeric NPs promote macrophage anti-inflammatory

activity in sepsis overactivation stage. Chitosan, as a kind of

polymeric NPs, improves drug delivery efficiency and controlled

release (22). For example, Hongsa et al. designed a modified biotin-

quat 188-chitosan (Bi-QCS) and collagen nanodrug carrier (Bi-

QCS-AuNPS@collagen) wrapped in AuNPs surface (79). Bi-QCS

significantly improved the uptake of loaded drugs by macrophages,

and chitosan improves physicochemical stability, controls drug

release and promotes its anti-inflammatory activity (79).

Compared with conventional AuNPs, Bi-QCS-AuNPs@collagen

has higher drug loading and promotes apparent anti-

inflammatory role in RAW264.7 macrophage (79). In addition,

reactive oxygen species (ROS) and pH-sensitive polymeric chitosan/

alginate hydrogel NPs loaded with curcumin effectively avoid the

hydrolysis of digestive fluid and directly target macrophages to exert

anti-inflammatory effects via TLR4-MAPK/NF-kB pathway

inhibition; among them, chondroitin sulfate promotes

macrophage targeting of NPs, while chitosan/alginate hydrogel

protects NPs from being destroyed by digestive juices (122). A

nanocomposite synthesized by chitosan and antimicrobial peptides

(AMPs) significantly inhibited NF-kB/MAPK pathway activation

by LPS in RAW264.7 macrophages as well (131). Moreover,

chitosan was developed to carry NF-kB/p65 antisense

oligonucleotides that target macrophages to inhibit NF-kB/p65
signaling and downstream release levels of inflammatory factors

such as IL-1, IL-6 and TNF-missing, in LPS-stimulated RAW264.7

macrophages (92). Rajendrakumar et al. developed a mannosylated

disulfide cross-linked polyethyleneimine (ssPEI) (Msp)-

encapsulated bovine serum albumin-reduced manganese dioxide

(MSPAM) nanocomplex that effectively avoided organ damage

caused by macrophages in a sepsis model (109). Hydrophilic
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TABLE 1 The classification and mechanism of nanoparticles targeting macrophages.

Nanoparticles Techniques Mechanisms Principles/methods Model/cell lines References

AuNPs Functionalized with para-mercaptobenzoic acid
(p-MBA)

Detection of
macrophages
phagolysosomal
pH

Surface-enhanced Raman
spectroscopy

Peripheral blood
mononuclear cells
isolated from whole
blood of human
subjects

(74)

Liposomes Synthesized with NO probes via thin film
hydration approach

Detection of nitric
oxide release by
activated M1
macrophages

Near-infrared (NIR) light sensing
nitric oxide probes

RAW264.7
macrophages

(75)

Cellulose
nanocrystals

Linked to PEGylated biotin and perylene
diimide (PDI)-based near-infrared organic dye

Labelling,
imaging, and
long-time tracking
for macrophages

Ultraviolet–visible absorption
spectroscopy and fluorescence
emission spectroscopy

J774A.1 macrophages (76)

Liposomes Modified by matrix metalloproteinase-2
(MMP-2) responsive peptide (peptide E5) via
the film dispersion method

Drug-delivery
systems

Ultraviolet–visible spectrophotometry
and reversed-phase high-performance
liquid chromatography (RP-HPLC)
analysis

C57BL/6 male mice (77)

Liposomes PEGylated liposomes containing IFN-g Drug-delivery
systems

Nitric oxide test and biodistribution
work

J774A.1 macrophages (78)

Polymeric NPs and
AuNPs

Coated with collagen in the first layer and
subsequently modified with biotin-quat188-
chitosan in the outer layer via Layer-by-Layer
(LbL) assembly technique

Drug-delivery
systems

Fourier transformed infrared
spectroscopy

RAW264.7
macrophages

(79)

Biomimetic NPs Macrophage membrane coating on the surface
of active Ingredients

Drug-delivery
systems

The specific targeting of macrophage
membrane to lesions

RAW264.7
macrophages/C57BL/
6 mice

(56, 80, 81)

Multiwalled carbon
nanotubes

Macrophage
activation and
enhance
phagocytosis

Tim4 recognizes MWCNTs through
aromatic interactions and mediates
phagocytosis/NLRP3 inflammasome
activation

C57BL/6J mice (82, 83)

Poly
(3-hydroxybutyric
acid-co-
hydroxyvaleric
acid) (PHBV) NPs

Developed by water-oil-water double emulsion
method

Macrophage
activation and
enhance
phagocytosis

Continuously activate NOD1 RAW264.7
macrophapes

(84)

Biomimetic NPs Cell-membrane-coating nanotechnology Macrophage
activation and
enhance
phagocytosis

Elicit macrophage immune r
esponses via CD47 and SIRPa

B16F10 mice (85)

PLGA, silica NPs Nuclear magnetic resonance-based
metabolomics

Induce
proinflammatory
factors production

Induce TNF-a production. RAW 264.7
macrophages

(86)

Carbon dots Produced by microwave-assisted pyrolysis of
organic precursors

Induce
proinflammatory
factors production

Induce NLRP3 inflammasome
activation and IL-1b, IL-8 release

BALB/c mice (87)

Polymeric NPs Induce
proinflammatory
factors production

Induce ROS production NR8383 rat
macrophages/RAW
264.7 macrophages

(88, 89)

