
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yongqing Li,
School of Medicine, University of
Michigan, United States

REVIEWED BY

Morgan Salmon,
Michigan Medicine, University of
Michigan, United States
Youtan Liu,
Southern Medical University, China

*CORRESPONDENCE

Qijie Zhao
zhaoqijie77@163.com
Xingchen Peng
pxx2014@163.com

†The authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Inflammation,
a section of the journal
Frontiers in Immunology

RECEIVED 25 August 2022

ACCEPTED 31 October 2022
PUBLISHED 23 November 2022

CITATION

Jin J, Duan J, Du L, Xing W, Peng X
and Zhao Q (2022) Inflammation and
immune cell abnormalities in
intracranial aneurysm subarachnoid
hemorrhage (SAH): Relevant signaling
pathways and therapeutic strategies.
Front. Immunol. 13:1027756.
doi: 10.3389/fimmu.2022.1027756

COPYRIGHT

© 2022 Jin, Duan, Du, Xing, Peng and
Zhao. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 23 November 2022

DOI 10.3389/fimmu.2022.1027756
Inflammation and immune cell
abnormalities in intracranial
aneurysm subarachnoid
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signaling pathways and
therapeutic strategies
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Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular

disorder associated with high overall mortality. Currently, the underlying

mechanisms of pathological reaction after aneurysm rupture are still unclear,

especially in the immune microenvironment, inflammation, and relevant signaling

pathways. SAH-induced immune cell population alteration, immune inflammatory

signaling pathway activation, and active substance generation are associated with

pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk

between immune disorders and hyperactivation of inflammatory signals

aggravated the devastating consequences of brain injury and cerebral

vasospasm and increased the risk of infection. In this review, we discussed the

role of inflammation and immune cell responses in the occurrence and

development of aneurysm SAH, as well as the most relevant immune

inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase

(ERK), hypoxia-inducible factor-1a (HIF-1a), STAT, SIRT, mammalian target of

rapamycin (mTOR), NLRP3, TLR4/nuclear factor-kB (NF-kB), and Keap1/nuclear

factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in

aneurysm SAH. In addition, we also summarized potential therapeutic drugs

targeting the aneurysm SAH immune inflammatory responses, such as

nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related

aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory

responses and immune microenvironment significantly reduces the secondary

brain injury, thereby improving the prognosis of patients admitted to SAH. Future

studies should focus on exploring potential immune inflammatory mechanisms
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and developing additional therapeutic strategies for precise aneurysm SAH

immune inflammatory regulation and genomic variants associated with

aneurysm formation.
KEYWORDS

subarachnoid hemorrhage (SAH), inflammation, immune cells, signaling pathways,
therapeutic strategies
Introduction
Intracranial aneurysms are common and have a high

incidence of occurring in 1% to 2% of the population, wherein

the incidence of rupture is nearly 16.4 in 100,000 persons per

year (1, 2). Subarachnoid hemorrhage (SAH) is a serious clinical

condition that is usually caused by a ruptured intracranial

aneurysm, which caused nearly 85% of SAH (3, 4). SAH was

reported to occur at a fairly young age, and the mortality rate of

aneurysmal hemorrhage is nearly 50% (5). Numerous clinical

trials have been conducted to improve outcomes for patients

with SAH, whereas there are still challenges in the aneurysm

SAH prevention and lower-risk treatment development (4).

SAH can be separated into traumatic and spontaneous,

where the spontaneous SAH is known to have the highest

incidence and is most often attributed to a ruptured

intracranial aneurysm (6). Cerebral aneurysm-acquired lesions

that develop at the major arterial branch point of theWillis circle

result in hemodynamic stress-induced retrogradation of the

internal elastic lamina with loss of the tunica media (4).

Intracranial aneurysm SAH is a critical cerebrovascular

accident with high mortality and high disability among

survivors (7). Some pathophysiological factors are independent

of angiographic vasospasm and are related to poor clinical

prognosis, such as blood–brain barrier (BBB) disruption,

inflammation, immune cell activation, and oxidative cascades,

ultimately contributing to cell death (8, 9). Among which milieu,

microglial-induced immune responses like macrophage were

positively associated with neuroinflammation development and

neuronal necrosis after SAH (10, 11). Injured neurons and dying

cells will release inflammatory molecules to the extracellular

milieu, which was associated with poor clinical outcomes in

patients with aneurysm SAH (12, 13). These dangerous

molecules may further drive the neuroinflammation and brain

injury after SAH (14). Brain injury following intracranial

aneurysm SAH is multimodal and serious, as early brain

injury (EBI), but is also secondary to the development of

immune-inflammation events (9, 10, 15, 16). Crosstalk

between immune cell populations, active substances, and
02
inflammation responses may aggravate the symptoms of SAH

and contribute to poor prognosis (9, 17, 18). Treatment of

immune-inflammation disorders has great potential to

attenuate EBI and devastating secondary damage and

ameliorate outcomes in patients with SAH. Therefore, the

identification of immune-inflammation mechanisms of

intracranial aneurysm SAH and its associated sequelae could

be beneficial for these patients (19).

In the past decade, several treatable risk factors (cigarettes,

alcohol, hypertension) and untreatable risk factors (age, sex,

genetics) have been reported to increase the incidence of

aneurysms (2, 20). The mechanisms of intracranial aneurysm

occurrence and rupture are complex, especially immune

microenvironmental and genetic factors (21). Abundant

evidence supported that the etiology of intracranial aneurysms

is related to genetic factors (22, 23). Genetic syndromes associated

with intracranial aneurysms have been identified as an increased

risk compared with the general population (2, 21). Meanwhile,

individual genetic variations proposed higher aneurysm SAH and

worse neuronal injury, such as THSD1 and EDN1 gene variants

which were highly enriched in aneurysm SAH patients (24, 25).

Specific biomarkers for intracranial aneurysm provide a potential

therapeutic avenue for intracranial aneurysms, such as platelet-

derived growth factor receptor b gene (PDGFRB) (26). Despite the
knowledge of genetic and inflammatory mechanisms of brain

injury caused by intracranial aneurysm SAH which is currently

understood, the complexity of the immune cell responses and the

crosstalk of the above factors in this process have not been

described in detail.

In this review, we summarized the immune cells and

inflammation-related mechanisms during the occurrence and

development of aneurysm SAH, as well as several pivotal

signaling pathways related to immune inflammatory,

vasospasm, EBI, and therapeutic potential after aneurysm

SAH. In addition, we discussed potential therapeutic drugs

targeting the immune and inflammatory response, as well as

prophylactic agents for aneurysm SAH. Understanding the

specific pathological mechanisms of aneurysm SAH is

important for developing strategies to prevent disease

development and brain injury.
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The intracranial and subarachnoid
hemorrhages

Intracranial hemorrhage (ICH) refers to any bleeding within

the intracranial vault, such as brain parenchyma and meningeal

spaces (27). SAH is regarded as bleeding into the space between

the pia and the arachnoid membranes (28). Non-traumatic

causes of hemorrhages include ruptured aneurysms,

arteriovenous malformations, tumors, and vasculopathies (29–

31). Previously, brain tumors like glioma/glioblastoma have a

direct compressive or invasive function on the cerebral vessel,

and it is observed to have a high incidence of ICH and fatal

outcomes (32, 33). In both primary or metastatic brain tumors

with ICH, angiogenesis mediators vascular endothelial growth

factor (VEGF) and matrix metalloproteinases (MMPs) were

associated with vascular rupture hemorrhage (31). More

recently, in acute leukemia-related ICH, early ICH is

characterized by leukostasis associated with abnormal

hemostasis, whereas late ICH has systemic inflammation (34).

On the other hand, aneurysmal SAH is due to rupture of an

aneurysm in the subarachnoid space, which is commonly seen at

the bifurcation of the basal cerebral artery, especially near the

circle of Willis (35, 36). To date, the risk factors of aneurysmal

growth and rupture remain complex; for example, size (>7 mm),

inflammation, genetic syndromes, and hypertension can

contribute to the aneurysmal rupture and SAH (37, 38).

For ICH, secondary brain injury following ICH is closely

associated with hematoma toxicity, oxidative stress, and

inflammation, among which hematoma toxicity and oxidative

stress are mediators of cell death (39–41). Aronowski et al.

indicated that hematoma will contribute to direct mechanical

injury to the brain parenchyma, as well as perihematomal edema

(42). The porphyrin derivatives were observed to inhibit heme

oxygenase 1 (HO-1) and reduce the ICH damage (43). HO-1, an

enzyme involved in biliverdin, carbon monoxide, and iron

conversion (44), was observed with an increase in endothelial

cells and microglial/macrophages after ICH (45). Of note, HO-1

deficiency mice showed ameliorated ICH-mediated brain

damage, which was different from the ability to aggravate

injury in many other brain injury models (44). Recently, in

this aspect, low HO-1 expression in early SAH patients has been

associated with vasospasm, whereas delayed cerebral ischemia

(DCI) showed higher HO-1 levels (46, 47). In addition, under

ICH pathological status, an overproduction of reactive oxygen

species (ROS) was observed, where bivalent iron (Fe2+)

promotes hydrogen peroxide (H2O2) disintegration (39, 48)

and oxidase enzyme participates in the ROS biological

generation process (41, 49). Meanwhile, mice with a

generically deleted NADPH enzyme showed reduced damage

after ICH (41). Recently, ROS accumulation after SAH has been

considered to be a by-product of oxidative phosphorylation in

the mitochondria, which is a major target of ROS-induced
Frontiers in Immunology 03
damage in SAH patients (50). Similarly, both early stages of

SAH and ICH were accompanied by ROS generation, which

impaired antioxidant defense systems and signal cascade

responses (49, 51, 52).

Hematoma formation after ICH usually stimulates

inflammatory reaction through microglial/macrophages and/or

inflammatory signaling pathways, thereby contributing to

immune cascade activation and pro-inflammatory cytokine

secretion (53–55). Activated microglia were previously reported to

recruit hematogenous inflammatory cells to the ICH injury areas by

cytokines and chemotactic factors (56). Meanwhile, microglial/

macrophage-mediated phagocytosis facilitates brain cleanup after

the early inflammatory responses after ICH, where multicellular

surface receptors (CD36, CD91, and SLC) assist in reducing cellular

debris following ICH (57, 58). With inflammatory signaling

coordination, oxidative stress can enhance the inflammation

response after ICH, such as nuclear factor-kB (NF-kB), TNFa,
and matrix metalloproteinase-9 (MMP-9) (42). In the chronic

phase of ICH, inflammatory stress will impair the white matter

tracts and contribute to severe neurological dysfunctions, especially

motor and memory functions (59). Evidence indicated that NF-kB
is activated in ICH-related brain injury as early as 15 min after the

hemorrhage, which will induce nitric oxide synthase (iNOS), TNFa,
interleukin, and cyclooxygenase-2 inflammatory cytokines (60, 61).

