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The emerging role of histone
deacetylase 1 in allergic diseases
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Department of Allergy, Second Affiliated Hospital, Zhejiang University School of Medicine,
Hangzhou, China
Histone deacetylase 1 (HDAC1) is a unique member of the classes I HDACs and

helps to regulate acute and chronic adaptation to environmental stimuli such

as allergen, stress. Allergic diseases are complex diseases resulting from the

effect of multiple genetic and interacting foreign substances. Epigenetics play

an important role in both pathological and immunomodulatory conditions of

allergic diseases. To be consistent with this role, recent evidence strongly

suggests that histone deacetylase 1 (HDAC1) plays a critical role in allergic

response. HDAC1 expression is stimulated by allergen and attributes to increase

T helper 2 (Th2) cytokine levels, decrease Th1/Th17 cells and anti-inflammatory

cytokine Interleukin-10 (IL-10), and TWIK-related potassium channel-1 (Trek-1)

expression. This review focuses on the contribution of HDAC1 and the

regulatory role in characterizing allergic endotypes with common molecular

pathways and understanding allergic multimorbidity relationships, as well as

addressing their potential as therapeutic targets for these conditions.
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Introduction

Epigenetics includes the heritable alterations in gene expression without any changes

in a deoxyribonucleic acid (DNA) sequence, which is crucial in the pathophysiology of

many diseases (1, 2). Multiple enzymes have been extensively studied that induce

epigenetic changes, such as DNA methylation and histone acetylation of DNA regions.

Histone deacetylases (HDACs) are the enzymes that catalyze lysine deacetylation of both

histone and non-histone proteins. HDACs increase the positive charge on histones after

removing acetyl groups from lysine residues, thus increasing the affinity of positively

charged histones for negatively charged DNA (3). HDACs lead to the condensation of the

chromatin and then reduces the accessibility of transcriptase, and finally leads to an

overall suppression of gene transcription (4). HDAC family has four subclasses including

I, II, III and IV. Classes I, II, and IV HDACs utilize a zinc-dependent mechanism and

belong to the Zn2+ superfamily, while class III HDACs require nicotinamide adenine

dinucleotide(NAD)+ for catalytic activity.
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Histone deacetylase 1 (HDAC1) is a unique member of the

classes I HDACs that has been shown to be involved in gene

transcription, transcriptional regulation, cell cycle progression

and developmental events by controlling both enzyme activity

and epigenetics of key proteins (5). HDAC1 is the most

abundant member of the class I HDACs in pulmonary

endothelial cells (6), regulating the enzymatic activity and

epigenetics of key proteins to adapt to external stimuli. It can

efficiently decrotonylate this relatively less abundant histone

modification (7). Moreover, HDAC1 is the key regulators of T

cell subset differentiation and T cell-mediated immune diseases

(8) that helps to regulate acute and chronic adaptation to

environmental stimuli such as allergen, stress (9). Allergic

diseases represent a collection of disorders such as allergic

rhinitis, asthma, that mostly characterized by a type 2 immune

response involving Th2 cells, eosinophils and mast cells, and M2

macrophages. T cell specific loss of HDAC1 leads to an increase

in Th2 type allergic airway inflammation, such as enhanced

secretion of Th2 type cytokines, eosinophil recruitment to the

lung (10).For example, HDAC1 is highly expressed and the most

abundant member of the class I HDACs in allergic rhinitis and

severe asthma (3, 11, 12). Studies show that HDAC1 is localized

within most airway cells and infiltrating inflammatory cells of

asthmatic lung tissues (13). HDAC1 is significantly upregulated

in the murine AR model while H3 acetylation is decreased at

lysine 9 (H3AcK9) (14). The HDAC1 inhibitor sodium butyrate

exhibits a preventive effect by decreasing HDAC1 expression

and increasing H3 acetylation at lysine 9. Herein, we made a

thorough review of recent studies and summarized the emerging

functions of HDAC1 by regulating histone modifications and

gene transcription in allergic disease.
Allergic diseases

Generalized allergic diseases include allergic rhinitis, asthma,

Immunoglobulin E(IgE)-mediated food allergy, eosinophilic

esophagitis, drug allergy, atopic dermatitis, and urticaria/

angioedema. These different allergic diseases share several

overlapping inflammatory pathways concerning with the

hypersensitivity of the individual to foreign substances (15–18).