Silica and
superparamagnetic
iron oxide
(SPION) NPs

Prepared by chemical coprecipitation Inhibit
macrophage
phagocytosis

Diminish phagocytic activity of
macrophage toward S. pneumoniae

Bone marrow-derived
macrophages isolated
from C57/BL6 mice

(90)

Methyl palmitate
NPs

Produced by combination natural fatty acid
methyl palmitate with albumin

Inhibit
macrophage
phagocytosis

Induce macrophages into a transient
and reversible state of dormancy

C57BL/6J mice (91)

Polymeric NPs NF-kB/p65 antisense oligonucleotide loaded
chitosan

Inhibit
proinflammatory
pathways

Inhibit NF-kB/p65 pathway RAW 264.7
macrophages

(92)

(Continued)
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bovine serum albumin-reduced manganese dioxide (BM) NPs self-

assembled with cationic mannose cross-linked polyethyleneimine

(Msp) from MSPAM nanocomplexes scavenged H2O2, inhibited

HIF1a expression and reduced serum TNF-a and IL-6 (109).

Polymeric NPs promote macrophage pro-inflammatory

activity in sepsis immunosuppression stage. Apoptosis, endotoxin

tolerance, metabolic reprogramming, and changes in inflammatory

pathway are involved in the immunosuppressive state of sepsis (37).

In the immunosuppression stage, the host often dies due to organ

dysfunction (132), and nanomaterials can induce macrophage

proinflammatory reaction to improve the survival rate of patients

(95). iE-DAP is a drug that promotes intracellular receptor NOD1

activation and induces pro-inflammatory factor gene expression,

but cannot be internalized bymacrophage. After be encapsulated by

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), iE-DAP-

PHBV can be effectively internalized into macrophages

activateing NOD1 signaling to induce activation of the NF-kB
pathway and secrete IL-6 and TNF-a against inflammation (84).

Zhao et al. loaded monphosphatidyl lipid A (MPLA) and muramyl
Frontiers in Immunology 07
dipeptide (MDP) into poly(lactide-co-glycolide) (PLGA) NPs and

combined them with alginate (ALG) to develop two-phase release

immunostimulatory composite NPs (MDP+P-M@ALG). MDP+P-

M@ALG improves macrophage phagocytic and bactericidal

functions, the survival of CLP-induced sepsis mouse models and

the resistance of surviving mice to secondary infections, providing

long-term sepsis protection (24).

Polymeric NPs regulate macrophage reprogramming.

Macrophages activated in inflammation are generally divided

into two types, pro-inflammatory M1 and anti-inflammatory

M2 macrophages (133). NP can change the inflammatory

environment by regulating the activated macrophage state and

thus treat diseases (77). For example, Jiang et al. prepared

chitosan-based nanoparticles (CN) loaded with tripolyphosphate

that dynamically regulated M1-M2 macrophage reprogramming.

In M1-like macrophages, CN decreased CD86 and iNOS

expression, and increased Arg-1 and IL-10 expression; in M2-

like macrophages, CN decreased Arg-1 expression, and increased

CD86, iNOS and TNF-a expression. The biphasic polarization
TABLE 1 Continued

Nanoparticles Techniques Mechanisms Principles/methods Model/cell lines References

Au NPs Combined with ginsenoside compound K (CK)
and peptide CopA3

Inhibit
proinflammatory
pathways

Inhibit NF-kB and MAPK pathways RAW 264.7
macrophages

(93)

Lipoaspirate NPs Incorporated with guanabenz Inhibit
proinflammatory
pathways

Inhibit TLR4 pathway Raw264.7
macrophages

(94)

Drug-free
amphiphilic NPs

Generated by self-assembly of hydrolyzed
galactomannan (hGM)-linked copolymers

Promoting M1 to
M2 macrophage
polarization

Raw264.7
macrophages

(95)

Liposomes Conjugated with protein G Promoting M1 to
M2 macrophage
polarization

Showed by reduced IL-1a, IL-6, and
TNF-a production and increased IL-
10 production

C57/BL6 mice and
Raw264.7
macrophages

(96)

Selenium-based
layer-by-layer
nanocomplexes

Combined with polyethyleneimine Promoting M1 to
M2 macrophage
polarization

Evidenced by decrease in NOS-2 and
TNF-a mRNA expression

Raw264.7
macrophages

(97)

Lanthanide
upconversion NPs

Near-infrared light -controlled cyanobacteria
micronanodevice

Promoting M1 to
M2 macrophage
polarization

Reduce HIF-1a expression C57/BL6 mice and
BALB/c mice

(98)

Biomimetic Au
NPs

Promoting M2 to
M1 macrophage
polarization

Induce proinflammatory cytokine,
ROS production and glutathione
consumption

BALB/c mice (99)

Micellar
nanostructure of
supramolecule

Accompanied with efficient cytoplasmic
translocation and tunable photoconversion

Promoting M2 to
M1 macrophage
polarization

Induce of apoptotic proteins and
inhibit metastasis-associated proteins

4T1-tumor-bearing
mice

(100)

AuNPs Functionalized with mangiferin Promoting M2 to
M1 macrophage
polarization

Evidenced by enhanced IL-12 and
TNF-a, and reduced IL-10 and IL-6

RAW 264.7
macrophages

(101)

