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The extracellular vesicles (EVs) in edible food have a typical saucer-like

structure and are nanoparticles released by numerous cells. They have

different components and interact with other biological samples in diverse

ways. Therefore, these nanoparticles could be used to develop bioactives

delivery nanoplatforms and anti-inflammatory treatments to meet the

stringent demands of current clinical challenges. This review aims to

summarize current researches into EVs from edible plants, particularly those

that can protect siRNAs or facilitate drug transportation. We will discuss their

isolation, characterization and functions, their regulatory effects under various

physiological and pathological conditions, and their immune regulation, anti-

tumor, regeneration, and anti-inflammatory effects. We also review advances in

their potential application as bioactives carriers, and medicinal and edible

plants that change their EVs compositions during disease to achieve a

therapy propose. It is expected that future research on plant-derived EVs will

considerably expand their application.

KEYWORDS

edible plants, bioactives carriers, anti-inflammation, therapy, extracellular vesicles
Abbreviations: EVs, extracellular vesicles; ILVs, intraluminal vesicles; MVB, multivesicular body; ESCRT,

endosomal sorting complex required for transport; TEM, transmission electron microscope; AFM, atomic

force microscope; cryo-TEM, cryo-transmission electron microscope; NTA, nanoparticle tracking analysis;

DLS, dynamic light scattering; exRNA, extracellular RNA; GNVs, grapefruit nanocarriers; ELNs, exosome-

like nanoparticles; G-ELNs, ginger rhizomes; IL, interleukin; Nrf2, nuclear factor erythroid 2-related factor

2; DSS, dextran sulfate sodium.
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Introduction

Plant foods, such as grains, vegetables, and fruits, are

universal nutritional components of the human diet that can

provide proteins, fat, carbohydrates, and vitamins, etc. (1, 2).

Plant foods are also the main source of dietary fiber, which

potentially benefits human health by reducing laxation and

cardiovascular disease (3). There is evidence that plant-based

diets are the most protective of our health. Therefore, it is

essential to focus on positive food associations and the

beneficial constituents of plant foods (4). The protective

properties of plant-based diets may be linked to many dietary

components, including vitamins, minerals, phytochemicals, and

fiber (5). Recent studies have found that plant also contain EVs,

which play an important role in various medical fields, such as

anti-cancer, anti-inflammation, and bioactives delivery (6, 7).

In general, EVs are small vesicles with a membrane structure

that are actively secreted by cells. They aremainlydivided into three

categories, which are exosomes, microvesicles, and apoptotic

bodies according to their size, biological characteristics, and

formation process (8, 9). They were originally isolated from the

red blood cell supernatant of sheep (10) and contained large

amounts of proteins (membrane proteins and intracellular
Frontiers in Immunology 02
proteins), lipids, DNA, and RNA (microRNA, mRNA and other

non-coding RNA) (11) that can be absorbed by most cells through

endocytosis. Recent studies have shown the potential of exosomes

as delivery vesicles for bioactive compounds thatmay either be part

of their cargo, or lipid structure, see Figure1.Theyhaveanumber of

roles in cells, such as promoting cell proliferation, activation

angiogenesis, anti-cancer functions, and information delivery

between cells. It has also been reported that proteins are involved

in EV biogenesis mechanisms (12). EVs in body fluid samples can

be identified from their cells of origin, such as those derived from

tumor cells, which means that EVs could potentially act as

diagnostic biomarkers for human diseases (13–15).

Many studies have suggested that EVs in fruits vegetables,

medicinal and edible plants (16, 17) are rich in an heterogeneous

array of compounds that have biological activities, such as lipids,

proteins, noncoding RNAs, and microRNAs (8). EVs are a

particularly important class of vesicle-like substances because

they protect labile cargos against degradation and provide a

vehicle for cargo uptake through the endocytosis of EVs by

almost all tissues (18, 19). In this review, we report on plant EVs

biogenesis, biological activities, andbioactivedelivery.Wehighlight

the key open questions and technical challenges that currently limit

the development of plant EVs. However, we are optimistic that
FIGURE 1

Formation and secretion of EVs. Cellular formation of EVs occurs either ESCRT-dependent or RAB31-dependent pathway. ARF6, ADP-
ribosylation factor 6; TSPAN, tetraspanin; LBPA, lyso-bis-phosphatidyl acid; ICAM, intercellular adhesion molecule; MHC, major
histocompatibility; APP, amyloid precursor protein; TCR, T cell receptor; CXCR4, CXC-chemokine receptor 4; HSPG, heparan sulfate
proteoglycan; PrP, prion protein; TFR, transferrin receptor; TSG101, tumor susceptibility gene 101 protein; HSP70, heat shock 70 kDa protein;
HSP90, heat shock 90 kDa protein.
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these challenges will be solved in the near future and provide a

theoretical basis for the application of edible plant EVs.
EVs formation and secretion