Expression of these genes will lead to neuroinflammation and BBB

hyperpermeability (62).
SAH-related inflammation responses

Inflammation is correlated with various neurodegenerative

diseases, including SAH, Alzheimer’s disease, and Parkinson’s

disease (63). Inflammation is an important mechanism that has

been implicated in the pathogenesis of SAH, where cellular

inflammation- and molecular inflammation-elicited neuronal

injuries have been detected in the subarachnoid space (15).

Innate cell immunity obviously generates inflammation

responses in the subarachnoid space in an inside-out form.

Molecular agents of inflammation were proposed to be

increased within posthemorrhagic aneurysms (Figure 1), where

factors such as IL-6 and TNF-a are correlated with poor clinical

prognosis (15, 19). In addition, within brain injury and the

related inflammatory responses, lysis of erythrocytes after SAH

showed a positive correlation with increased levels of IL-6 and

TNF-a in the brain cortex (64). Following aneurysmal SAH, the

increase in pro-inflammatory cytokine IL-6 has been recently

presented with neutrophil accumulation in the brain and local

and peripheral inflammation responses (65, 66). Immune cell

infiltration showed a target therapeutic potential in patients with

aneurysmal SAH (65). Moreover, IL-6 has been further defined

as a contributing factor to brain injury and is related to poor

c l inica l prognosis (67) , wherein IL-6 involved in
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neuroinflammation response is closely associated with EBI after

aneurysmal SAH (68–70). Of note, soluble gp130 (sgp130) and

IL-6 receptor (IL-6R) represented the IL-6-transducing

antagonist and agonist receptors, respectively (71). With the

development of SAH, the level of the IL-6 antagonist gp130 is

increased to antagonize the elevated levels of IL-6, which

decreases within a few days, presumably resulting in cerebral

vasospasm and neuroinflammatory injury (71). Recent studies

showed that full-length gp130 is the most potent inhibitor of IL-

6 trans-signaling (72). Most recently, a study has shown that

through IL-6 signaling, tissue-specific sgp130 can trigger the

upregulation of innate immune system components (73), where

sgp130-related immune cell and chemokine recruitment might

protect against neuroinflammation (74, 75). The molecular

weight of the main sgp130 isoforms ranges from 50 to 110

kDa, which has a high affinity (1 mM) for the IL-6/IL-6R

complex to neutralize its pro-inflammatory functions (76).

Although numerous histochemical alterations occur during

the development of an aneurysm up to the point of rupture, the

release of blood into the subarachnoid space afterward

contributes to more serious histological and inflammatory

changes (77). Another important inflammation activation-

related element, thioredoxin-interacting protein (TXNIP) that

interacts with the NOD-like receptor family pyrin domain-

containing 3 (NLRP3) inflammasome to induce interleukin IL-

1b secretion, was previously demonstrated to connect with

tumorigenesis and insulin resistance (78). Meanwhile,
Frontiers in Immunology 04
inflammasomes are part of the innate immune system. The

NLRP3 inflammasome is a multiprotein complex that

orchestrates innate immune responses, whereas unregulated

NLRP3 inflammasome activation in pathology responses can

lead to unintended immune and inflammatory pathological

conditions, such as mitochondrial metabolism and ROS

accumulation (79). Recently, the NLRP3 inflammasome has

been extensively studied and observed to be associated with

the release of IL-1b and IL-18, which exacerbated the

inflammation response after SAH and promoted the

occurrence of EBI (80, 81). The intervention of the NLRP3

signaling cascade can alleviate neuroinflammatory responses

and restore neurobehavioral function (82). NLRP3 activators

can produce ROS, which subsequently activate the

inflammasome (83). A strong antioxidant melatonin has been

shown to protect against EBI and inflammatory response after

SAH (84) and to improve aneurysm SAH clinical outcomes (85).

Among which, melatonin suppressed pro-inflammatory

cytokine levels in the cortical levels, such as IL-1b, IL-6, and
TNF-a (84). Upregulation of these cytokines has been

demonstrated to exacerbate brain disorders after SAH (86).

In addition, during aneurysm rupture and consequent SAH,

extracellular matrix (ECM) remodeling plays an important role in

inflammation. TNF-a has been demonstrated as an upstream

regulator for MMP-9 (87). MMP gene expression is upregulated

after SAH, where MMP-8, MMP-9, and MMP-13 were observed to

accumulate in the vascular wall via the p38 kinase signaling
FIGURE 1

The potential molecular mechanisms of inflammatory effects (right) and immune responses (left) in aneurysm-related subarachnoid
hemorrhage. SAH, subarachnoid hemorrhage; DCs, dendritic cells; IL-6, interleukin 6; ROS, reactive oxygen species; MMP, matrix
metalloproteinases; NLRP3, NOD-like receptor family pyrin domain-containing 3; TXNIP, thioredoxin-interacting protein; TNF-a, tumor necrosis
factor-a; INF-g, interferon-g; NKs, natural killer cells; NADPH, nicotinamide adenine dinucleotide phosphate oxidase; Tregs, regulatory T cells.
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pathways (88). Among them, MMP-9 has been recently reported to

have a consistently higher level in aneurysm SAH patients, which

may cause cerebral vasospasm, DCI, and neuronal death by

promoting neuroinflammation (89). MMPs also participate in the

inflammation regulation of pro-inflammatory cytokines and

chemokines, especially the function of MMP-9 on CXCL10 and

CCL2 (90, 91). Of note, CXCL10 is associated with intrathecal

immune activation and dendritic cell (DC) accumulation after

aneurysm SAH (92). On the other hand, MMPs are a family of

zinc endopeptidases that can open the BBB by degrading tight-

junction proteins (93). Melatonin treatment reduces VEGF

expression to prevent BBB disruption following SAH (84).

Furthermore, VEGF is modulated by several extracellular stimuli,

including pro-inflammatory cytokines like IL-6 and TNF-a (94).

IL-1b is also an important regulator of MMP-9 and causes BBB

disruption after SAH (95). Thus, a variety of immune inflammation

processes occur in different compartments following aneurysm

SAH and are possibly associated with inflammatory cytokines

and immunomodulatory molecule generation.
Immune cell abnormality in SAH

Although accumulating evidence supports the function of

inflammation in aneurysmal SAH, the exact immune

mechanisms remain to be elucidated. It has been postulated

that SAH following aneurysm rupture induces immune

responses including secretion of active substances with

vasoactive and pro-inflammatory functions, ultimately

contributing to EBI (18, 96–98). Immunosuppression

following nervous system injury is a critical issue clinically

(Figure 1), because more than 50% of brain-injury patients

develop infection (99). In symptomatic aneurysmal SAH

patients, poor outcome is associated with symptoms of

impaired local immune competence (100). Substantial

evidence suggested that temporary impairment of the immune

system is an important risk factor in the emergence of infection

after aneurysmal SAH (9). Furthermore, pronounced SAH-

induced immunosuppression is detected in the early stages of

injury after aneurysmal SAH, where a reversed correlation

between IL-6 level and CD3+ T cells was observed (101).

Among which, the high incidence of bacterial pneumonia in

symptomatic aneurysmal SAH patients may be attributed to

impaired immune responses and reduced T-cell count. In a

previous study, clinical investigations suggested that the risk of

subsequent SAH was associated with immune-mediated

diseases, such as autoimmune hemolytic anemia, Crohn’s

disease, and hyperthyroid conditions (102). In addition,

patients with aneurysmal SAH undergoing surgical treatment

experienced a transient deterioration in immune functions,

especially immunosuppression (9). Decreased immune cell

subgroups were significantly associated with aneurysmal SAH,

such as the downregulation of CD3+, CD4+, CD8+ T cells,
Frontiers in Immunology 05
natural killer cells (NKs), and regulatory T cells (Tregs),

leading to an unfavorable postoperative prognosis .

Nevertheless, following stroke, activated T cells infiltrated the

brain, consequently releasing cytokines and ROS, which may

result in brain injury, where ROS likely contributed to neuronal

inflammation, neuronal cell death, and poor outcomes (103).

After that, increased neuroantigens could further induce

adaptive immune response and cause additional T-cell

activation and brain injury. However, in the middle/late stages

in DCI patients, aneurysm SAH-induced immunosuppression

was observed to decrease the T-cell population, resulting in an

increased risk of infectious complications (103, 104). In a more

recent study, following aneurysm SAH, immunosuppressive

Tregs were significantly increased and presented a different

activation status in the EBI and DCI phases (105). In patients

with DCI, CD3+ Tregs showed a higher population compared

with EBI and were closely associated with infections. Meanwhile,

CD3- Tregs were significantly reduced in patients with EBI. In

the EBI phase, low-dose IL-2 treatment significantly prevented

the Treg population and suppressed neuroinflammation

following SAH, wherein the decreased proinflammatory factors

and peripheral neutrophils improved neuronal injury and

neurological functions (106). Plausibly, activated Tregs have

the effective ability to inhibit the conventional T-cell

proliferation and readily produce cytokines (107). Herein,

under these circumstances, immunosuppressive Tregs act as

modulators of the immune system, resulting in suppression of

inflammation by affecting the pro-inflammatory (TNF-a and

IFN-g) and anti-inflammatory (IL-10) factor generation (108–

110). Moreover, Tregs also suppress the peripheral MMP-9

product ion , thereby prevent ing BBB damage and

neuroinflammation (111), which showed the neuroprotective

effect and therapeutic potential for aneurysm SAH.