Nano enzyme and
PEGylated iron
manganese silicate
NPs

Promoting M2 to
M1 macrophage
polarization

Exhibit peroxidase-like and catalase-
like activities to decompose hydrogen
peroxide (H2O2) into hydroxyl
radicals (-OH) and oxygen (O2)

CT26-tumor-bearing
mice

(102)

NPs encapsulated
by macrophage
exosomes

Combination of PLGA-based NPs with
exosome membrane from macrophages

Specific target to
macrophages in
lesions

Regulate macrophage phagocytosis
and macrophage polarization

C57BL/6 mice (103, 104)
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was achieved by STAT-1/STAT-6 signaling pathway

transformation. Therefore, CN alter macrophage polarization

homeostasis and thus can be used for treating sepsis (134).

Polymeric NPs inhibit macrophage pyroptosis. Pyroptosis is

a caspases-mediated cell death, which GSDMD accumulates in

cell membrane to form pores causing cell membrane collapse,

inducing the release of lots of cytokines, including IL-1b,
ultimately leading to dramatically abnormal activation of

immune cells (135). NPs can serve as carriers prevent its
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occurrence (115). For example, Ou et al. prepared a

disulfiram-lactoferrin nanocomplex (DSF-LF NPs), a naturally

occurring powerful antibacterial and anti-inflammatory protein,

with DSF, a drug that inhibits gasdermin D (GSDMD)-induced

pyroptosis (115). LF binds specifically to low-density lipoprotein

receptor-related protein-associated protein (LRP-1) and

promotes phagocytosis of NPs by macrophages, and has

immunomodu l a t o r y e ff e c t s ( 115 ) . U t i l i z i n g th e

immunosuppressive activity of LF and DSF, DSF-LF NPs
TABLE 2 The classification and mechanism of nanoparticles targeting macrophages in sepsis.

Nanoparticles Techniques Mechanisms Principles Model/cell lines References

Dextran NPs 64Cu-Macrin positron emission
tomography (PET) imaging

Nanotracer for
macrophage

Quantitative noninvasive assessment for
spatiotemporal macrophage dynamics

Cecal ligation and
puncture (CLP)
-induced C57BL/6J
sepsis mice

(105)

Superparamagnetic
iron-oxide NPs

Quantitative susceptibility
mapping magnetic resonance
(QSM-MRI)

Monitoring
tools based on
macrophage
phagocytosis

Quantitative susceptibility mapping magnetic
resonance for NP phagocytosis by macrophages

Lipopolysaccharide
(LPS)-treated RAW
264.7 macrophages

(106)

Liposomes Constructed by antimicrobial
peptide- cathepsin B Mrna and
vitamin

Drug-delivery
system targeted
for
macrophages

Promote the accumulation of NPs in macrophage
lysosomes to kill multidrug-resistant bacteria

RAW 264.7
macrophages and
multidrug-resistant
bacteria -induced sepsis
C57BL/6 mice

(107)

Monophosphoryl
Lipid A (MPLA)
@PLGA NPs

Contain a NOD2 agonist, TLR4
agonist and alginate (ALG)

Macrophage
activation and
phagocytosis

Enhance the phagocytic and bactericidal function
of macrophages.

Raw 264.7 macrophages
and CLP-induced sepsis
C57BL/6 mice

(24)

Biomimic
macrophage NPs

Contain a recyclable polymeric
NP covered with macrophages
membrane have similar antigenic
external of macrophages

Macrophage
activation and
phagocytosis

Capture and eliminate LPS and inflammatory
factors

LPS-induced sepsis
BALB/c mice

(23)

Cerium oxide NPs Induce
antioxidant and
anti-
inflammatory
activity

Reduce the superoxide flux of mitochondrial
electron transport chain (METC) and plasma
membrane NADPH oxidase (NOX), and
downregulate proinflammatory cytokines release

LPS-induced sepsis
Sprague Dawley rats

(26, 69, 108)

Metal and
polymeric NPs

a mannosylated disulfide cross-
linked polyethylenimine (ssPEI)
(mSP)-coated bovine serum
albumin-reduced MnO2 (M
SPAM) nanoassembly

Induce
antioxidant and
anti-
inflammatory
activity

Decompose toxic H2O2 to oxygen and water,
prevent proinflammatory cytokines secretion

LPS-induced sepsis
C57BL/6 mice

(109)

Cerium oxide NPs Target
inflammatory
pathways.

Reduce MAPK/NF-kB mediated pathways
activation

RAW264.7 cells and
CLP-induced sepsis
Sprague Dawley rats

(25, 26, 69)

Poly(Lactic Acid)
iNPs

Prepared by oil-in-water (o/w)
emulsion-solvent evaporation
(SE) technique

Target
inflammatory
pathways.