Earlier studies showed that EVs are synthesized from

endosomes in three steps. First, plasma membrane forms

endocytic vesicles that fuse to form early endosomes. Next, the

early endosome encapsulates material in the body, forming

multiple intraluminal vesicles, which further transform into

multivesicular bodies. Finally, the multivesicular bodies

combine with the plasma membrane and release intraluminal

vesicles to the outside of the cell, which are EVs (20).

EVsbiogenesis beginswith the invagination andbuddingof the

endosomal membrane and then intraluminal vesicles (ILVs) form

within a maturing endosome, now called a multivesicular body

(MVB) (21). In detail, the mechanism underlying the formation of

MVBsand ILVs ismainlydrivenby the endosomal sorting complex

required for transport (ESCRT), apoptosis gene 2-interacting

protein X (ALIX), and tetraspanins (CD63, CD81, CD9). Many

proteins, such as cytoskeleton proteins and Ras-associated binding

protein (RAB), are involved in the cellular transport of EVs. Finally,

EVs bind to protruding proteins via the solubleN-ethylmaleimide-

sensitive fusion protein attachment protein receptor (SNARE)

protein complex and are excreted (22). However, it is evident that

although ESCRT has always been considered necessary for ILV

formation, ILVs in multivesicular endosomes (MVEs) can still be

observed in cells lacking ESCRT, indicating the existence of

ESCRT-independent ILV formation in cells. RAB31 has dual

functions in the biogenesis of EVs. It drives ILVs formation and
Frontiers in Immunology 03
suppresses MVE degradation, which is an ESCRT-independent

EVs pathway(Figure 1) (23).
The landscape of EVs in edible plants

EVs provide preliminary information communication in

plants, which promotes plant growth and development, improves

defense responses, and elevate symbiosis between plants and

microorganisms (24). Plant EVs contain many active ingredients

that can improve the body’s immune response. Human beings are

omnivorous animals that consume many edible plants as an

essential part of their diet. Plant derived EVs can be divided into

two categories, one is the vesicular material isolated from plants,

and the other is the exogenous addition of plant extracts. The

change of EVs released by affecting the body or cells is another type

of EVs. PlantEVs are in contactwith the intestinal tract throughout

our lives. They participate in intestinal tissue renewal processes and

have important biological functions against inflammatory diseases

(e.g.; colitis injury, liver steatosis) and cancers associated with

specific lipid and miRNA contents. Recently, edible plants have

gradually become a rich source of EVs, and many EVs from edible

plant have attracted considerable attention (Table 1).
Isolation and characterization of
plant EVs

The International Society for EVs has emphasized the urgent

need to standardize the methods for EVs isolation and quality

assessment. Currently there are a variety of EVs isolation
TABLE 1 Edible plant-derived EVs.

Variety Extraction Identification References

Grape sucrose density gradient centrifugation EM, NTA (6)

Grapefruit ultracentrifugation EM, NTA (25)

Carrot ultracentrifugation BCA, EM, NTA (26)

Ginger ultracentrifugation BCA, EM, NTA (26)

Citrus limon ultracentrifugation EM, NTA (27)

Wheat extraction kit Lowry Assay, SEM, FACS (28)

Blueberry ultracentrifugation BCA, DLS, SEM (29)

Sinensis ultracentrifugation BCA, TEM, DLS (30)

Coconut ultracentrifugation SEM, DLS (16)

Arabidopsis ultracentrifugation, ultrafiltration, PEG-based precipitation TEM, WB (31)

Broccoli
Tomato

ultracentrifugation
ultracentrifugation

NTA
BCA, SEM, MRPS, DLS

(32)
(33)

Strawberry ultracentrifugation TEM (34)