On the other hand, immune activation after aneurysmal

SAH has been shown to play a pivotal role in host defense

against infection (9). Shortly after the aneurysmal rupture,

damage to the brain tissue and blood components led to the

exposure of antigens that stimulated innate immune function,

which might contribute to its activation and induction of acute

immune-inflammatory responses (112). Subsequently, innate

immune responses generate molecules that deliver signals,

resulting in activation of T cells, effector cells, and B

lymphocytes to attach in proinflammatory vessels with release

of various adhesion factors and cytokines (112–114). The release

of pro-inflammatory cytokines directly eliminates damaged cells,

induces and regulates inflammation, and destroys microbes

(104). Moreover, the increase in the M1/M2 macrophage ratio

plays an important role in both intracranial aneurysm and SAH

(115, 116). CXCL1 antibody intervention may give potential to

increase the macrophage proportion and anti-inflammatory

function. Macrophages can eliminate dead cells and debris and

provide defense against infection (117, 118), which will decrease

the EBI and complications in aneurysm SAH (119). However,
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M1 polarization of macrophages is a proinflammatory

phenotype associated with reduced debris removal capability

and enhanced production of proinflammatory cytokines like

TNFa, IL-1b, and NADPH, ultimately contributing to nervous

system inflammation (120). It is becoming increasingly clear that

the dual role of immune cells needs to be further explored.

Previously, Balboa et al. reported that high levels of CD16+

monocytes stimulated T-cell proliferation and predicted higher

antigen-presenting cell (APC) activity in peripheral blood (PB)

(121). Indeed, a threefold increase in the potency of APCs was

observed in CD16+ monocytes compared with CD16−

monocytes (122). Recently, PB analysis in aneurysm SAH

patients observed the activation of some immune cell

subpopulations such as CD4+/CD8+ T cells, CD16+

monocytes, and neutrophils (123). These results highlight the

participation of innate immunity in aneurysmal SAH. The

increased proportion of CD16+ monocytes potentially

indicated that stimulation of the innate immune system was

resided in aneurysmal SAH patients. In addition, the expression

of cell-based CD28 in the adaptive immune system induced

greater activation of aneurysmal SAH CD4+ and CD8+ T cells in

PB than in the cerebrospinal fluid (CSF) (123). CD28 is also the

B7 receptor expressed on naïve T cells and provides

costimulatory signals that are required for T-cell activation

(124). Moreover, CD28 stimulation induces T-cell activation of

potential co-stimulatory signals, consequently leading to the

generation of various interleukins (125). In terms of this,

increased IL-2 receptor and CD8 levels in SAH patients have

shown the vital function of immune response in SAH

pathogenesis (126). Thus, these findings indicated the

participation of innate and adaptive immune responses in the

immunopathogenesis of aneurysmal SAH.

The results of pilot studies may be various, but

distinguishing the mechanisms of immune suppression and

hyperactivation will facilitate the provision of personalized

patient treatment to regulate the immune function and protect

against aneurysmal SAH. Dysregulation of the immune cell

subgroup is closely associated with the clinical prognosis of

aneurysmal SAH patients (101, 123), which might be a candidate

biomarker to predict patient diagnosis as well as the

development of effective therapeutic strategies to eliminate the

complications in aneurysmal SAH. Further research on the

immunosuppression induced by aneurysm SAH (especially

Tregs) and its relationship with inflammatory factors can

provide new ideas for the treatment of aneurysm SAH.
Immune inflammation relevant
signaling pathways in SAH

Signaling pathway dysfunction can lead to poor outcomes after

aneurysmal SAH, which is closely related to primary and secondary
Frontiers in Immunology 06
injuries in disease development. A precise signaling pathway

regulation that triggers both immune modulation and

inflammatory responses hold great promise in elucidating

pathological mechanisms after SAH. A more comprehensive

understanding of SAH-related immune inflammation underlying

mechanisms will boost our ability to develop novel therapeutic

options. Herein, based on current knowledge, we discussed immune

cell and inflammatory function relevant signaling pathway

modulation in the context of aneurysmal SAH (Table 1).
The PI3K/Akt signaling pathway

PI3K/Akt signaling pathway dysregulation was previously

demonstrated to be associated with various SAH sequela, such as

EBI, vasospasm, and neurological injury. The onset of the Akt

cascade is activated by tyrosine kinases, immune cell receptors,

cytokine receptors, G-protein-coupled receptors, and

stimulation of PIP3 generation by PI3K that potentially

further influences the immune inflammatory response (177,

178). In SAH, the upregulated Aggf1 expression will provoke

the PI3K/Akt signaling and decrease upstream NF-kB activation

to improve the inflammation response (127) (Figure 2A). Of

note, the above interactions were presented with decreased

neutrophil infiltration and microglial activation. The

suppression of neutrophils showed potential to improve the

immunosuppression response by decreased immune cell

monocyte recruitment, thus alleviating secondary brain injury

(128). On the other hand, proper immune boosting may also be

beneficial in protecting nerves in the brain. The CXCL12

chemotaxis for T cells, lymphocytes, and macrophages had

previously been considered to maintain the immune

environment in injured blood vessels (179) and played a

pivotal role in neuroprotection and against neuroinflammation

in recent studies (180, 181). Moreover, Wang et al. indicated that

milk fat globule–epidermal growth factor 8 (MFG-E8) exhibited

vascular endothelium protection effects through promoting the

PI3K/Akt/CXCL12 cascade (129). In the brain of SAH, MFG-E8

directly enhanced PI3K expression and CXCL12 to promote

vascular endothelial repair, wherein PI3K activation is causative

for increased CXCL12 expression (129). However, the

underlying mechanisms of immune cell regulation remain

obscure. Furthermore, low-density lipoprotein receptor-related

protein-1 (LRP1) activation was reported to attenuate white

matter injury (WMI) in SAH patients via the PI3K/Akt pathway,

wherein the intracellular adaptor protein SHC1 was required for

LRP1 transduction (130). M2 microglial polarization was found

to be associated with inflammation-induced functions, and the

LPR1 ligand mediated anti-inflammatory M2 microglial

phenotypes after SAH (130, 131). The morphological changes

of microglia, as the immune cells of the brain, are closely related

to their functions (132). Importantly, Akt was appeared to play a
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crucial role in M1 to M2 polarization via regulation of Ser473

phosphorylation after WMI (133). The activated microglia do

not merely modulate the endogenous immune response of brain

injury but also alleviate inflammation (134). Similarly, retinoic

acid receptor a (RARa) was demonstrated to promote M1 toM2

microglial phenotypic polarization and has anti-inflammatory

effects after SAH, relying mainly on regulating the PI3K/Akt

pathway (135). The activation of Akt was involved in the

phosphorylation of the inflammation-related proteins IKKa/b,
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through activating the ubiquitin/protease system to promote

IKK degradation (136). As a result, this cascade is shown to

reduce neuronal apoptosis after SAH (136). On the other hand,

the inhibition of PI3K was accompanied by an elevated bim

protein level, which is important for cell apoptosis (137). In the

mouse model, the bim gene was found to be regulated by IKK

and was positively associated with SAH-induced EBI (182, 183).

In more downstream candidates of the PI3K/Akt cascade,

the transcription factor forkhead box protein o1 (FOXO1) was
TABLE 1 Different pathways relevant modulators and effects in aneurysm SAH.

Pathway Modulator Relationship Immune cells and/or
cytokines

Relevant effects References

PI3K/Akt Aggf1 Positive Microglia and neutrophil Improve the inflammatory response; alleviate secondary brain
injury.

(127, 128)

MFG-E8,
CXCL12

Positive // Promote vascular endothelial repair. (129)

LRP1, SHC1,
pSer473

Positive M2 microglial Improve white matter injury and inflammation. (130–134)

RARa, IKKa/b Positive M2 microglial Improve inflammatory response and reduce neuronal
apoptosis after SAH.

(135–137)

EAAT2 Positive Astrocytes Improve EBI and immune responses after SAH. (138–140)

TNC Negative // Contribute to neuroinflammation. (141)

5-lipoxygenase Negative LTB4, TNF-a, IL-1b, and IL-6 Contribute to EBI after SAH. (142)

ERK Raf proteins Positive IL-6, IL-1b, and MMP-9 Promote inflammatory response. (143)

Compound C Positive Microglial Promote neuroprotection. (144)

Peli1 Positive M1 microglia Contribute to neuroinflammation in EBI following SAH. (145)

LXA4 Positive TNF-a, IL-1b, and IL-6 Improve inflammatory response after SAH. (146)

HIF-1a TLR4 Positive TNF-a and interleukin Promote inflammatory response after SAH. (147)

2-ME negative Microglia, IL-1b, IL-6, and TNF-
a

Improve inflammatory response and EBI. (148)

STAT HMGB1 Positive IL-1 and MMP-9 Promote inflammation EBI after SAH. (149–151)

NOX2 Positive M1 microglia Promote the oxidative stress and inflammation. (152)

PK2 Positive A2 astrocytic Improve immune and inflammation environment to alleviate
EBI after SAH.

(153, 154)

EPO receptor Positive M2 microglial Alleviate inflammation. (155)

TSG-6 Negative Microglia/macrophages Protect immune cell and alleviate inflammation. (156)

SIRT1 RSV Positive IL-1b, IL-6, and TNF-a Improve inflammation. (157)

MR Positive NF-kB Improve EBI after SAH. (158)

PDE-4 Negative Microglia, IL-10, TNF-a, IL-1b,
and IL-6

Promote SAH-induced EBI. (159, 160)

HMGB1 Negative Promote inflammatory response. (161)

OA Positive TLR4, TNF-a, IL-1b, and NF-kB Improve inflammation. (162)

NLRP3 Negative IL-1b Promote inflammatory response and aneurysm rupture. (163)

TGF-b CB2R Positive TGF-b1 and E-selectin Prevent leukocyte infiltration and BBB after SAH. (164)

GPR120 positive TAK1 Improve inflammation. (165, 166)

mTOR P70S6K1, 4E-BP1 Positive // Promote cerebral vasospasm after SAH. (167, 168)

beclin-1 Negative // Promote neuroprotective effects. (169)

TLR4/NF-kB MCP-1 Positive Macrophages Promote inflammation. (170)

NFKBIA Negative // Improve inflammation and apoptosis. (171)

Prx2 Positive Microglia Promote inflammation. (172)

Keap1/Nrf2/
ARE

NF-kB p65 Negative Astrocytes Promote inflammation. (173–175)

PHB2 Positive // Improve EBI after SAH. (7, 176)
fr
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negatively associated with PI3K/Akt signaling activation; it

showed the ability to regulate downstream pro-inflammatory

molecules (TLR2, TLR4, IL-1b, and TNF-a) and different types

of immune cells (neutrophils, macrophages, DCs, and Tregs)

(184). Whether the decrease in FOXO1 protein here affects

immune response in SAH needs further analysis. Intriguingly,

the EBI after SAH was characterized by the reduction of EAAT2

in astrocytes, which was directly regulated by Akt signaling

(138). Data indicated that excitatory amino acid transporter 2

(EAAT2) deficiency in astrocytes was closely associated with

innate and adaptive immune pathway disorder. In a mouse

model of SAH, Akt activity was observed to be decreased in the

brain, thereby leading to a lower EAAT2 level (138), whereas the

reactivation of Akt signaling will promote the p65

phosphorylation and significantly improve EAAT2 expression

in astrocytes (139, 140), ultimately ameliorating EBI after SAH.