Elimination of NF-kB p65 and MAPK p38
activation

RAW264.7 cells and
LPS-induced sepsis
C57BL/6 mice

(110, 111)

Au NPs Mediate
macrophage
polarization

Demonstrated by the lower supernatant TNF-a
and IL-1b and higher Arginase 1

CLP-induced sepsis ICR
mice

(112)

SPION of g-Fe2O3
NPs

Mediate
macrophage
polarization

Induce TRAF1-dependent polarization LPS-and CLP-induced
C57BL/6

(113)

SPIONs of g-Fe2O3
NPs

Regulated cell
death

Induce Cav1-Notch1/HES1-mediated autophagy RAW264.7 cells and
LPS-induced sepsis
C57BL/6 mice

(114)

Lactoferrin NPs Loaded with disulfiram Regulated cell
death

Inhibit GSDMD-induced pyroptosis C57BL/6 and BALB/c
mice

(115)
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FIGURE 3

NPs regulated macrophage polarization. M1 macrophages usually act in the sepsis cytokine storm state and release a large number of pro-
inflammatory mediators, including ROS, IFNs, ILs and TNFs, while M2 macrophages usually appear in the immune paralysis phase and secrete
anti-inflammatory mediators, the most characteristic of which is IL-10. During periods of inflammatory overstimulation, sustained release of
pro-inflammatory mediators from M1 induces damage to the organism, while massive activation of M2 macrophages during periods of immune
paralysis increases the risk of secondary infection. NPs can regulate macrophage polarization in different periods of sepsis improving its
prognosis. NPs, nanoparticles; ROS, reactive oxygen species; ILs, interleukins; IFNs, interferons; TNFs, tumor necrosis factors.
FIGURE 4

NPs interfere with macrophage pyroptosis. Pyroptosis, a class of programmed cell death dependent on pro-inflammatory caspases (caspase-1,-
4,-5 from humans and caspase-1 and -11 from mice) and gasdermin D (GSDMD), is an important type of programmed macrophage death. After
recognition of LPS derived from pathogens by macrophage intracellular receptors, activation of caspases triggers the cleavage of GSDMD and
IL-1b, which accumulates in the cell membrane to form pores causing cell membrane collapse, accompanied by the release of inflammatory
cytokines, including IL-1b, ultimately leading to cell death. The NPs entering the cells can block the activation of caspase-1 and caspase4/5/11,
reducing the release of DAMPs and avoiding unnecessary tissue and cell damage. NPs, nanoparticles; LPS, lipopolysaccharides; IL-1b,
interleukin-1b; DAMPs, damage-associated molecular pattern molecules; GSDMD, gasdermin D.
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effectively inhibit macrophage pyroptosis and proinflammatory

cytokine release process with significant efficacy in LPS-induced

sepsis (115). In addition, a siHMGB1 liponanocomplex can be

engulfed by macrophage via the mannose receptor to form

endolysosomes. Endolysosomes can release active factors to

silence the transcription of high mobility group box protein 1

(HMGB1), thus inhibiting pyroptosis (136).
Liposomes as drug carriers
target macrophages

Liposomes are widely used as drug carriers for small

molecule, peptide, protein, gene and antibody delivery due to

their high drug encapsulation, low drug toxicity, good targeting,

good biocompatibility, biodegradability, and optimized

biodegradability pharmacokinetic properties (77, 137–139).

Liposomes are phagocytosed by macrophages after entering

the body through intravenous injection, forming a natural

aggregation effect and realizing macrophage targeting (140).

Liposomes promote macrophage anti-inflammatory activity

in sepsis overactivation stage. Liposomes loaded guanabenz

regulates macrophage anti-inflammatory activity through

eukaryotic initiation factor 2 (eIF2a) dependent signaling,
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which downregulates IL-6 and cyclooxygenase 2 (COX-2) and

also through eIF2a non-dependent signaling, which

downregulates IL1b, TNFa, significantly reduced the cytokines

secreted by macrophages (94).

Liposomes promote macrophage pro-inflammatory activity in

sepsis immunosuppression stage. Hou et al. constructed an

antimicrobial peptide, cathepsin B mRNA (AMP-cat B mRNA),

encoding AMP-IB367 and Cat-B, which was encapsulated in

vitamin liposomes. The vitamin liposomes promote the

accumulation of NPs in the lysosomes of macrophages (107).

Such macrophages assembled with AMP-cat-B@VLMP could

eliminate MDR bacteria in septic mice in an immunosuppressive

state (107), providing an alternative strategy to overcome sepsis

caused by multidrug-resistant bacteria. Moreover, wheat germ

agglutinin (WGA)-modified liposomes encapsulating

clarithromycin is used for bacterial target delivery and

enhancement of host immune defense by improving the uptake

of bacteria by macrophages and inhibiting bacteria growth (141).

Liposomes regulate macrophage reprogramming. M2

macrophages treated with PEGylated liposomes containing

IFN-g expressed elevated NO and decreased arginase levels,

suggesting that such liposomes enhanced the targeted delivery

of drugs to macrophages and promoted M2 to M1

polarization (78).
FIGURE 5

NPs engulfed by macrophages can be detected by clinical tools. The large number of proteins bound to the NP can trigger immediate recognition
by macrophages. Ligand-receptor role is a part of way that plasma protein helps NPs enter macrophages. When nanomaterials interact with
biological fluids, after the formation of a protein corona, their main requirement is to interact with cell membranes (especially the molecule in the
cell membranes surface) to show their biological effects, such as ligand-receptor role. For example, IgG, fibrinogen and complement proteins,
promote the uptake of NPs by the macrophages utilizing the corresponding receptors expressed on the phagocyte surface, such as scavenger
receptor on Kupffer cell. Once the NPs are endocytosed into macrophages, the nanotracer in macrophages of the samples can be tested by high-
throughput screening platforms, such as optical nanosensor and other nano-detector. NPs, nanoparticles.
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Biomimetic macrophage NPs

Biomimetic macrophage membrane-coated NPs can cross

biological barriers, enable the cargo to precisely target the lesion

and avoid immune recognition (80, 142, 143).