Allergic diseases are a type 2 immune disorder classically

characterized by high levels of IgE-mediated inflammation and

Th1/Th2 cells imbalance (19–21). The Th 2 immune response

involves Th2 cells, type 2 innate lymphoid cells, mast cells,

eosinophils, and M2 macrophages (22). Th2 cytokines,

particularly IL-4, are essential in the pathophysiology of allergic

rhinitis and asthma (23, 24). In type I immediate allergic

responses, naïve T cells is activated by dendritic cells to

differentiate, proliferate and clonally expand into Th2 cells (23,

25). Enhanced Th2 cytokines induce IgE synthesis in B cells in an
Frontiers in Immunology
 02
indirect manner (26, 27). In turn, IgE can also enhance Th2-cell

response after sensitization (28). However, the aberrant immune

responses in atopic disorders are not fully understood yet.

Epigenetics plays a major pathogenetic role in the

development and management of allergic diseases by

superimposing its effects above the DNA molecule through

interaction with susceptibility genes, environmental factors,

and immunologic influences (29). Epigenetics holds the key to

unravel the complex associations between phenotypes and

endotypes of allergic disease by identifying effective therapies

and diagnosis (30). Epigenetic modifications of genes are

contributing to asthma induced by allergens, such as DNA

methylation changes in DCs, can be passed to future

generations (31, 32). Histone modifications and DNA

methylation represent the classical epigenetic mechanisms.

Histone modifications participate in airway remodeling by

regulation of T cells and macrophages. Inhibitors of histone-

modifying enzymes may potentially be used as anti-allergic

drugs (33).
The role of HDAC1 in
allergic diseases

HDAC1 displays compensatory or specific roles in different

cell types or in response to different stimuli and signaling

pathways of atopic disorders. The expression level of HDAC1

in the nasal epithelia is elevated in allergic rhinitis (34), and

HDAC1 inhibitors reduce the symptoms of allergic rhinitis (3,

12, 35). Immunohistochemical results also demonstrate the high

HDAC1 expression in nasal epithelium of patients with sinusitis

and nasal polyps (36). The differentially expressed genes (DEGs)

analysis of 1,662 nasal−epithelium tissue samples and 572 DEGs

from peripheral blood samples shows that HDAC1 is hub genes

and serves an important role in the process of asthma (37).

HDAC1 expression is enhanced in patients with severe asthma

compared with healthy volunteers (11). Moreover, expression of

HDAC1 is upregulated by the stimulation of dermatophagoides

pteronyssinus allergen (Der p 1) in peripheral blood

mononuclear cells of patients with severe and non-severe

asthma (38). Animal models of allergic asthma exhibits

significantly higher expression of HDAC1 compared to

control. Selective targeting of HDAC1 may improve

therapeutic effects of asthma (39). One single nucleotide

polymorphism (SNP) in HDAC1 (rs1741981) is closely

associated to asthma severity in a recessive model and

increases the sensitivity to systemic corticosteroids treatment

in asthmatic patients (40, 41). Besides, in epidermal

keratinocytes, HDAC1 expression and activity are upregulated

by the aryl hydrocarbon receptor nuclear translocator (ARNT or

HIF1b) (42).
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Regulation of inflammatory
cytokines and downstream protein
by HDAC1