Ginseng ultracentrifugation TEM, NTA (35)

Dendropanax morbifera Ultrafiltration BCA, DLS, TEM (36)

Momordica. charantia sucrose density gradient centrifugation BCA, NTA, TEM (37)
fr
EM, electron microscope; NTA, nanoparticle tracking analysis; BCA, bicinchoninic acid; SEM, scanning electron microscope; FACS, flow cytometric; DLS, dynamic light scattering; TEM,
transmission electron microscope; WB, western blotting; MRPS, microfluidic resistive pulse sensing.
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methods, for example, blood-derived exosomes are extracted by

ultracentrifugation (38), milk exosomes are isolated through

sucrose density gradient centrifugation (39), and polyethylene

glycol is used to abstract exosomes from cell culture media (40).

As shown in Table 1, EVs in edible plants are mostly extracted

using ultracentrifugation, where > 100,000×g speeds are used

(41). However, the purity of the EVs obtained by a single

ultracentrifugation method is not high, which may be due to

the fact that plants contain a large number of components that

are similar to EVs (42). There is a wide variety of plant raw

material resources that produce EVs, which means their cost is

low and there are no ethical issues involved. The yields of plant-

derived EVs extracted via multi-step differential centrifugation

combined with sucrose density gradient centrifugation are

relatively high, which is very conducive to the large-scale mass

production of plant-derived EVs. Mu., et al. used a bicinchoninic

acid (BCA) assay and found that 100 g of plant raw materials

could extract 320-450 mg EVs by the sucrose step gradient and

centrifugation method (26). However, there is an urgent need for

a suitable method that can extract plant EVs more efficiently.

How to measure EVs purity is one of the most intractable

problems in EVs biological research (43). Accurately measuring

and assessing plant EVs purity is a critical issue when evaluating

edible plant EVs dosages for functional studies, bioactives delivery,

and clinical application. There are a number of ways of

characterizing plant EVs, but they are generally based on the

analysis and identification of their morphology, size, and marker

proteins (44–46), among which, morphology and particle size are

the two most common indicators. Morphology identification

includes using a transmission electron microscope, an atomic

force microscope, and/or a cryo-transmission electron

microscope, while particle size analysis includes nanoparticle

tracking analysis (NTA) and dynamic light scattering (DLS) (16,

47, 48), the NTA and DLS techniques can also measure EVs

production (49, 50)(Table 1). In biochemical terms, it is essential

tomeasure EVs activity and concentration by ELISA and BCA (51,

52). Currently, among transmembrane proteins, CD63, CD81,

CD9, and heat stock protein70 have been identified as possible

markers of animal-derived EVs (53, 54).However, few studies have

used proteinmarkers to identify plantEVs, such aswestern blotting

or flow cytometry. This is probably due to the wide variety of

potential plant species and their complex protein composition.

There has also been relatively little preliminary research on protein

markers and plant EVs antibodies are not commercially available.

Further studies are clearly needed to identify stable plant

EVs markers.
Edible plant EVs assimilation and
utilization

Studies have shown that EVs are very important biological

information transmission carriers in the body and that they can
Frontiers in Immunology 04
participate in the regulation of various physiological processes

by mediating through direct cell–cell contact or transfer of

secreted molecules (55). However, there have been few studies

on how EVs enter and are exploited in the organism. Previous

studies have used membrane dyes to mark and observe EVs

based on the structure and characteristics of their double-layer

membrane (56). EVs have been labeled with green fluorescent

protein, then co-cultivation with cells that take them up through

endocytosis (57). Cells appear to take up EVs by a variety of

endocytic pathways, including clathrin-dependent endocytosis

and clathrin-independent pathways, such as caveolin-mediated

uptake, macropinocytosis, phagocytosis, and lipid raft-mediated

internalization (58). Similar to animal derived EVs, plant EVs

can also be labeled with membrane dyes (6).