Biomimetic NPs can both inhibit and promote macrophage

phagocytosis. Wang et al. reported a biomimetic NP (MM/

RAPNPs) that coats macrophage membranes on the surface of

PLGA NPs assembled with rapamycin (RAPNPs) (56). Due to

the MM coa t ing , MM/RAPNPs , pos se s s ing good

biocompatibility, biosafety, and targeting properties, effectively

inhibited macrophage phagocytosis in vitro (144) and efficiently

targeted aggregation to lesions in vivo (56). CD47, a ligand for

signal-regulated protein-a (SIRPa) on macrophages (145), upon

binding to SIRPa, SIRPa activates phosphatase-1 (SHP-1),

which contains the Src homology 2 domain, to regulate

intracellular signaling and inhibit cellular phagocytosis (146).

Related studies reported that magnetic NPs (gCM-MNs)

encapsulated by gene-edited cell membranes effectively

blocked the CD47-SIRPa signaling pathway and could elicit

robust macrophage phagocytosis (85).

Biomimetic NPs promote macrophage anti-inflammatory

activity in sepsis overactivation stage. Lu et al. developed a

biomimetic nanomedicine (MM-CEP/NLCs) containing

cefadroxil (CEP) nanolipid carriers (NLCs) inside and MM

encapsulated outside. Due to its biocompatibility and

targeting, biomimetic macrophage membrane allows effective

accumulation of MM-CEP/NLCs in lung inflammation,

achieving sustained drug release and circulation and

therapeutic lung inflammation effects (81).

Biomimetic NPs eliminate PAMPs.Macrophage-mimetic NPs

(MF-NPs) combine polymeric cores with macrophage cell

membranes, possessing LPS binding sites (e.g., CD126, CD14 and

TLR4)with long circulation times and low toxicity (147, 148).MF-
NPs can capture and eliminate LPS and damage-associated

molecular pattern molecules (DAMPs), reducing the free LPS

level in the serum and overexcitation of immune cells and

alleviating LPS-induced sepsis in mice (23, 147, 148).

Biomimetic NPs regulate macrophage reprogramming.

Engineered macrophages carrying nanodrugs containing

oxaliplatin prodrug and photosensitizer induce conversion of

M2 macrophages to M1 macrophages as evidenced by increasing

of iNOS (M1 marker) and decreasing of Arg-1 (M2 marker),

which realized by macrophage-mimetic NP-mediated, light-

triggered accurate delivery of drugs (80).
Exosomes derived from macrophages
serve as drug carriers

Exosomes exhibit low immunogenicity, excellent

biocompatibility, and immune inertness, and can carry

various drugs.
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Exosomes regulate macrophage reprogramming. Pei et al.

designed an EM-PLGA@Dnmt3aos smart silencer by isolating

natural exosomes from M2 macrophages and centrifugation

encapsulating a PLGA@Dnmt3aos smart silencer (103). Long

non-coding RNAs (lncRNAs) were differentially expressed in

M1/M2 macrophage s (103 ) . Among them, DNA

methyltransferase 3A, opposite strand (Dnmt3aos) is a known

lncRNA located on the ant isense strand of DNA

methyltransferase 3A (Dnmt3a), which highly expressed in M2

macrophages and regulates the expression of Dnmt3a. Smart

silencers consist of three small interfering RNAs (siRNAs) and

three antisense oligonucleotides (ASOs) that play an important

role in mediating sequence-specific silencing of a given target

gene. When PLGA@Dnmt3aos-smart silencer encapsulated by

M2 macrophage-derived exosomal membranes was injected into

allergic asthmatic mice, it effectively targeted M2 macrophages

in the lungs and significantly inhibited the production of pro-

inflammatory cytokines, demonstrating strong permeability,

effective drug delivery, robust targeting, high stability and

safety of the exosomes (103). Intercellular adhesion molecule 1

(ICAM-1)/lymphocyte function-associated antigen 1 (LFA-1),

and vascular cell adhesion molecule 1 (VCAM-1)/very late

antigen 4 (VLA-4), specifically bind to each other (149).

ICAM-1 and VCAM-1 are only expressed by macrophages

activated by LPS, and LFA-1 and VLA-4 are upregulated in

exosomes derived fromM2 macrophages, thus enabling targeted

recognition of M2-derived exosomes with LPS-activated

macrophages (150). The use of exosomes derived from M2

macrophages will encapsulate the plasmid DNA encoding IL-

10, avoid the degradation of plasmid DNA by nucleases and

adverse reactions of plasmid DNA (150). The exosomes realize

the targeted transporting to M1 macrophage, and enhance the

reprogramming of the M1 type to the M2 type macrophages,

which was demonstrated by the upregulation of IL-10 and IL-4

and the downregulation of IL-1b and TNF-a (150).
Inorganic NPs as drug carriers
target macrophages

The tunable optical and electronic properties, simple

synthesis techniques, and biocompatibility of carbon

nanomaterials make them promising for applications in in

vitro and in vivo biosensing, bioimaging, and drug delivery

(151, 152).Metal NPs are representative of inorganic NPs,

which offer considerable advantages as therapeutic platforms

due to their high drug-carrying capacity, low immunogenicity,

and biotunable targeting properties (153).