A number of studies have shown that exposure to allergens

would increase HDAC1 expression, leading to significantly

advanced Th2 cytokine levels, reduced Th1/Th17 cells and

anti-inflammatory cytokine IL-10, and Trek-1 expression

(Figure 1). In the mouse model of allergic rhinitis, epigenetic

regulation of HDAC1 produce an imbalance in Th1/Th2 by

decreasing the secretion of interferon(IFN)-g, increasing the

secretion of IL-4 and IL-6 (14). Moreover, the transcriptional

activity of forkhead box P3(Foxp3) is restrained that decreases T

regulatory cells (43). As the number of Th1 cells decreases, the

number of Th2 cells correspondingly increases, and

subsequently the secretion of IL-4 increases to promote the

activation of IgE released by B cells (44). Additionally, murine

models of asthma confirm the upregulation of HDAC1 could

increase airway inflammation, Th2 cytokine level, IgE and goblet

cell metaplasia dramatically (45). Indeed, treatment with

HDAC1 inhibitor trichostatin A(TSA) significantly attenuate

airway hyper-responsiveness, mucus occlusions in lung tissue

and the numbers of eosinophils and lymphocytes in

bronchoalveolar lavage fluid. The infiltration of CD4+ and the

expression of IL-4, IL-5, and IgE in BALF are also restrained by

TSA (13). Particularly, Th2 cytokine interleukin 4 (IL-4) plays a

key role in the pathogenesis of allergic disorders (46). HDAC1

can be recruited to the IL-4 gene locus in CD4(+) T cells, thereby

promoting the immunoactivity of CD4 positive T cells to
Frontiers in Immunology 03
increase Th2 cytokine levels (47–49). The IL-4-induced rat

nasal epithelial barrier dysfunction is blocked by HDAC1

inhibitor (Trichostatin A), or sodium butyrate (NaB), or

administration of Clostridium Butyricum (Table 1) (14, 62). A

non-secreted IL-4 variant (IL-4d13) expression in human gd T-

cells is also stimulated by another HDAC inhibitor valproic acid

(VPA) (Table 1) (58). The Induction of IL-4d13 increases

cytoplasmic IL-4Ra and decreases mature IL-4 (59). Along

with the role of HDAC1 in altering the Th2 cytokine profile, it

is reported that HDAC1 is recruited to change the euchromatin

into tightly-packed heterochromatin to repress its expression in

Th17 cells through production of cytokine IL17 (63). HDAC1

inhibitor sodium butyrate increases IL−17、interleukin 2 (IL−2)

and interferon g and decreases the expression of IL−4 and IL−5

(50). HDAC1 regulates the retinoic acid-related orphan

receptor-mediated transcriptional activation of IL-17 (64).

Apart from the studies showing the Th1/Th2 imbalance and

inhibition of IL17, histone deacetylation is an important

mechanism that regulates the expression of anti-inflammatory

cytokine IL-10 (65). HDAC1 represses IL-10 transcription

activity by reducing chromatin accessibility and recruiting

histone H3 acetylation at IL-10 regulatory regions (66).

Sodium butyrate restrains the activation of HDAC1 in the

antigen specific B cells to induce the expression of IL-10 and

decrease the production of IgE in allergic rhinitis model (51).

Another HDAC inhibitor entinostat stimulates the formation of

IL-10 positive Breg cells to suppress contact hypersensitivity in

vivo (54). Indeed, the administration with Clostridium

butyricum (C. butyricum) enforces the effect of specific

immunotherapy on intestinal allergic inflammation by
FIGURE 1

Schematic representations of HDAC1 related mechanism in allergic diseases. Allergic disease patients have an epithelial barrier suffering from
allergen stimulation. Exposure to allergens activate dendritic cell and increase HDAC1 expression, leading to significantly increase Th2 cytokine
levels, decrease Th1/Th17 cells and anti-inflammatory cytokine IL-10, and Trek-1 expression.
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increasing the phosphorylation of HDAC1, the expression of IL-

10 and the IgE-producing plasma cells (67).