Researchers use the in vivo tracing method to label EVs so

that the transportation and distribution of EVs in the body can

be tracked (59). Cy7 has been used to mark EVs that fluoresce in

vivo (60). EVs can influence the function of cells or tissues far

from where they are secreted in the body (61). After intravenous

injection with Cy7 labeled mesenchymal stem cell-derived EVs,

imaging analysis showed that most EVs were present in the liver,

kidney, and lung (62). DIR can be stably bind to EVs. DiI

fluorochrome was incubated with milk-derived exosomes,

adipose-derived stem cell exosomes, and exosome-like

nanoparticles from coconut water, can be taken up by bacteria

(63). DIR-labeled ginger exosomes-like nanoparticles (G-ELNs)

were injected into mice, and the mouse intestine and liver were

imaged and analyzed. Ginger-derived EVs were observed to

transfer from the intestine to the liver (17). This is conducive

to reveal the absorption mechanism of plant-derived EVs in the

body and improve the utilization efficiency.
Biology of EVs in edible plants

EVs play an important role in carrying proteins, RNA, lipids,

and they can be released by most cells, including normal and

cancer cells. Current studies mainly focus on animal-derived

EVs, which play important roles in many physiological and

pathological processes, but the biology of plant-derived EVs

remained unclear. Table 2 shows the differences between plant-

derived EVs and animal-derived EVs. This information can

provide references for studies on plant EVs.

The Extracellular RNA Communication Consortium

(ERCC) aims to promote the development of extracellular

RNA (exRNA) biology and to identify whether exRNAs and

their carriers, including EVs, mediate intercellular communication

and have clinical applications (64). A systematic comparison among

10 exRNA isolation methods for five biofluids revealed significant

differences in the complexity and reproducibility of the small RNA

sequence profiles. An interactive web-based application (miRDaR)

has been developed to help researchers select the optimal exRNA

isolation method (65). RNA-seq data from cerebrospinal fluid,
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serum, saliva, plasma, and urine samples, and 5309 exRNA-seq

samples were collected from 19 different studies to develop an atlas

that can provide a basis for exRNA researches. Further analysis of

the ex-miRNA-seq of 462 samples from 17 different diseases found

that biological samples from different sources contained specific

miRNAs. Then, a website focusing on ex-miRNA expression

profiles was developed, which will aid researches into exosome

biomarkers, miRNA functions, liquid biopsies, and clinical

applications (66).

miRNAs are important small non-coding RNAs that play

important roles in the post-transcriptional regulation of

biological processes. The expression profiles of miRNAs vary

widely in normal and disease tissues and they exhibit condition-

specific characteristics (67). The EVs derived frommost cell lines

contain mRNAs and miRNAs (68) that can be absorbed by cells

via endocytosis (69). Other studies have revealed that different

miRNAs have different functions (70). For example, they can be

used as biomarkers, in gene medicines, and for intercellular

communication. Studies have shown that Alzheimer (AD)

patients derived serum EVs had a large number of AD-related

miRNAs compared to volunteers. Therefore, exosomal miRNAs

have great application prospects in the pathophysiological

process, diagnostic biomarkers and treatment of AD (71).

Many stem cell-derived exosomal miRNAs can be used to

treat various diseases, such as cancer (72, 73), senescence (74),

cardiovascular disease (75), and promote bone regeneration

(76). Large numbers of miRNAs in plant-derived EVs have

been detected (26). Xiao et al. analyzed the miRNA profiles of

EVs and identified a total of 418 miRNAs in fruits and

vegetables. There were 32 to 127 per species in 11 different

fruits and vegetables. They found commonalities and differences

in miRNA species and expression levels in different plants (77).

Researchers have also found differences in miRNA content after
Frontiers in Immunology 05
undertaking a miRNA-seq analysis with real-time PCR

verification of immature and mature coconut water EVs. A

total of 47 known miRNAs were found, most of which were

highly expressed in mature coconut water EVs (16). Ginger-

derived EVs contain 125 different miRNAs, of which 124

miRNAs have been predicted to have putative human targets

(78). Zhang et al. reported that plant-derived miR-168a could

penetrate the mammalian gastrointestinal (GI) tract and enter

the liver (79). However, the physiological relevance of such

cross-kingdom regulation has been debated due to the

decreased stability of plant-derived miRNAs during the

cooking process and GI digestion. An alternative route by

which such cross-kingdom regulation can be achieved is via

miRNAs present within EVs. Kalarikkal and Sundaram plotted

the relative abundance of the SARS-CoV-2 targeting miRNAs as

a heat map in 11 edible plant derived nanoparticles (ENPs).