The activation of the PI3K/Akt signaling pathway represents a

promising positive effect on EBI after SAH (185), as well as a

neuroprotective effect (186, 187). In an oxygen hemoglobin-

induced SAH mouse model, the upregulated tenascin-C (TNC)

after SAH impaired the PI3K/Akt/p65 cascade, thereby leading

to neuroinflammation (141). Moreover, the PI3K/Akt cascade

was reported to participate in the alleviation of inflammation by

inhibiting inflammatory mediators in stroke and promoting

tight-junction proteins to protect BBB integrity (188, 189). In

terms of neuroinflammation and BBB disruption caused by

SAH, PI3K/Akt cascade activation attenuated the above

symptoms (127). Recently, Liu et al. reported that increased 5-

lipoxygenase in cytoplasm of cortical neurons along with

expression of upregulated inflammatory factors LTB4, TNF-a,
IL-1b, and IL-6 contributed to EBI after SAH (142). In this

process, activation of PI3K/Akt signaling significantly

suppressed the 5-lipoxygenase-induced SAH pathologic

manifestation (142). Taken together, the activation of the
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PI3K/Akt signaling pathway potentially improves the immune

inflammatory response, eventually resulting in protection

against the damage following SAH.
ERK signaling pathway

The Raf-mitogen-activated protein kinase kinase (MEK)1/2-

extracellular signal-regulated kinase (ERK) 1/2 pathway is one of

the components of six MAPK signal transduction pathways that

are widely involved in cell regulation (190) (Figure 2B). SAH

increased P38 MAPK phosphorylation and attenuated the

phosphorylation of ERK (191). Phosphorylation proteomic

analysis suggested that the STAT3 pathway was activated upon

SAH induction, most likely downstream of ERK1/2, because

STAT3 phosphorylation was suppressed by MEK1/2 inhibition

(192). Transcriptional overexpression of inflammatory

molecules (cytokines and metalloproteinases) in cerebral

arteries is caused by SAH-induced activation of the MEK/ERK

pathway (143, 193). According to a previous study, cytokine (IL-

6 and IL-1b) and MMP-9 upregulation can be prevented by

specific blockade of the MEK/ERK pathway via inhibiting

upstream Raf proteins after SAH (143), indicating that the

MEK/ERK pathway plays a crucial role in DCI following SAH

and the cerebrovascular inflammatory response. Synchronously,

another research by Maddahi et al. indicated that inhibition of

the MEK1/2 pathway only within the time window of 6–24 h

after SAH can change cerebrovascular inflammatory response

and neurological prognosis later following SAH (194). The

underlying mechanism is that IL-1b, IL-6, MMP-9, and

pERK1/2 protein expression levels in cerebral artery walls

increased with time and increased at the early stage of 6 h

after SAH and reached the peak at the late stage of 48–72 h. At

the early time points (1 to 24 h) post-SAH, TNFa
FIGURE 2

The specific role played by PI3K/Akt (A), ERK (B), and HIF-a (C) pathways in disease development following SAH. CI, delayed cerebral ischemia;
EBI, early brain injury; BBB, blood–brain barrier; WMI, white matter injury.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1027756
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2022.1027756
immunoreactivity in the brain tissue was remarkably enhanced,

which is colocalized with glial fibrillary acidic protein (GFAP), a

marker of astrocytes and glial cells in perivascular and brain

tissues (194).

In addition, the effect of compound C (a classical inhibitor of

MAPK) on microglial shape change was mediated by activated

ERK1/2, PI3K/Akt signaling, or small Rho GTPase, which

provided evidence for the neuroprotective role of compound C

in SAH (144). As a clue, Peli is an adaptor protein that interacts

with Pelle, which is a Drosophila homologue of the mammalian

interleukin-1 receptor-associated kinase (195), whereas, as an E3

ubiquitin ligase, Peli was also upregulated in TLR4-dependent

microglial activation post-SAH in a time-dependent manner and

induced proinflammatory cytokine IL-6 in microglia (145, 196).

Peli1 induced microglia-mediated neuroinflammation in EBI

following SAH by enhancing the phosphorylation levels of ERK

and JNK via cIAP1/2 activation. Meanwhile, Peli1 also

encouraged M1 microglia to exhibit the polarization markers

CD16/32 and iNOS after SAH, indicating that the inhibition of

Peli1 might generate neuroprotective effects during EBI after

SAH (145). Following SAH, the expression of lipoxin A4

(LXA4), an important endogenous lipid, is suppressed,

whereas pro-inflammatory cytokine (TNF-a, IL-1b, IL-6) and
factor (NF-kB, MMP9, ICAM-1, MPO) expressions were

upregulated. Application of LXA4 in mice after SAH

attenuates the above inflammatory response and neutrophil

infiltration through the LXA4/FPR2/ERK1/2 signaling pathway

(146). Moreover, EBI after SAH has been proved to be

significantly pathologically influenced by neuronal apoptosis in

pathological aspects (197). Activation of galanin receptor 1

(GalR1) has an anti-apoptotic effect in ischemic stroke. More

recently, Shi et al. indicated that GalR1 is expressed in some

astrocytes and microglia, but mainly in neurons, and activation

of GalR1 is reported to recede neuronal apoptosis via the ERK/

GSK-3b/TIP60 pathway after SAH (198). In summary, the ERK

pathway plays an important role in inflammatory response after

SAH, and early inhibition of ERK signaling after SAH may be

effective in neuroprotection.
The HIF-1a signaling pathway

In the context of ischemic stroke and cerebral hemorrhage,

hypoxia-inducible factor-1 (HIF-1) is reported to have a dual

function by stimulating both pro-survival and pro-death

pathways in the central nervous system (CNS) (199, 200)

(Figure 2C). HIF-1 protein expression was upregulated at 12 h

and reached the peak at 24 h after SAH (201), and HIF-1

stimulation may be detrimental at an early stage after SAH,

whereas activation of HIF-1 could be neuroprotective at a later

stage post-SAH, suggesting that HIF-1 also performs pro-

survival and pro-death roles following SAH (202). In a rat

model of SAH utilizing endovascular perforation, HIF-1a can
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cause cell apoptosis, BBB disruption, and brain edema in EBI

after SAH by upregulating the activation of BNIP3 and VEGF

expression (203, 204). Simultaneously, as a target of miR-675,

HIF-1a improved TLR4 expression via increasing the TLR4

promoter’s transcriptional activity, whereas TLR4 is essential for

pro-inflammatory cytokine (TNF-a and interleukin) release

following SAH. Nevertheless, these pro-inflammatory

cytokines participate in cell apoptosis which play a crucial

manifestation of post-SAH EBI (205). In addition, 2-

methoxyestradiol (2-ME), a natural endogenous metabolite of

17-b estradiol, has antitumor, anti-angiogenic, and anti-

inflammatory abilities (147, 206). Research data showed that

2-ME can reduce inflammatory factor (IL-1b, IL-6, and TNF-a)
expression levels; downregulate brain water content, microglial

activation, BBB permeability, and cell apoptosis; and enhance

neurological dysfunction in rats. However, the mechanism of

this protective effect is that 2-ME inhibits the expressions of

HIF-1a, MMP-9, and VEGF, which is related to BBB disruption

after SAH and inflammatory response to EBI (148). The HIF-1a
signaling pathway as a regulatory target of inflammatory

response after SAH needs to be further investigated.
The STAT signaling pathway

In the SAH case, the activation of STAT-related signaling

potentially contributed to morphological changes in cerebral

arteries (207). The STAT pathway has been largely studied in

vascular diseases (208). Recent studies demonstrated that STAT

signaling was also involved in inflammation and immune cell

balance during SAH (Figure 3A). JAK2/STAT3 signaling was

regarded as an important inflammatory signaling pathway in

mediating immune responses, which has a critical role in

keeping the balance between pro-inflammation and anti-

inflammation (209). For STAT3, a pivotal part of the STAT

signaling cascade is known to regulate gene expression. The

phosphorylation of STAT3 activated pro-inflammatory gene

expression and influenced the pathologic progression of SAH

(210). Among which, JAK2 is the essential component of STAT3

activation. Recently, An et al. reported that the activated JAK2/

STAT3 cascade after mouse SAH was positively associated with

pro-inflammatory molecular HMGB1 expression in both

nucleus and cytoplasm (149), which subsequently promoted

the pro-inflammatory cytokines like IL-1 and MMP-9 and

contributed to EBI after SAH (150, 151). Simultaneously,

many studies highlighted the HMGB1 function in brain injury

and vasospasm, and inhibition of acetylation and release of

HMGB1 paved a way to decrease inflammation after SAH

(211, 212). It should be noted that the JAK2/STAT3 cascade

was involved in immune cell microglial regulation after SAH.

Pang et al. indicated that the JAK2/STAT3 cascade acted as the

upstream of NADPH oxidase 2 (NOX2) expression in M1

microglia, which is the basis for oxidative stress and
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inflammatory cytokines in a SAHmouse model (152). Inhibition

of the JAK2/STAT3/NOX2 cascade significantly suppressed the

M1 microglial activation, subsequently improving the oxidative

stress and inflammation. Moreover, targeting the STAT3

pathway showed potential to prevent BBB disruption following

SAH (213) and exerted neuroprotective effects (214, 215). On the

other hand, prokineticin 2 (PK2) was demonstrated to promote

an anti-inflammatory A2 astrocytic phenotype and prevent

neuronal injury (153). Ma et al. indicated that the effect of

PK2 on the formation of A2 astrocytes of SAH was linked to

STAT3 phosphorylation (154). Accumulation of A2 astrocytes

potentially improved the immune cell, BBB, and neuron damage

after SAH (216). Thus, the activated PK2/STAT3 cascade might

promote the A2 astrocytes and improve the immune and

inflammation environment to alleviate EBI after SAH (154).