There are some studies documenting the role of Trek-1 in

the maintenance of epithelial cell barrier function (62, 68). The

allergic responses induce an insufficiency of Trek1 expression

(69). Enhanced IL-4 markedly suppresses the expression of

Trek1 via upregulating the expression of the HDAC1 in the

nasal mucosa of allergic rhinitis (62). The treatment with

antigen-specific immunotherapy and administration of

probiotic C. butyricum reduce the serum levels of Th2

cytokines by increasing Trek-1 expression levels and

decreasing HDAC1 in the nasal mucosa of allergic rhinitis

patients (23). Allergic responses markedly suppress the

expression of Trek1 in the intestinal epithelia via increasing

the expression of HDAC1 (70).
HDAC1 is regulated by exposure to
stimuli and is associated with
gut microbiome

Different stimuli includes temperature, particles containing

hazardous chemicals, and small chemical molecules that exhibits

an impact on the expression of HDAC1. Particulate matter (PM)

2.5 exposure and cold stress (PMCS) exposures promote

inflammation and redox levels in asthmatic mice through

increasing the percentage of Th2 T cells and decreasing Th1 T

ce l l s , thereby decreas ing HDAC1 expres s ion and

hyperacetylation of H3K9 and H3K14 in IL-4 gene promoter

of CD4+T cells (71). Mechanically, HDAC1 helps maintain

DNA-binding sites (response elements) for redox-sensitive

transcription factors by co-repressor complexes (72). Besides,

exposure to diesel exhaust particulate matter (DEP) causes

degradation of histone deacetylase 1 (HDAC1), thus recruiting

histone acetyltransferase (HAT) p300 to the promoter of the

Cyclooxygenase-2 (COX-2) gene in vitro human bronchial
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epithelial cell line (BEAS-2B) (73). In addition, chronic

exposure to alcohol decreases HDAC1 expression (74).

Trichostatin A alleviates tissue damage that is caused by

cigarette smoke exposure (75, 76).

On the other hand, HDAC1 is modulated by upstream

transcription factors and signaling pathway in allergic diseases.

Previous studies have shown that the transcription factor c-Myc-

interacting zinc finger protein-1 (Miz1) was upregulated in

allergic asthma, which in turn prevented the pro-Th1 skewing

through the recruitment of histone deacetylase 1 (HDAC1) and

transcriptional repression of IL-12 (77). HDAC1 expression is

also increased by the advanced glycation end products via the

phosphatidylinositol 3-kinase(PI3K)/AKT pathway through

promoting the airway inflammation (45).

Moreover, gut microbiome is associated with allergic

diseases (78–81). Sodium butyrate treatments lead to increase

the richness in the stomach and colon and modify colonic

microbial composition in pigs by decreasing HDAC1 (82, 83).

The intestinal epithelial cells specific HDAC1 support intestinal

homeostasis by controlling specific biological processes

including oxidation-reduction, survival and translation

processes, differentiation and lipid-related metabolic pathways

via Janus kinase(JAK)/signal transducer and activator of

transcription (STAT) pathway and steroid receptor pathway

(84–86).
Potential of HDAC1 inhibitors
as treatments

A large body of evidence shows that HDAC1 is a potential

clinical target for treatment of allergic diseases. At present,

numerous questions remain regarding to the precise functions

of HDAC1 in allergic inflammation. The HDAC inhibitors such

as trichostatin A (TSA) have a bidentate cheator, which binds to

catalytic Zn2+ (87). The broad-spectrum HDAC1 inhibitor
TABLE 1 The role of HDAC inhibitor in allergic diseases.