They identified 22 miRNAs that could potentially target SARS-

CoV-2 genome. Eleven miRNAs showed absolute target

specificity towards SARS-CoV-2 (80). Studies on exosomal

miRNA have become more prevalent because it plays an

important role in various fields. Plants are abundant sources of

EVs whose miRNAs are similar to the human genome.

Therefore, a large number of plant EVs miRNAs may provide

a theoretical basis for the treatment of diseases.

Proteomic studies of EVs released by primary cell cultures, cell

lines, tissue cultures, or isolation from biofluids have provided

extensive catalogues of protein abundance in different types of EVs

(38, 81). Théry’s team carried out an extensive study to isolate

different populations of small EVs. According to this team,

Exosome has four transmembrane proteins (CD9, CD63, CD81),

syntenin-1, TSG101 and ADAM10 (82). In addition, exosome is

highly rich in cholesterol, sphingomyelin and hexosylceramide at

the expenseofphosphatidylcholineandphosphatidylethanolamine
TABLE 2 Comparison of plant-derived EVs and animal-derived EVs.

Type
studies

Plant-derived EVs Animal-derived EVs

Extraction
methods

ultracentrifugation and sucrose density gradient centrifugation ultracentrifugation, sucrose density gradient centrifugation, size-
based techniques, precipitation, immunoaffinity
capture-based techniques and microfluidics based techniques

Particle
size

EVs 100−1000 nm microvesicles100-1000 nm
exosomes 30-150 nm

Lipids phosphatidylethanolamine, phosphatidic acid, phosphatidylcholine, no cholesterol cholesterol, sphingomyelin, ceramide

Proteins less research, contains less than animal-derived EVs, proteins that regulate
carbohydrate/lipid metabolism, membrane proteins etc.

rich in variety, mainly targeting fusion proteins, rab family
proteins, heat shock proteins family, transmembrane proteins,
cytoskeleton proteins etc.

RNA mainly miRNA and small amount of ribosomal RNA mRNA, miRNA, lncRNA, cirRNA and lack of ribosomal RNA

Application anti-tumor, anti-inflammation, and drug delivery anti-tumor, anti-inflammation, and biomarkers of diseases

Advantages abundance of plant resources, large-scale production from abundance of plant
resources, high biocompatibility and bioavailability with low toxicity, suitable features
for a drug delivery system

high homology, can be used as a biomarker of disease, diversity of
separation methods

limitations concern about poor biocompatibility from impurities, fewer targeting moieties for
mammalian cells

low production, less resources
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(83). EVs also contained the amyloid precursor protein, prion

protein and DJ-1, biomarkers for neurodegenerative diseases.

Hence, the authors postulated that a-synuclein (a-syn) and Ab
peptides could be involved in the dissemination of the disease to

other parts of the brain (84). The vesicle surface information,

known as EVs characteristics, can be used to target the brain with

nanoparticles or free drugs (85). Plant EVs also contain abundant

proteins, compared to animal-derived EVs, whereas there is less

protein in plant-derived EVs (Table 2). Studies have found that

ginger-derived nanoparticles (GDNPs) had a low proteins, which

tended to be predominantly cytosolic, such as actin and proteolysis

enzymes. There were also few membrane proteins, such as

membrane channel/transporters (e.g., aquaporin and chloride

channels) (78). A total of 598 proteins have been identified in

Arabidopsis that are enriched when they act as stress-response

proteins (86). Furthermore, the tomato root EVs proteome

contains proteins involved in the oxidative stress response, such

as annexin p34, calmodulin, and patatin-like protein 2, which are

reported to regulate the response against Botrytis cinerea infection,

resistance against Phytophthora infestans, general plant immunity,

and calcium-mediated signal transduction (33).

Generally, EVs are enriched in cholesterol and sphingolipids,

indicating that their membrane composition resembles that of lipid

rafts (87,88).Lipidsarealsoabundant inplantEVs.Thecomponentsof

lipids in EVs are vary from different plants and include phosphatidyl

ethanolamine(PE),phosphatidylcholine(PC),phosphatidicacid(PA),

digalactosyl-diacylglycerol (DGDG), monogalactosyldiacylglycerol

(MGDG), phosphatidylinositol (PI), and phosphatidylserine (PS)

(25, 78, 89–91). Lipidomic data indicate that ginger-derived EVs are

enriched with PA (53.2%) and PE (26.1%) (6). The data also indicates

that both GDN and GDEN2 is enriched with PA (37.03 and 40.41%,

respectively), digalactosyldiacylglycerol (39.93 and 32.88%,

respectively), and monogalactosyl monoacylglycerol (16.92 and

19.65%, respectively) (90).