On the contrary, in the A1 pro-inflammatory astrocytic

phenotype, activated STAT3 after SAH was deemed to be

responsible for A1 activity, whereas the inhibition of STAT3

significantly abolished the astrocytic A1 polarization (217). The

overactivation of STAT3 in A1 astrocytes is detrimental during

SAH (217).

Interestingly, the activated JAK2/STAT3 cascade

represented a severe condition after SAH, whereas its

phosphorylation was observed to promote microglial M2

polarization and alleviate inflammation (155). Among which,

the erythropoietin (EPO) treatment SAH model has upregulated

EPO receptor (EPOR) expression along with the JAK2/STAT3

cascade to enhance the M2 polarization, whereas interfering

with any of the above node will abolish the polarization process

(155). Thus, the EPOR/JAK2/STAT3 cascade plays an important

role in microglial functions and EBI after SAH. Furthermore, in

microglial polarization, the SAH-protective molecule TNF-

stimulated gene-6 (TSG-6) was deemed to play an important

role in anti-inflammatory M2 phenotype transformation via the

SOCS3/STAT3 cascade, wherein TSG-6 could decrease the
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STAT3 expression and increase SOCS3 expression (156). The

TSG-6 protective effects in immune cell infiltration and

inflammation have been wildly studied in the brain, especially

the function in inhibiting the activation of microglia/

macrophages (218). Recently, Gao et al. indicated that the

interaction between milk fat globule-epidermal growth factor-8

(MFG-E8) and integrin b3 receptor could stimulate the SOCS3/

STAT3 cascade then participate in the microglial M2

polarization and relieve the neuroinflammation after SAH

(219). Of note, the STAT3 absence is the core to trigger the

microglial morphological polarization process after SAH (220).

The low abundance of TSG-6 will lead to the attenuated innate

immunity response and elevate M1 microglia after SAH

concomitant with inflammation and poor outcomes (156).

Herein, the different cascades might contribute to distinct

results after SAH and the therapeutic strategies targeting the

STAT pathway should be carefully considered.
The SIRT1 signaling pathway

SIRT1 is a class III histone deacetylase that controls a

number of physiological processes, such as DNA damage

repair, oxidative stress, inflammation, energy consumption,

and cell death (221, 222). SIRT1 activity is dependent on and

adjusted by nicotinamide adenine dinucleotide (NAD1) (223)

(Figure 3B). NF-kB, p53, nuclear factor (erythroid-derived 2)-

like 2 (Nrf2), forkhead box o (FOXO), hypoxia-inducible factors

(HIFs), and liver X receptor (LXR) are histone and non-histone

substrates that SIRT1 deacetylates (224, 225). The increased

expression of SIRT1 has been reported to have a neuroprotective

effect on brain edema and endogenous protection against DCI

after SAH, as well as inducing the attenuation of neurovascular

dysfunction following SAH (226–228), and the p53 pathway

regulated by endogenous SIRT1 can crucially affect BBB
FIGURE 3

The specific role played by STAT (A), SIRT1 (B), and TGF-b (C) pathways in disease development following SAH.
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permeability and brain edema after SAH (226). Concomitant

with FOXO1, NF-кB, and p53 decreased acetylation, activation

of SIRT1 pathways after SAH markedly reduced the levels of IL-

1b, IL-6, and TNF-a; decreased Bax and cleaved caspase-3 levels

and microglial activation; and increased Bcl-2 expression (229,

230). In EBI after SAH, pro-inflammatory cytokines (IL-1b, IL-
6, and TNF-a) and neural apoptosis were also suppressed by

resveratrol (RSV) via the AMPK/SIRT1 cascade (157).

Meanwhile, melatonin has the ability to downregulate Ac-NF-

kB and Bax expression and upregulate SIRT1 expression,

suggesting that melatonin improved EBI following SAH

through the melatonin receptor (MR)/SIRT1/NF-kB signaling

pathway (158). Phosphodiesterase-4 (PDE-4) is crucial in a

variety of injuries to the CNS, and PDE4 inhibition can inhibit

neuronal apoptosis through the SIRT1/Akt pathway and

ultimately protect rats from SAH-induced EBI (159). As a

PDE4 inhibitor, rolipram significantly enhanced SIRT1

expression, whereas NF-kB activation is repressed in EBI after

SAH. Mechanically, rolipram can upregulate protective cytokine

IL-10 expression and inhibit pro-inflammatory cytokine (TNF-

a, IL-1ß, and IL-6) expression as well as downregulate microglial

activation (160). Moreover, the robust cerebral inflammation

following SAH was linked to a considerable activation of the

HMGB1/NF-kB pathway (14, 161). Accumulating evidence has

shown that SIRT1 regulates HMGB1 hyperacetylation and

suppresses HMGB1 translocation release (161). Zhang et al.

indicated that enhanced SIRT1 expression can inhibit the

inflammatory response mediated by HMGB1/NF-KB

activation after SAH. As a selective SIRT1 inhibitor, ex527

reversed berberine-induced SIRT1 activation and attenuated

berberine anti-inflammatory and neuroprotective effects on

SAH, as illustrated by upregulated TNF-a, IL-1b, IL-6, and
ICAM-1 release and microglial activation (161). Han and

colleagues reported that oleanolic acid (OA) enhanced the

expression of SIRT1 rather than suppressed the JAK/STAT3

pathway to lower the acetylation level of HMGB1. OA displays

an anti-inflammatory effect by regulating TLR4, TNF-a, IL-1b,
and NF-kB expression via SIRT1 signaling. HMGB1 is mostly

expressed in neurons in EBI after SAH, which is associated with

apoptosis, whereas HMGB1 is primarily expressed in microglia

in DCI following SAH, which is associated with immunological

activation (162). Moreover, as a multiprotein oligomer, the

nucleotide-binding oligomerization domain–like receptor

family pyrin domain–containing 3 (NLRP3) inflammasome is

responsible for inflammatory response activation, which can

promote IL-1b maturation and induce IL-1b release, ultimately

leading to inflammation and tissue damage (231). More recently,

in an aneurysm model under estrogen-deficient conditions, ERa
and SIRT1 depletion may promote the activation of the NLRP3/

IL-1b/MMP-9 pathway and enhance intracranial aneurysm

rupture leading to SAH (163). Overall, targeting the SIRT1

pathway is a promising method to attenuate EBI and DCI

after SAH via regulating inflammatory response.
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The TGF-b signaling pathway

Transforming growth factor (TGF)-b1 signaling plays an

important regulatory role in endothelial cell differentiation,

maintaining vascular wall integrity and the vascular network

(232). The cortical and brainstem levels of TGF-b1 after SAH

were remarkably enhanced in rats with the high-dose

simvastatin group, which also repressed immunosuppressive

cytokine TGF-b1 expression by lymphocytes and IL-1b
expression post-SAH (233) (Figure 3C). Simvastatin triggers a

Th2 immunological transition in these animals, and infiltrating

Th2 cells are to blame for the observed rise in TGF-b1
production in the brain after therapy, ultimately providing

neuroprotection against the neurological impairment following

SAH (233). In addition, TGF-b1 can also inhibit neutrophil

recruitment by reducing endothelial E-selectin expression (234).

Cannabinoid-type 2 receptor (CB2R) agonism is reported to

downregulate neuroinflammation (164). Fujii and colleagues

suggested that CB2R stimulation prevents leukocyte

infiltration into the brain by upregulating TGF-b1 and

downregulating E-selectin, which protects the BBB after SAH

and reduces neurological outcomes and brain edema (164).

Meanwhile, omega-3 fatty acids are also able to exert effective

anti-inflammatory effects through the G protein-coupled

receptor 120 (GPR120) signaling pathway (165). Omega-3

fatty acids inhibited SAH-mediated inflammatory responses

and apoptosis by the GPR120/b-arrestin2/TGF-b1 binding

protein-1 (TAK1) anti-inflammatory pathway, eventually

suppressing IKK-/NF-kB and MEK4/JNK downstream

pathways (166) , whereas fingolimod (FTY720), an

immunomodulatory agent, enhanced Tregs and attenuated

NKs in SAH mice treated with fingolimod after 3 days.

Inflammatory cytokine IL-6 and TNF-a expressions were also

decreased, whereas IL-10 and TGF-b1 were upregulated in

serum with fingolimod post-SAH (235, 236). In summary,

further research into drugs capable of modulating the TGF-1b
pathway may provide new ideas for improving the post-SAH

inflammatory response.
The mTOR signaling pathway

The mechanisms underlying poor prognosis following SAH

are complex and multifactorial. The mammalian target of

rapamycin (mTOR) is an atypical serine/threonine kinase

involved in regulating major cellular functions, including

growth, proliferation, survival, and protein synthesis (237).

Through reducing excessive mitochondrial fission, mTOR

inhibition protects against neuronal damage in EBI following

SAH, indicating that mTOR activation additionally aggravated

the neuronal and mitochondrial injury (238, 239) (Figure 4). As

the core of the pathway–pathway interaction network, mTOR

signaling is also associated with genes related to intracranial
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aneurysms (240). Circular RNAs (circRNAs) are closely related

to many vascular diseases (241). Of note, by regulating the

mTOR signaling pathway, circRNAs have been implicated in the

formation of intracranial aneurysms (240). Moreover, mTOR

has the ability to shape the immune system like immune cell

migration, cytokine generation, antigen presentation, and

macrophage polarization, further influencing the immune and

inflammatory responses (242). On the other hand, previous

studies have demonstrated that the mTOR signaling pathway

plays a vital role in cerebral vasospasm following SAH (243). The

increased levels of mTOR, P70S6K1, and 4E-BP1 (167) in basilar

arteries were significantly associated with SAH and potentially

mediated the activation of cerebral vasospasm. As a member of

the PI3K family, mTOR orchestrates the phosphorylation of key

downstream proteins P70S6K1 and 4E-BP1, both of which

promote the proliferation of key vasculature wall cells (168).