Inorganic NPs promote macrophage anti-inflammatory

activity in sepsis overactivation stage. Currently, scientists

combine ginsenoside compound K (CK) and peptide CopA3

on gold NPs (GNP-CK-CopA3) targeting RAW264.7

macrophages to decrease LPS-induced NF-kB/MAPK pathway
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activation (93). Gold NPs improve CK and CopA3 delivery

efficiency (93). Pretreatment of RAW264.7 cells with GNP-CK-

CopA3for 1 h followed by stimulation with LPS for 2 h resulted

in significant inhibition of protein IkBa and p38 MAP

phosphorylation and degradation in macrophages, indicating

that GNP-CK-CopA3 inhibits macrophage anti-inflammatory

activity (93).

In organic NPs promote macrophage pro-inflammatory

activity. Steckiewicz et al. reported that AgNPs loaded with

chlorhexidine or metronidazole enhance the antimicrobial

roles, and IL-1b expression of RAW264.7 macrophages when

compared with conventional chlorhexidine or metronidazole,

demonstrating that AgNPs are effective cargo carriers (154).

Inorganic NPs regulate macrophage reprogramming. For

example, mangostin-functionalized gold NPs (MGF-AuNPs)

were applied to target the NF-kB pathway in splenic

macrophages and regulated M2 polarization to M1, which was

illustrated by a 10-fold elevation in IL-12, a 50-fold upregulation

of TNF-a, and a twofold decrease in IL-6 and IL-10 (101). In

sepsis, superparamagnetic iron oxide (SPIO) of g-Fe2O3 NPs,

which serve as an antibacterial agent, regulated macrophage

reprogramming dependent on TRAF1 protein expressed by

mesenchymal stem cells to treat septic liver injury (113).

It was concluded that NPs are excellent drug carriers to

improve the traditional sepsis therapy efficacy. Equally

important, it needs to be emphasized that the functional NPs

should be selected properly for sepsis patients in different

immune states (such as pro-inflammatory NPs for the

immune paralysis state), and the selection of inappropriate

NPs will exert adverse effects on the organism (such as anti-

inflammatory NPs for the immune paralysis state).
Nano-molecular drugs
targeting macrophage

In addition to being used as drug carriers, nanomaterial itself

can be used as macrophage immunomodulator.

NPs inhibit macrophage phagocytosis. As early as 2013,

Kodali et al. reported that silica and SPIO NPs could diminish

the phagocytic activity of macrophages toward S. pneumoniae

(90). SPIO have a common recognition receptor with

Streptococcus pneumoniae-class a macrophage scavenger

receptor (SR-A). SR-A binds SPIO by the charge interaction

between the anionic group on the surface of nanoparticles and

the lysine rich region of the receptor collagen like (CL) domain.

Transcriptional reprogramming induced by SPIO leads to

decreased phagocytosis of pathogens by macrophages.

Additionally, Palomba et al. combined the natural fatty acid

methyl palmitate with albumin to constitute a stable spherical

NP capable of inducing macrophages into a dormant state and

inhibiting their phagocytosis (91). The albumin acts as a
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internalization ability of macrophages (91).

NPs inhibit inflammatory pathways. As an antioxidant,

CeO2 NPs is biosafe and can effectively intervene in disease

processes (155). CeO2NPs synthesized by biological and

materials engineering effectively reduce the superoxide flux of

the mitochondrial electron transport chain (METC) and plasma

membrane nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase (NOX), which regulate the antioxidant

activity of macrophages (69). Moreover, CeO2NPs reduce

MAP kinase/NF-kB-mediated signaling pathway activation by

attenuating LPS induced IKB- a dilapidation and the nuclear

translocation of NF KB/p65 (25, 26, 108). Macrophages exposed

to CeO2NPs show downregulation of LPS-induced cytokine

release (IL-1b, IL-6, TNF-a, HMGB1) (26, 108). Cargo-free

loaded immunomodulatory NPs (iNPs) can interact with

macrophages to regulate inflammatory processes (110, 111,

156). Furthermore, it was shown that cargo-free loaded iNPs

reduced LPS-induced NF-kB p65 and MAPK p38 activation

(156). This immunomodulatory property of cargo-free loaded

iNPs is converted to a survival advantage in a lethal dose of LPS-

induced sepsis mouse model (111). Therefore, nanomaterials

inhibit their phagocytosis and inflammatory pathway activation,

which are used to inhibit the overactivation of macrophages

in sepsis.

NPs promote macrophage phagocytosis. A study reported

that multiwalled carbon nanotubes (MWCNTs) mediate the

activation of alveolar and parenchymal macrophages by CD40

and CD80 upregulation (82). Additionally, MWCNTs were

recognized by the T-cell immunoglobulin mucin 4 (Tim4)

receptor of macrophages, induced activation of the macrophage

NLRP3 inflammasome, and enhanced phagocytosis of

macrophages (83).