The body adjusts EVs contents in response to external

disturbances, such as alternation of cold and heat, hypoxia,

and oxidative stress, resulting in changing to EVs proteins and

RNAs (92–94). Plants show species differences and regional

characteristics, which means that the composition and content

of EVs from different plant sources vary. Studies have shown

that the miRNA contained in grape-derived EVs was mainly

miR119 and that its RNA content was much lower than that of

ginger-derived EVs (6, 26). However, ginger-derived EVs also

contain lower amounts of proteins (78). How to classify EVs

from different plants will become an important future

research topic.
Plant EVs functions: A world of
possibilities

EVs are nano-scale vesicles that are actively secreted by most

cells, which make them important in cell-to-cell communication
Frontiers in Immunology 06
and various diseases (95). In the field of animal EVs, EVs that are

biomarkers for clinical diagnosis, and circulating exosomes and

their encapsulated miRNAs correlated well with atherosclerosis

severity, suggesting that they could have potential diagnostic

properties (96). Furthermore, exosomes in nerve cells change

with the different stages of neurodegenerative disease, which

means that they could potentially act as disease biomarkers

(97, 98). Some researchers also labeled the lipid bilayer of EVs

by using a biotin labeled 1,2-distearoyl-sn-glycerol-3-

phosphoethanolamine polyethylene glycol (DSPE-PEG) probe.

Labeled EVs in plasma can then be collected through magnetic

submicron particles (MMPs) coated with NeutrAvidin (NA)

(99). Wang et al. found a silica based liposome nanoprobe that

can enrich EVs in pancreatic cancer plasma, and EVs can be

used to monitor pancreatic cancer (100). In addition,

endogenous exosomes are capable of effectively increasing the

concentration of therapeutic circulating exosomes around the

infarct area, which is important after myocardial infarction (MI).

This suggests that the biodistribution of endogenous exosomes

can be regulated to improve cardiac functional restoration after

MI (101). Mesenchymal Stem Cell-Derived EVs can effectively

reduce mitochondrial damage and inflammation in animal

models of cell and kidney damage by increasing mitochondrial

transcription factor A expression, mtDNA damage in target cells

and leakage of cytosolic mtDNA (62). They may also promote

angiogenesis, bone regeneration, skin regenerative repair, etc. In

other researches, bacterial extracellular vesicles (BEVs) are also

widely, Pathogenic bacteria use the BEVs as conduit for

transferring virulence factors, including enzymes, DNA, and

small RNAs to their host cells, leading to cell damage and

inflammatory responses. Besides, BEVs are produced as decoys

to neutralize the host’s immune system reactions against the

invading bacteria (102, 103).

Studies on the EVs from edible plants are developing rapidly.

They have highlighted the prospects for EVs in edible plants and

their functions. Edible plant-derived EVs have broad application

as cancer, anti-inflammatory, and antiallergic treatments.

Bioactives delivery is currently an important research field in

plant EVs, including RNA, anti-cancer drugs, etc. The current

application of plant EVs to various diseases mainly includes the

following aspects.

Host Arabidopsis cells secrete exosome-like EVs that can

deliver small RNA to the fungal pathogen Botrytis cinerea,

silence pathogenic genes, and increase antibacterial properties

(31). Proteomic analyses have shown that Arabidopsis-derived cell

vesicles were highly enriched in proteins involved in biotic and

abiotic stress responses. This finding suggested that EVs might

make a significant contribution to plant immune responses (86).

Wheat-derived EVs can promote the proliferation and migration

of human dermal fibroblasts, human umbilical vein endothelial

cells, and human keratinocyte cells, increase the expression of the

wound healing gene COL1A, stimulate fibroblasts, promote

angiogenesis, and accelerate skin wound healing (28). Garlic
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derived external vesicles can alleviate liver injury and dietary

obesity by inhibiting NLRP3 inflammatory corpuscles (104).