HDACI inhibitor Structure Model Clinical application Allergic
Diseases

References

Trichostatin
A
(TSA)

pan-
inhibitors

Ovalbumin-induced mouse
asthma model;

Phase I clinical trials in hematologic
malignancies

Asthma (13)

Sodium
butyrate
(SoB, NaB)

selective
inhibitors

Mouse model of allergic
rhinitis

Phase 2 clinical trials in Shigellosis; Randomized
controlled trial in inflammatory Bowel Diseases;

Allergic rhinitis (50–53)

Entinostat selective
inhibitors

Mouse model of oxazolone-
induced contact
hypersensitivity

Phase 3 clinical trials in cancer; Contact
hyper sensitivity

(54–57)

Valproic
acid
(VPA)

selective
inhibitors

Asthmatic mouse model;
Peripheral blood mononuclear
cell

Phase 2 clinical trials in cancer Asthma healthy
donors

(58–61)
fr
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trichostatin A has a hydroxamic acid based structure that affects

the expression of thousand genes in the human genome. There is

still no clinical application of these HDAC1 inhibitors. Thus,

there is an ongoing discussion whether selective HDAC

inhibitors have advantage for clinical use. These small-

mo l ecu l e compounds t a r ge t ing HDAC1 have no

serious toxicities.

There are many HDAC inhibitors in ongoing clinical trials

(Table 1). The study on the tolerance of trichostatin A in patients

with recurrent or refractory hematological malignancies is still in

progress. Genetic and pharmacological studies have confirmed

that HDAC1 is the key enzyme to reverse tumor immune escape.

Entinostat selectively promotes the immune editing of new

tumor antigens, leading effectively reshaping the tumor

immune microenvironment (55). The randomized phase III

trial of endocrine therapy confirms target inhibition in

entinostat-treated breast cancer patients (56). Valproic acid

and entinostat exhibit synergy in preclinical models when

combined with rituximab in Non-Hodgkin’s lymphoma (57).

On the other hand, Valproic acid is the first-line drug for tonic

clonic seizures (60). Besides, Valproic acid induces apoptosis of

activated T cells to maintain immune homeostasis, which may

be a safe and effective treatment for autoimmune diseases, such

as multiple sclerosis (61). Entinostat and valproic acid can

potentially be repurposed for treating asthma (88). However,

there is no clinical trials to determine the role of entinostat and

valproic acid in asthma. These findings highlight the need for

further exploration of HDAC inhibitors in allergic diseases.

Sodium butyrate therapy during shigellosis leads to early

reduction of inflammation and enhanced antimicrobial peptides

(LL-37) expression in the rectal epithelia (52). The double‐blind

randomized controlled trial shows that sodium-butyrate

supplementation in 49 inflammatory bowel diseases patients

increases the growth of bacteria able to produce short‐chain fatty

acids (SCFA) with potentially anti-inflammatory action (53).

These results support the potential effect of sodium butyrate in

modulating gut microbiota, which anyway requires further

confirmatory data including more patients. In considering

future potential clinical application in allergic diseases, more

studies are still needed to develop new HDAC1 specific selective

inhibitors. HDAC1 specific selective inhibitors may provide a

new starting point for the treatment of allergic diseases.
Prospective and conclusion

Allergic diseases comprise some of the most common

chronic disorders in both childhood and adulthood. Allergic
Frontiers in Immunology 05
conditions are influenced by epigenetic elements which

ultimately affect multiple molecular pathways (89, 90).

Accumulating evidences have established in HDAC1 as a

critical regulator of immune response in terms of imbalance in

Th1/Th2, change in anti-inflammatory cytokine IL-10/IL-17 and

Trek-1 expression. Over the past decades, histone deacetylase

inhibitors are being evaluated in clinical trials for their safety and

efficacy (91, 92). HDAC1 has become an attractive target to treat

a wide range of diseases. However, these HDAC inhibitors do

not display high selectivity and may restrain related HDACs.

The potential side effects due to inhibition of systemic immune

response are an urgent problem to be solved. Besides, additional

work is required to examine the expression and activity of

HDAC1 in allergic diseases. The development of selective

HDAC1 inhibitors may lead to new therapeutic agents for

allergic diseases, particularly in situations where current

therapies are suboptimal.
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