NPs promote inflammatory pathway. Silica NPs, iron oxide

NPs (IONPs), and PLGA NPs can mediate the secretion of TNF-

a by macrophages, which are involved in proinflammatory

processes (86, 157). Moreover, an emerging nanomaterial

called carbon dots (CDs) can target macrophages in lung

tissue and induce macrophage endoplasmic reticulum stress

(87). After coculture, macrophages phagocytosed CDs to

induce NLRP3 inflammasome activation and proinflammatory

cytokine secretion, which was proven by increased IL-1b and IL-

8 (87). Additionally, polystyrene spheres denatured by amine

treatment with a size of 60 nm can induce ROS production in

macrophages by 20 mg/ml (88). Moreover, a nano copolymer can

be endocytosed by macrophages to induce ROS production

(89).Together, NPs could play a critical immunomodulatory

role in the immunosuppressed state of sepsis.

NPs promote macrophage reprogramming. Peled et al.

designed drug-free amphiphilic polymeric NPs generated by

the self-assembly of hydrolyzed galactomannan (hGM)-linked

copolymers (95). The drug-free amphiphilic polymeric NPs can

be recognized by macrophage surface receptors (e.g. lectin-like
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receptors) polarize M1 macrophages to the M2 macrophage, as

confirmed by the downregulation of the M1 marker (CD80) and

the upregulation of M2 markers (CD163 and CD206) (95). Zhao

et al. constructed Fe3O4@C/MnO2 NPs, which show promising

photothermal functions and magnetic and catalytic activities,

and can be implemented to induce M2-type macrophages to

polarize to M1-type macrophages (158).Therefore, active

intervention of engineered NPs in the M1-M2 macrophage

polarization process could be applied to sepsis therapies.
NPs monitoring
macrophage function

The high-throughput platform is a monitoring platform that

can use the biosensor developed by engineers to achieve

continuous monitoring of cell behavior (159, 160). Currently,

developed sensors are used to monitor macrophage function (74,

75). Monitor macrophage immune status. NPs are recognized

and bound to receptors on the cell surface, initiating

phagocytosis by macrophages and finally forming phagosomes

(161). Recently, Law et al. designed an optical nanosensor that

feeds back information about the environmental pH by

monitoring changes in the Raman spectrum of p-

mercaptobenzoic acid (p-MBA) to probe macrophage

phagosome function (74). The optical nanosensor (p-MBA-

NP) uses p-MBA-functionalized AuNPs as material and

measures pH in macrophage phagosomes, which can be

measured by changes in Raman spectra caused by the

response of carboxyl groups to hydrogen ion concentrations in

the environment, representing a new and precise means to

evaluate macrophage function (74).

Monitor macrophage immunotherapy effect. Nanotechnology

enables real-time monitoring of the physicochemical properties of

macrophages and is used to observe the response to

immunotherapy. For instance, a noninvasive imaging nitric

oxide (NO) nanodetector allows real-time monitoring for

macrophage immunotherapy (75). The detector promotes the

assembly of NO imaging probes with colipids to construct a NO

nanoreporter (NO-NR) liposome NP system, which monitors NO

production during M1-M2 polarization in real time, reflecting the

macrophage immunotherapeutic response (75).

Monitor macrophage temporal and spatial location. Apart

from observation for therapeutic effect, marking macrophage

locations is of great importance (162). As early as 2010, Wong

et al. implemented nanomaterials for sepsis monitoring based on

the phagocytosis of macrophages through quantitative

susceptibility mapping (QSM) magnetic resonance (MRI)

imaging to quantify iron (106). Once “Feridex”, a class of

superparamagnetic iron oxide NP contrast agents, enters the

body, they will be rapidly swallowed by Kupffer cells.

Quantification of “Feridex” taken up by Kupffer cells by QSM
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MRI and linking the result to the immune response in sepsis

progression may enable monitoring sepsis status (106). In

addition, spherical dextran NP 64Cu-Macrin assembled from

nontoxic polydextrose is used as a nanotracer for positron

emission tomography (PET) for quantitative noninvasive

assessment of cardiocpulmonary macrophages. This nanotracer

can be used to investigate the spatiotemporal dynamics of

macrophages in sepsis and act as an imaging biomarker for

macrophages (Figure 5) (105). In 2021, Raja et al. developed

chemically modified cellulose nanocrystal (CNC) derivatives by

covalently linking PEGylated biotin and a perylene diimide (PDI)-

based near-infrared organic dye to label and image J774A.1

macrophages in a dose-dependent manner, which realize the

monitoring macrophage localization (76).

Therefore, nanomaterials could not only detect the

localization of macrophages for the determination of tissue

and organ damage severity but also assess the functional status

of macrophages, which shows broad potential in the study and

real-time monitoring of sepsis.
Challenges and prospects of
nanomedicine in sepsis