Other studies have indicated that grapefruit nanocarriers

(GNVs) can deliver chemotherapy drugs, siRNA, DNA

expression vectors, and proteins to different types of cells. The

target specificity of GNVs in vivo has been demonstrated by co-

injecting therapeutic bioactives with folic acid, because they

significantly improved the efficiency of cells that expressed

targeted folate receptors. In two tumor animal models, the

inhibition of tumor growth by enhanced chemotherapy further

confirmed the therapeutic potential of GNVs (25). Teng et al.

reported that exosome-like nanoparticles (ELNs) from edible

plants such as ginger were preferentially taken up by gut

bacteria in an ELN lipid-dependent manner. The ELN RNAs

notably enhance gut barrier function to alleviate colitis by

regulating gut microbiota composition and host physiology (17).

The study found that the isolated nanovesicles inhibited the

proliferation of cancer cells in different tumor cell lines by

activating TRAIL-mediated cell apoptotic in vitro (27). Grape

ELNs can mitigate dextran sulfate sodium (DSS) -induced colitis

by inducing lgr 5 stem cells and then rapidly initializing tissue

renewal (Table 3) (6). Grape-derived EVs can upregulate heme

oxygenase 1 and reduce interleukin (IL)-1b and tumor necrosis

factor-a (TNF-a) levels. They can also act as immunomodulators

to maintain the homeostasis of intestinal macrophages and reduce

DSS-induced colitis in mice (89). Furthermore, edible plant

derived ELN treatment of mice leads to Wnt-mediated

activation of Tcf4 transcription in the crypts according to an

analysis of intestines from canonicalWnt reporter mice (26). Both

nuclear factor erythroid 2-related factor 2 (Nrf2) and Wnt/Tcf4

activation play a critical role in anti-inflammatory responses.

Shiitake mushroom-derived ELNs could potentially be used to

curb fulminant hepatic failure by suppressing the NLRP3

inflammasome. Their actions include suppressing the secretion

of IL-6 and both the protein and mRNA levels of the Il1b, Casp1

autocleavage, and pyroptotic cell death. They can also protect

mice from D-galactosamine or Lipopolysaccharide (LPS) induced

acute liver injury (106). Momordica. charantia-derived EVs-like
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nanovesicles increased ratios of p-AKT/AKT and p-ERK/ERK in

MCELNs treated irradiated H9C2 cells, and mitigated myocardial

injury and fibrosis in a thoracic radiation mice model (37).

Strawberry-derived ELNs improve a body’s antioxidant capacity

and relieve oxidative stress by enhancing vitamin C activity (34).

Zu et al. isolated and identified three types of exosome-like

nanotherapeutics (NTs) from small-sized, middle-sized, and

large-sized tea leaves. Tea leaf-derived NTs restored intestinal

epithelial barrier integrity and upregulated the tight junction

protein expression of zonula occluded-1 and mucoprotein 2.

The NTs can also decrease TNF-a, IL-6, and IL-10 levels,

increase IL-10 levels, and improve anti-oxidation, such as

reducing malondialdehyde levels and inhibiting colonic

myeloperoxidase activity. The NTs constitute a novel,

biocompatible, and economically feasible platform for the

prevention and treatment of colon diseases (107).

In particular, we focused on ginseng, which is well-known

for its multiple pharmacological properties, including

anticancer, anti-obesity, and neuroprotective activities, and is

used as a medicinal herb or a dietary supplement worldwide.

Extracts from ginseng, such as ginsenoside (unique triterpenoid

saponins), phenols, and acidic polysaccharides, have been shown

to exhibit numerous pharmacological efficacies. Ginseng-derived

nanoparticles significantly suppressed IL-4 and IL-13-induced

M2-like polarization of macrophages via control of toll-like

receptor 4 and myeloid differentiation factor 88, thereby

inhibiting tumors (35). The G-ELNs contain lipids, proteins,

and RNAs and are easily taken up by macrophages. Treatment

with G-ELN suppresses the downstream inflammasome

activation pathways, including caspase1 autocleavage, IL-1b
and IL-18 secretion, and cell apoptosis (105). The G-ELNs

strongly inhibit NLRP3 inflammasome activation, which

provides a theoretical basis for inflammation control via

regulation of NLRP3 inflammasomes in the acute process.