The mTOR/P70S6K1/4E-BP1 signaling pathway is significantly

activated following SAH injury, and inhibition of mTOR is

implicated as an attractive potential therapeutic strategy for

vasospasm following SAH (243). Intriguingly, in a mouse

brain ischemia model, inhibition of mTOR upstream

suppressor PTEN observed that mTOR activation was directly

involved in cortical neuron proliferation and enhanced neuronal

axon densities (244). The mTOR activation improved long-term

functional recovery after stroke rather than the acute phase,

which may be beneficial for improving DCI after SAH (244).
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Moreover, the delayed cerebral vasospasm caused by bilirubin

oxidation end products (BOXes) may have contributed to

neurological impairment (167, 245). The end products of

heme metabolism Z-BOX B significantly upregulated the

phosphorylation of Akt, mTOR, and p70S6K, whereas

rapamycin was able to counteract Z-BOX B’s effects. Recently,

in a CoCl2-induced oxidative neuronal injury model, Z-BOX B

dramatically reversed the hypoxia-induced neuronal injuries and

stopped the apoptosis of primary cortical neurons through the

Akt/mTOR/p70S6K signaling pathway (246). Meanwhile, the

rapamycin specificity inhibited the expression of mTOR and

upregulated the beclin-1 level to improve neuroprotective effects

in ischemia reperfusion injury (169), where beclin-1 will

stimulate the macrophage autophagy in the brain (247, 248).

These data underscore the idea that targeting the mTOR

signaling pathway can efficiently prevent macrophage function

and suppress neuroinflammation in SAH patients (249). Hence,

we need more studies to further confirm that targeting the

mTOR signaling pathway modulates neuroinflammation

after SAH.
The TLR4/NF-kB signaling pathway

The TLR4/NF-kB signaling pathway plays an important role

in the secretion of inflammatory factors such as IL-1b, TNF-a,
FIGURE 4

Schematic diagram of the mTOR, TLR4/NF-kB, Keap1/Nrf2/ARE signaling pathways and related therapy strategies in the pathophysiology of
subarachnoid hemorrhage. CBF, cerebral blood flow; DEX, dexmedetomidine; CRP, C-reactive protein.
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and IL-6, which has been proved to be involved in the EBI

following SAH (86, 250). TLRs are a family of receptors that play

an essential role in brain innate immunity and inflammatory

responses (251, 252). TLR-4 activation potentially acts as a

costimulatory molecule for T-cell activation, where the

cytokines IFN-g and IL-1 participate in this process within the

brain immune microenvironment and constitute the

neuroinflammation (253–255). NF-kB is a putative

inflammation regulator in multiple pro-inflammatory

functions (256), which influences the DNA transcription and

immune response in aneurysm SAH (171). Pro-inflammatory

factors TNF-a, IL-1b, COX, and MMP-9 gene expressions were

reported to be regulated by NF-kB (119, 257). The inhibition of

NF-kB may alleviate MCP-1-induced macrophages infiltrating

inflammation and reduce aneurysm formation and rupture

(170). The aneurysm wall is characterized by brain immune

cell population alteration, such as NKs, T cells, mast cells, and

macrophages (258). On the other hand, the expression of NF-kB
inhibitor gene NFKBIA in SAH patients has an anti-

inflammatory effect and is associated with apoptosis and

neurotrophin signaling (171). Activated microglia were

attributed to roles as antigen-presenting cells and respond to

TLR-4, thus shaping the adaptive immune response in the

neuroinflammation (259). The activation of the NF-kB cascade

is associated with increased microglial and macrophage

populations in aneurysm (260). Moreover, the activation of

TLR-4/NF-kB signaling can transfer macrophage into the M1

phenotype (261, 262). In aneurysm, macrophages do not merely

influence the post-SAH inflammatory responses but also are

related to intracranial aneurysm formation and rupture (257).

The upregulation of M1 macrophage population showed the

ability to mediate inflammation and promote the risk of rupture

(257). Immune cell dysregulation and inflammation represent

the cornerstones of aneurysm SAH occurrence; it seems to be the

promising therapeutic target to the aneurysm SAH.

Some physiological derangements such as raised intracranial

pressure and global cerebral ischemia after SAH have been

shown to be mediated by inflammation and oxidative stress (8,

263). Accumulating evidence indicated that inflammatory

cascades are involved in EBI after aneurysm SAH, especially

the vasospasm (263). TLR4 activation is modulated by a variety

of endogenous ligands including ROS, fibrinogen, heme, and

heat shock proteins, all of which will be released following SAH

(264). Moreover, patients with SAH are reported to express

higher levels of TLR4 on PB cells, which is related to worse

functional recovery and more serious SAH (265). The TLR4/NF-

kB signaling pathway partly participated in cerebral vasospasm

COX-1 upregulation (264). Moreover, activation of TLR4 on

mononuclear cells is closely associated with cerebral vasospasm

and DCI after aneurysm SAH, resulting in worse neurological

function recovery (265). The inhibition of TLR4/NF-kB
signaling decreased the EBI and cerebral vasospasm via

improving the MyD88- (early phase) and TRIF- (late phase)
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dependent inflammatory response, which also protected against

DCI and prevented poor outcomes (266). The efficient

mechanism of TLR4 expression in regulating NF-kB activation

has become a focus of research. In a recent study, damage-

associated molecule peroxiredoxin 2 (Prx2) can regulate TLR4

function on microglia and subsequently stimulate the TLR4/NF-

kB pathway following aneurysm SAH (172). Furthermore,

TLR4/NF-kB signaling pathway activation may be involved in

the mechanism by which neuroinflammation is exacerbated by

releasing a multitude of inflammatory factors, such as IL-6, IL-b,
TNF-a, and CD86 (267). Targeting the TLR4/NF-kB cascade

not only downregulates pro-inflammatory cytokines levels but

also alleviates the number of macrophages, neutrophil

infiltration, and cell death. There is a great deal of evidence

showing that the development of SAH is correlated with TLR4/

NF-kB pathway activation, and this pathway may be a potential

therapeutic target (86). In recent years, inhibition of the NF-kB
cascade can efficiently alleviate SAH-related EBI, where the

novel drug Netrin-1 shows the ability to improve the

neurological deficits and brain injury via the regulation of the

NF-kB signaling pathway (268).
The Keap1/Nrf2/ARE signaling pathway

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an

essential transcription factor that regulates the antioxidative

system, which reduces the progression of various oxidative

stress-related disorders (269, 270). It binds to a specific DNA

site, antioxidant response element (ARE), to regulate the

transcription of detoxifying or antioxidant enzymes (271).

Nrf2 and ARE are key modulators in reducing inflammatory

damage and oxidative stress, both of which are involved in SAH

(272). Nrf2 also downregulates haptoglobin (Hp), hemopexin,

red blood cells, and hemoglobin (Hb) after SAH (273). The

haptoglobin (Hp; a and b peptide chains) phenotype determines

outcomes in SAH and binds to hemoglobin (Hb) via a strong

extracellular interaction (274). Previously, within the p62

catalyzing after SAH, the oxidized intracellular redox sensor

Keap1 has been proved to directly accelerate Nrf2 release and

activation (275, 276). Thus, activation of the Keap1/Nrf2/ARE

pathway by its inducer may reduce the inflammatory response

and ameliorate EBI after SAH. A recent study has shown that

deletion of Nrf2 was associated with an increased inflammatory

response and cell death (238). Continuous activation of the NF-

kB pathway induces pro-inflammatory cytokine production and

exacerbates inflammation (238, 273). Moreover, some studies

have indicated that there is crosstalk between Nrf2 and the NF-

kB signaling pathway in inflammation and injury (277, 278),

which may influence the innate immune cell function. The NF-

kB p65 subunit suppresses the Keap1/Nrf2/ARE pathway at the

transcriptional level through competitively acting on the local

histone hypoacetylation CH1-KIX domain (173). Furthermore,
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stimulation of the Keap1/Nrf2/ARE pathway after SAH can

significantly downregulate the inflammatory response and

oxidative stress (279). In addition to NF-kB upregulation,

downstream inflammatory cytokines such as TNF-a, IL-1b,
IL-6, and MMP9 are upregulated in astrocytes after SAH

(174). Activated astrocytes play an important role in the

neuro-immune axis and have the ability to modulate

intracranial innate and adaptive immune response, like T cells,

Tregs, and macrophages (175).

As a result of ROS generation, mitochondrial dysfunction is

also involved in the pathological mechanism of EBI following

SAH (280). The dynamic processes of mitochondrial function

are closely associated with the Keap1/Nrf2/ARE signaling

pathway (7). A previous study of hepatocellular carcinoma

suggested that the binding of Nrf2 and prohibitin 2 (PHB2) is

required for efficient expression (281). PHB2, an inner

mitochondrial membrane protein, is a crucial receptor related

to mitochondrial function (176). The synergistic expression of

the downstream protein optic atrophy 1 (OPA1) not merely

protects nerves after SAH but also is involved in the Nrf2-

mediated signaling pathway (282). Treatments with increased

levels of Nrf2, PHB2, and OPA1 have shown the ability to

attenuate EBI (7). Therefore, attributing to its interaction with

PHB2 in mitochondrial dysfunction, the Keap1/Nrf2/ARE

pathway may play an important role in pathological

mechanism underlying SAH.

In terms of oxidative stress, oxidative damage amelioration is

associated with suppression of ROS generation and superoxide

dismutase activity (270). The Keap1/Nrf2/ARE pathway has

been demonstrated to be an antioxidant target in the SAH

model of oxidative stress responses (279). Numerous recent

studies have shown that SIRT1 exerts potent antioxidant

effects by enhancing the expression and activity of the Keap1/

Nrf2/ARE pathway, which can improve SAH-induced oxidative

damage (229, 270, 283, 284). In addition, the Nrf2-ARE cascade

is activated in the brain after SAH to prevent the brain from EBI,

which probably inhibits cerebral oxidative stress by inducing

antioxidant and detoxifying enzymes (285). A study in a mouse

model of SAH showed that Nrf2 expression is upregulated in the

arteries as a compensatory mechanism (286). Similarly, in
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another early SAH mouse model, Nrf2 expression was

increased in the cortex in a time-dependent (12, 24, and 48 h)

manner compared with the expression observed in the control

group (285). Nrf2 knockout significantly reversed the

antioxidant effects of salvianolic acid B (SalB) in SAH-induced

oxidative damage (270). To date, substantial evidence

demonstrated that the Keap1/Nrf2/ARE pathway is activated

in SAH. Taken together, these results suggest that the Keap1/

Nrf2/ARE pathway can be a target for immune modulation and

anti-inflammatory and antioxidative therapy after SAH.
Multiple treatment strategies
for SAH

The management of patients with aneurysmal SAH remains

a highly demanding challenge in critical care medicine.