As a life-threatening pathophysiological syndrome, sepsis has a

complex pathogenesis, in which the involvement of macrophages is

particularly critical. The complicated pathophysiology of sepsis

changes the phenotype and function of macrophages and induces

macrophage exhaustion. At present, the drugs targeting

macrophage function and the detection of macrophage function

are still insufficient (4).Nanomaterials are promising candidates for

targeting macrophages in sepsis. As drug carriers, NPs encapsulate

and sequester active ingredients, enhancing macrophage-targeted

time and specific delivery and/or improving drug biodistribution

and/or bioavailability. In addition, nanomaterials modified by

supramolecular structures can modulate macrophage function

(17). For example, NPs can inhibit/enhance macrophage

phagocytosis (90, 91) and suppress/promote its inflammatory

pathways and cytokines secretion (82–84, 87, 89, 92, 93, 109,

163). NPs mediate M1-2 macrophage reprogramming as well

(164, 165). Therefore, nanomaterials have the potential to treat

macrophage-associated diseases, especially sepsis. Except for

treatment, numerous clinical monitoring technologies of NPs are

emerging, such as electrochemical and immunosensors for

identifying infections, organ dysfunction, and immune

dysregulation state (51, 166, 167). Detecting the localization of

macrophages via nanomaterials can determine the severity of organ

and tissue damage, thereby monitoring the progression of various

macrophage-related diseases in real time (76). Although indirectly

recognizing the pro-/anti-inflammatory cytokines’ lack of

specificity, it provides directable roles in observing the

inflammatory state of macrophage-associated diseases (51, 168–
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171). Furthermore, finding sepsis-specific biomarkers remains a

legacy challenge. There is no doubt that the introduction of

nanotechnology into preclinical studies in sepsis-associated

macrophage therapeutics has made remarkable progress and has

become a prospect for clinical applications.

Many challenges remain in this field. First, there is a lack of

studies that have reportedNPs targeting the epigenetic alterationsof

sepsis-associated macrophages. In LPS-stimulated macrophages,

chromatin reorganization of enhancer regions was enhanced

compared with that in resting macrophages (172, 173). The

molecular mechanisms underlying the epigenetic regulatory effects

of LPS include upregulation of the histone demethylase KDM6B via

NF-kB initiation (8) and accumulation of histone deacetylase at the

promoters of IL-1b and TNF, which lead to altered gene

transcription (174). Thus, storing damaged macrophage function

by regulating epigenetic alterations may be a hotpot. Second, a

related study showed that intestinal microflora disruption may be

harmful to macrophage phagocytosis promoting sepsis (175).

Macrophages in lung tissues from gut microbiota-deficient mice

show altered cellular responses and metabolic pathways (175),

which also provides prospective for sepsis-managing gut

microbiology. Third, macrophages produce extracellular traps

(ETs) in response to various microorganisms and have similar

characteristics to neutrophil ETs, which could be further explored

in relation to nanomedicine (176). Fourth, metabolic changes in

macrophages are also integral to theprogressionof sepsis.Moreover,

stress erythrophagocytosis by the monocyte/macrophage system in

the spleen could induce immunosuppression in sepsis via the

STAT1 pathway (177). Consequently, there are many difficulties

that can be further explored in the future. Furthermore,

nanomaterials are widely applied for therapeutic interventions,

but relatively few are designed to monitor macrophage function.

Achieving effectivemonitoring of immune function in sepsis greatly

guides subsequent treatment. Thus, thedetectionof themacrophage

state needs to be achieved at a deeper level.
Conclusion

To conclude, sepsis is a highly heterogeneous and clinically

refractory syndrome. Based on the functional diversity and

plasticity of macrophages, nanomedicine has achieved excellent

breaks in the management of sepsis. However, the design of

sepsis-state responsive nanotherapies interacting with the
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diversity and plasticity of macrophages is a clinical component

that needs to be further explored. There is no question that the

exploration process requires multidisciplinary collaboration

among critical care medicine, immunology, molecular biology,

biochemistry, pharmacology, and materials science.
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PAMPs pathogen-associated molecular pattern molecules

LPS lipopolysaccharides

PRRs pattern recognition receptors

NPs nanoparticles

PLGA poly(lactide-co-glycolide)

DAMPs damage-associated molecular pattern molecules

NF-kB nuclear factor-kB

MF-NPs macrophage-mimetic NPs

SPIO superparamagnetic iron oxide

CK compound K

ROS reactive oxygen species

MAPK mitogen-activated protein kinase

TLR4 toll-like receptor 4

CeO2NPs cerium oxide NPs

METC mitochondrial electron transport chain

NADPH nicotinamide adenine dinucleotide phosphate

HMGB1 high mobility group box protein 1

iNOS inducible nitric oxide synthase

eIF2a eukaryotic initiation factor 2

COX-2 cyclooxygenase 2

MnO2 manganese oxide

MWCNTs multiwalled carbon nanotubes

MPLA monphosphatidyl lipid A

MDP muramyl dipeptide

ALG alginate

PHBV poly(3-hydroxybutyrate-3-hydroxyvaleric acid)

SIRPa signal-regulated protein-&alpha;

SHP-1 phosphatase-1

GSDMD gasdermin D

LF lactoferrin

DSF disulfiram

hGM hydrolyzed galactomannan

MMP-2 matrix metalloproteinase-2

COL colchicine

CEP cefadroxil

IL-1 interleukin-1

IL-6 interleukin-6

IL-18 interleukin-18

TNF-a tumor necrosis factor a

TGF-b transforming growth factor-b

p-MBA p-mercaptobenzoic acid

CNC cellulose nanocrystal

QSM quantitative susceptibility mapping

MRI magnetic resonance

PET positron emission tomography

STAT signal transducer and activator of transcription

ICAM-1 intercellular adhesion molecule 1

VCAM-1 vascular cell adhesion molecule 1

LFA-1 lymphocyte function-associated antigen 1

VLA-4 very late antigen 4
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