According to the above immune cells and inflammatory

regulation, several therapeutic and preventive drugs from

current preclinical and animal experiments were discussed in

our review (Table 2). We summarized drug types with great

potential to influence the immune inflammatory regulation after

aneurysmal SAH like dexmedetomidine, nicardipine,

nimodipine, and fingolimod, as well as prophylactic drugs for

development of aneurysms like sunitinib (Figure 4).
Nicardipine and nimodipine

Retrospective and prospective studies have shown that

intrathecal nicardipine can improve outcome, decrease

angiographic vasospasm, and downregulate mean blood flow

velocity in SAH. The analogue of calcium channel antagonist

nicardipine, oral nimodipine, remains the only FDA-approved

medication to improve aneurysmal SAH (295). Nimodipine is

lipophilic and intersects with intact BBB to achieve

bioavailability (296). The average bioavailability of oral

nimodipine (45 mg/4 h) was only approximately 16% of the

maximal plasma concentration 1 h after ingestion in SAH

patients (287). Hepatic metabolism by cytochrome P450 may
TABLE 2 Therapy strategies in aneurysm SAH.

Agent Administration SAH model Clinical effect Treatment mechanism Reference

Nicardipine/nimodipine Oral/injection Patient Vasodilatation Anti-inflammation (287)

Increase CBF (288, 289)

Melatonin Injection Mouse Attenuate brain edema (84)

Dexmedetomidine Injection Mouse Alleviate inflammation Suppressed
TLR4/NF-kB pathway

(290)

Vasodilatation (86, 291)

Improve neurological function (165)

Fingolimod Oral Mouse Improve neurological outcome Immunomodulatory (292, 293)

Sunitinib Oral Patient Aneurysms inhibition PDGFRB mutation target (26, 294)
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2022.1027756
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2022.1027756
contribute to the low plasma concentration. For the T cells,

nimodipine can inhibit the Ca2+ influx to suppress T-cell

function and related inflammation (297). In addition to

modulating the immune inflammatory response, nimodipine

also suppressed the T-cell energy metabolism, proliferation,

and Th1 differentiation (297), which played a potential role in

shaping the immune responses after aneurysm SAH. The

previous in vitro studies demonstrated that L-type calcium

channel blocking has a positive role in microglial activation

suppression and further contributes to neuroprotection and pro-

inflammatory factor inhibition (298). However, the dearth of

dependable evidence for nimodipine effect in the clinical SAH

immune microenvironment still limited the horizon of its

application. Generally, appropriate microglial activation in the

early stage is essential for harmful substance clearance after

SAH, whereas the hyperactivated microglial will aggravates

brain damage and promotes the release of pro-inflammatory

cytokines, chemokines, and cytotoxic substances (299).

Targeting the T-cell and microglial activation might be a novel

therapeutic alternative for nimodipine in aneurysm SAH.

Moreover, pleiotropic mechanisms of nimodipine activation

are associated with L-type calcium channel-mediated vascular

smooth muscle cell vasodilation (300). Nimodipine has been

shown to be an efficient vasodilator in vitro and in vivo, resulting

in improvement in the outcomes after aneurysmal SAH (288).

The inhibition of calcium influx into the cellular compartment

may downregulate smooth muscle contractility, thereby causing

vasodilatation (301). As a result, oral nimodipine administration

decreases average arterial blood pressure and cerebral perfusion

pressure. Similarly, monitoring of physiologic parameters after

nimodipine administration revealed decreased brain tissue

oxygenation (PbtO2) and poor cerebral blood flow (CBF) in

aneurysmal SAH patients. Different physiologic changes in the

brain oxygenation and pressure indexes were improved by

nimodipine administration (301, 302). Of note, intra-arterial

and intravenous nimodipine therapy after aneurysmal SAH was

reported to attenuate cerebral artery constriction and increase

CBF (289, 303). Previous angiographic studies showed

significant and immediate clinical improvement (reaching

75%) in macro-vasoconstriction in 50%–65% of SAH patients

following intra-arterial administration of nimodipine (304). In

addition, through regulating the pressure reactivity index (PRx),

the risks of rebound ischemia in patients at risk of recurrent

vasospasm can be minimized by infusion with intra-arterial

nimodipine (301, 305, 306). Nimodipine can also enhance

lymphatic system function and mitigate neurological defects

and cerebral edema in SAH mice by activating the cAMP/PKA

pathway (307). Thus, nimodipine is not merely involved in

immune cell regulation but also has shown a great potential in

improving the SAH relevant vascular lesion.

However, there are studies on the efficacy of intravenous or

oral administration of nimodipine and its use as an adjunct

treatment option in aneurysmal SAH patients. In current
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and causes dose limitation in a number of SAH patients (287,

300). Among the different routes of delivery, lipid-based drug

delivery systems have attracted increasing attention due to their

solubility, bioavailability, and stability (308). Recently, local

administration of vasoactive drugs (nimodipine) and

prolonged-release pellets has been shown to reduce the

incidence of cerebral vasospasm and delayed ischemic deficits

after severe aneurysmal SAH (309, 310). Of note, nicardipine

prolonged-release implants (NPRIs) formulated in copoly(lactic/

glycolic acid) (PLGA) have been developed as an approach to

local delivery (310, 311). NPRIs have a good safety and

tolerability profile with no complications and no signs of

neuronal toxicity in aneurysm-clipped patients (310).

Moreover, nanotechnology development has revealed that

different structural modifications presented with great

potential to improve the drugs’ therapeutic effect. Among

these, nanostructured lipid carrier lactoferrin-modified

PEGylated NLC (Lf-NLC) exhibits a high loading content and

uniform particle size biodistribution, which was designed and

constructed for the efficient delivery of nimodipine in treating

strokes in the brain (296). It was previously observed that

epithelial cells overexpressing low-density lipoprotein (LDL)

provide a unique opportunity for therapeutic agent delivery by

Lf (312). By crossing the BBB, Lf-NLC can be internalized into

cytoplasm via the Lf-receptor-related endocytosis pathway to

deliver nimodipine to brain tissues (296). Moreover, nimodipine

dose reduction or discontinuation influenced by arterial blood

pressure is a frequent occurrence, which is also related to poor

clinical outcome (295). In contrast, the multivariate analysis

showed that full dosage of nimodipine decreased the risk of

unfavorable clinical outcome (OR 0.895, P = 0.029). The

chemical modification of nimodipine significantly increased

the local concentration and decreased the adverse reaction. In

these studies, a more favorable clinical outcome, decreased

mortality, improved cerebral vasospasm, and lower delayed

ischemic lesion incidences have been reported.

NicaPlant (BIT Pharma), a novel sustained nicardipine release

system composed of a mixture of two completely degradable

polymers, has been developed to provide pharmaceutical

equivalence and improve ease of manufacturing compared with

NPRIs. In a chronic cranial window model, the application of

NicaPlant for more than 3 weeks, with a higher arterial vessel

diameter due to vessel dilatation (21.6 ± 2.6 µm vs. 17.8 ± 1.5 µm in

controls, P < 0.01 vs. the control group), was observed by using in

vivo epifluorescence video microscopy (313). The active ingredients

in NicaPlant do not stimulate local tissue reaction, vessel leakage, or

the leukocyte–endothelial cell interaction, which improve the safety

of this delivery system. Maintaining a stable blood drug

concentration is important for SAH patients’ treatment.

Therefore, NicaPlant showed a good safety and efficacy profile in

aneurysmal SAH patients compared with NPRI and improved

patient outcomes while avoiding systemic side effects (313)
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More recently, the results of the randomized, open-label,

phase I/IIa dose-escalation trial of NEWTON (Nimodipine

micro particles to enhance recovery while reducing toxicity

after SAH) showed good safety, tolerability, pharmacokinetics,

and clinical effects in aneurysmal SAH (314). NEWTON has

been shown to be a safe and well-tolerated nimodipine

microparticular formulation with a significant reduction in

systemic side effects when compared with oral nimodipine

(315). Furthermore, patients treated with NEWTON showed

obvious reductions in DCI (31% NEWTON vs. 61% enteral

nimodipine) and the need for rescue therapy (24% vs. 56%)

(314). A new phase 3 double-blind, double-dummy, randomized

NEWTON trial in aneurysmal SAH patients is currently

underway in 374 participants (NTC02790632). However, no

public interim trial data are available in clinicaltrails.gov. This

study design might be helpful for the construction of new drug

carriers and reduced vasospasm after aneurysmal SAH.
Dexmedetomidine

Dexmedetomidine (DEX), a highly selective a2 receptor

agonist, showed protective effects in many neurological

diseases, including inflammation inhibition and lower

sympathetic activity (316). As a potent antioxidant and anti-

inflammatory drug, recent studies have shown that DEX exerts a

neuroprotective effect in traumatic brain injury (317, 318). One

study demonstrated that post-SAH treatment with DEX

attenuated disease-related damage through activation of the

extracellular signal-regulated kinase (phospho-ERK) (319).

DEX (25 µg/kg) administered for SAH obviously decreased

neutrophil infiltration, microglial activation, and pro-

inflammatory factor release and improved the neurological

scores and tight-junction proteins (290). In the first 24 h after

SAH, hyperactivated microglial and several brain blood immune

cells (T cells, macrophages, and neutrophils) were significantly

reduced by DEX, potentially providing neuroprotection for

brain injury (290, 320). DEX relieves microglial pyroction in

post-SAH EBI by activating the PI3K/Akt/GSK3b pathway and

inhibits SAH-induced release of pro-inflammatory cytokines

(321). In terms of neuroprotection, this study also showed that

DEX alleviated SAH-induced neuroinflammation in the context

of the NLRP3 inflammasome and inhibited the TLR4/NF-kB
pathway. The NLRP3 inflammasome is the most common

inflammasome and is related to IL-1b and IL-18 secretion,

which exacerbates the inflammatory response, apoptosis, and

BBB disruption (80). Previous studies also demonstrated that

inhibiting the NLRP3 inflammasome activation provides

effective neuroprotection against EBI after SAH, suggesting

that the NLRP3 inflammasome is a therapeutic target for SAH

(322). In addition, there is compelling evidence indicating that

TLR4/NF-kB pathway suppression may be a potential target for

SAH therapy (86). A recent study showed that activation of the
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NLRP3 inflammasome occurs in two major steps. The first step

involves microbial infection-related pathogen-associated

molecular pattern (PAMP) signaling, and the second step

involves inflammasome oligomerization and recruitment of

apoptosis-associated speck-like protein (ASC) (290, 323).

These processes convert pro-IL-1b and pro-IL-18 to mature

IL-1b and IL-18. Meanwhile, DEX treatment significantly

suppresses the expression of inflammatory factors IL-1b, TNF-
a, and IL-6 in SAH (290). Thus, the anti-inflammatory effects of

DEX in SAHmay be mediated through suppression of the TLR4/

NF-kB pathway and NLRP3 inflammasome activation.

The inflammatory response stimulated by SAH is involved

in the process of vasospasm (19). The inflammatory response

indicator, C-reactive protein (CRP), is produced by hepatocytes

and is related to increased IL-6, both of which are closely linked

to vasospasm after SAH (291, 324). Increased IL-6 and CRP

levels after SAH may be a consequence of vasospasm.

Conversely, DEX administration decreased the serum IL-6 and

CRP levels in the SAH, eventually attenuating cerebral

vasospasm and improving neurological deficit outcomes (324).

DEX administration could attenuate SAH-induced vasospasm

and improve the SAH rat activity score (325). Recently, DEX was

also used as an adjunct therapy for brain injury and is related to

sympathetic nervous system activity in the acute phase (326).

Intriguingly, low-dose DEX contributed to a significant

reduction in serum lactate levels 24 h after administration,

which is associated with favorable clinical outcomes during the

early phase in SAH patients (326, 327). However, the standard

dosage response of DEX is associated with adverse events.

Several studies demonstrated that serum lactate levels are

regulated by multiple factors, and the sympathetic activity-

related catecholamine release has been identified as a main

factor in the acute phase of SAH (328, 329). Therefore, the

DEX auxiliary role in SAH microenvironment cytokines and

etiological factor regulation may ameliorate early-phase

SAH symptoms.
Fingolimod

Some pharmacological treatments for aneurysmal SAH are

limited by the occurrence of hypotension (324). Consequently,

novel and effective approaches for the treatment of aneurysmal

SAH pa t i en t s a r e u r g en t l y n e ed ed . As an o r a l

immunomodulatory agent applied for the treatment of

multiple sclerosis and common nervous inflammatory

disorders, fingolimod (FTY720) was approved by the United

States FDA in 2010 as a first-line drug for multiple sclerosis

(236). FTY720 is a sphingosine-1-phosphate (S1P) analog, the

therapeutic activity of which could be due to regulation of

movement across the BBB, critical cellular processes, and

lymphocyte subset migration (236, 330). Several studies have

shown that FTY720 treatment of cerebral ischemia and
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hemorrhage improves brain edema, infarct size, stroke-related

neuroinflammation, neuronal death, and clinical outcome (331,

332). Recently, an investigation of FTY720 for the aneurysmal

SAH treatment in a rat model (292) showed that this

intervention restricted intravascular leukocyte adhesion to pial

venules and improved neurological outcomes. Simultaneously,

by activating the PI3K/Akt/eNOS pathway, FTY720 was able to

promote nitric oxide (NO) production, and the anti-apoptotic

and anti-inflammatory effects of FTY720 can relieve cerebral

vasospasm (333). In addition, FTY720 exhibited widespread

distribution and long-term behavioral changes with a half-life

of approximately 10 days (236, 331). FTY720 has also been

shown to improve both innate and adaptive immunity in animal

models. However, the immune-related molecular effects are

species-specific (334). The different FTY720 regulatory

mechanisms between mouse and human immune systems

should be taken with more consideration. Current data

indicate that various effects of FTY720 can influence critical

elements of aneurysmal SAH, such as BBB permeability,

neuroinflammation, and microvascular dysregulation (331,

335). Furthermore, FTY720 is known to retain CD4+/CD8+ T

cells and central memory T cells in lymph nodes, which also has

a partial effect on peripheral effector memory T cells and

protection against infections (236). Previous studies have

demonstrated that FTY720 can restrict circulating leukocytes

and immune depression and improve outcome without

increasing the risk of lung bacterial infections in a mouse

model of cerebral ischemic stroke (293). There are, however,

some similarities between aneurysmal SAH and transient

cerebral ischemia (292). Accordingly, immunomodulation has

emerged as a potential therapeutic strategy to alleviate brain

injury and improve clinical outcome after aneurysmal SAH.

Despite this, results obtained from experimental models require

further investigation to confirm the long-term effects in humans.
Sunitinib

Recent research has demonstrated that p.Tyr562Cys somatic

genomic mutation (g.149505130T>C [GRCh37/hg19];

c.1685A>G) in the platelet-derived growth factor receptor b
gene (PDGFRB) coding region might be a novel mechanism in

the pathophysiology of intracranial aneurysms and suggest a

potentially effective role of sunitinib in targeted therapy (26).

Sunitinib, a targeted receptor agent used for tyrosine kinase

inhibitors (TKIs) with anti-angiogenic and antitumor activity, is

approved by the FDA for gastrointestinal stromal tumor (GIST)

therapy (294). Overexpression or mutation studies have shown

that the PDGF and PDGFR families play an important role in

tumor cell growth and survival regulation. Moreover, PDGF

functions mainly through two different receptor tyrosine kinases

(336), PDGFR-a and PDGFR-b, and activates major signal

transduction cascades such as the PI3K/Akt and phospholipase
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C-gamma pathways (337, 338). Sunitinib is a known inhibitor of

PDGFR-b kinases (339). A recent study has shown that the

p.R561C mutation in PDGFRB is associated with infantile

myofibromatosis (340). In this study, sunitinib treatment

significantly reduced PDGFRB phosphorylation and tumor cell

proliferation without changing the phosphorylation of MEK1/2,

ERK1/2, and several other protein kinases. Western blot analysis

has shown that expression of the Tyr562Cys variant is consistent

with higher basal levels of pPDGFRB, pSRC, pAKT, and pERK1/

2, and PDGFRB phosphorylation can activate downstream

signaling (26). PDGFRB phosphorylation contributed to

cerebrovascular dilation and lesions, which is observed to be

expressed in vascular smooth muscle cells (341). More recently,

the individual with intracranial aneurysm was observed to have

PDGFRB alteration, where the vascular complications like SAH

may be associated with PDGFRB hyperactivation (342, 343).

Interestingly, sunitinib-mediated inhibition of PDGFRB

phosphorylation in intracranial aneurysms patients with the

(p.Tyr562Cys) variation is more significant compared those

with wild-type PDGFRB, which provides the potential to

prevent intracranial aneurysm formation and rupture (26).

However, the p.Asp850Tyr variation exhibited marked

resistance to sunitinib under the same conditions. Therefore,

appropriate sunitinib intervention in the early diagnosis of

candidate variation and/or intracranial aneurysms should be

taken into consideration. A similar study in abdominal aortic

aneurysm demonstrated that PDGFRB imatinib inhibition

obviously alleviated the deteriorated aneurysm (344). The

identification sunitinib to PDGFRB phosphorylation inhibition

provides a novel avenue for target therapeutic strategies in

intracranial aneurysm and potentially prevents aneurysm-

related malignant complications like SAH.
Conclusions and perspectives

Intracranial aneurysm SAH is a devastating disease with a

high fate ratio and limited prevention and treatment approaches.

Accumulating evidence suggests that immune inflammatory

responses, like different immune cells and inflammatory

factors, potentially contribute to aneurysm SAH pathological

events, such as immunosuppression, infection, cerebral

vasospasm, EBI, and DCI. Moreover, the crosstalk between

immune cells and inflammation regulation mechanism in the

occurrence and development of aneurysm SAH cannot be

ignored, especially the microenvironment changes and brain

injury. Interconnected inflammation and immune cells, placed

in the vicinity of the SAH region, elicited the pathogenic

generation of molecules (IL-1, IL-6, TNF-a, MMPs, NLRP3)

and have a critical role in local immune function deterioration.

Importantly, the immunopathogenesis of SAH is also

characterized by different signaling pathways, wherein

compelling evidence revealed their functions in inflammation
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and immune cell regulation. The PI3K/Akt, ERK, STAT, and

SIRT1 cascades seem to have an essential role in microglial and

astrocyte-related immune regulation and inflammation response

in SAH. Meanwhile, the HIF-a, mTOR, and TLR4/NF-kB
cascades have been linked to macrophage immune regulation

and brain injury following SAH and are possible to be the

promising therapeutic targets. Distinguishing the mechanisms

of immune suppression and hyperactivation will facilitate our

understanding of personalized aneurysmal SAH treatment.

However, due to a controversial signaling interaction between

inflammation and immune cells and complex SAH pathological

conditions, the underlying regulation mechanisms are still

largely unknown. The pros and cons function of immune

inflammatory modulation signaling activation in aneurysm

SAH and neuroprotection should be further elucidated.

Therapeutic strategies targeting immune inflammation

regulation showed a promising future in some preclinical

studies. Aneurysmal SAH carries a high mortality and requires

emergency treatment. However, there is still no robust evidence

that anti-immune/inflammatory treatment can be apply to

aneurysm SAH patients. Nimodipine targeting the calcium

channel and/or cAMP/PKA pathway and its optimized

chemical modifications improved aneurysm SAH therapy

effects and decreased the adverse reaction and exhibited the

ability for immune cell regulation. Through intervention of

pathways like PI3K/Akt pathway, DEX-modulated ERK and

TLR4/NF-kB cascade, and FTY720-related immune

inflammation regulation, aneurysm SAH was likely to be

prevented from more severe development. These available

treatment options broaden the current horizons for aneurysm

SAH therapy. However, heterogeneity of the aneurysm SAH

immune inflammation and controversial drug-regulating

mechanisms limited the clinical effects. The efficacy and safety

of these drug and derivatives require further exploration. On the

other hand, the drugs that prevent patients from aneurysm

rupture and SAH should be another favorable direction.

Understanding the basis of aneurysm development and

rupture is important for early diagnosis and intervention.
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Although the aneurysm development and rupture

development are still poorly understood, the immune

inflammatory and genetic factors have non-negligible roles for

SAH. Of note, genomic variations associated with aneurysm

formation and rupture provide potential target treatment

strategies for aneurysm SAH patients, such as sunitinib

targeting the PDGFRB variant. The early aneurysm diagnosis

and management showed great potential to reduce the harmful

events. Taken together, further study is necessary to clarifying

the immune and inflammatory regulation mechanisms, thus

developing innovative drugs and target/systematic therapy

strategies to improve clinical outcomes.
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