Studies have shown that oral GDNPs could promote liver

detoxification and anti-oxidation by activating the Nrf2

pathway, thereby protecting liver function in the alcohol liver

mouse model induced by alcohol (90). All of these results
TABLE 3 Overview of the biological functions of EVs from a variety of plant sources.

Plant Mediators Functions References

Arabidopsis TET8, TAS1c-siR483
TAS2-siR453
SYP61

transferred host sRNAs silence fungal virulence genes and suppress fungal pathogenicity
plant immune responses

(31)
(86)

Grapefruit delivery FA (25)

Ginger PA, miR7267-3p and IA3
caspase1, IL-1b, IL-18 and NLRP3
Nrf2

ease IBD
inhibitory effects on activation of the NLRP3 inflammasome
protecting liver function

(17)
(105)
(90)

Citrus Limon TRAI inhibit cancer cell proliferation and suppress CML xenograft growth (27)

Grape Lgr5+ stem cells protection against dextran sulfate sodium (DSS)-induced colitis (6)
fr
TET8, tetraspanin8; SYP61, syntaxin protein61; FA, folic acid; IA3, indole-3-carboxaldehyde; NLRP3, nucleotide binding oligomerization domain like receptors;
TRAI, tumor necrosis factor (TNF)-related apoptosis inducing ligand- receptor, IBD, inflammatory bowel disease.
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provide a theoretical basis for the application of plant-derived

EVs to diseases (26) and indicate that plant EVs have extensive

future prospects.
Plant EVs as bioactive-delivery
nanoplatforms

So far, about 150 anti-cancer drugs based on nanotechnology

have been shown to have favorable applications, some of which

have been widely used in clinical studies, such as liposomes and

protein nanoparticles (108). An emerging research focus is on EVs

that have been broadly applied in delivering anti-cancer, anti-

inflammation and other drugs (109). As the most important nerve

center, the brain has a special blood brain barrier, which makes it

difficult for foreign substances to reach. Therefore, the therapeutic

window for brain diseases is extremely narrow (110). In the past

decade, exosomes have emerged as novel therapeutic effectors in

immune therapy, regenerative medicine and drug delivery. The

production of biological products has been terminated due to the

occurrence of adverse immune reactions to nano drugs, such as

allergic reaction, cytokine release syndrome, neutralization of

biological activity, cross reaction with endogenous protein

counterparts and non-acute immune reaction (111). In addition,

the miRNA of Plant EVs regulate the communication between the

intestinal flora and the host immune system, transforming it into a

stable balance between the immune system and the intestinal flora

(32). EVs is widely claimed to be biocompatible because of its

mammalian cell origin and “physiological” composition (112).

They are characterized by several favorable features, such as low

immunogenicity, biodegradability, low toxicity, encapsulating

endogenous bioactive molecules, strong protection for cargo and

the ability to cross the blood-brain barrier (BBB). Yang T et al.

evaluated the exosome-mediated delivery across BBB barrier

(BBB) and explained the transport mechanisms. In this study,

zebrafish embryos were injected with rhodamine 123-loaded

exosomes via the cardinal vein, and fluorescence of rhodamine

123 was examined in the circulating system in vivo. When given

alone, rhodamine 123 remained within the blood vessels and was

not observed in the brain tissue. In contrast, when delivered by

brain endothelial bEND.3 cells-derived exosomes, rhodamine 123

showed significant penetration in brain regions, confirming the

ability of exosomes to deliver drugs across BBB for brain diseases

treatment (113). MC-ELNs, exosome-like nanoparticles from

Momordica charantia, have the capacity of crossing the BBB,

reducing infarct size, and improving neurological deficits in the

cerebral ischemia-reperfusion injury (114). EVs delivery canmake

up for the side effects of chemotherapy drugs. The latest research

shows that EVs delivery can significantly reduce the side effects of

the anti-cancer drug doxorubicin on the heart and significantly

inhibit the tumor effect (115). Recent studies have shown that

intravenous injection of EVs containing siRNA is more effective

than injection of lipid nanoparticles containing siRNA in
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inhibiting pancreatic cancer in mice (56). It is reported that the

mice took grapefruit derived EVs and DOTAP-DOPE (1,2-

dioleoyl-3-trimethylammonium-propane) liposomes, and the

levels of alanine aminotransferase, aspartate aminotransferase

and proinflammatory cytokines in serum and tissues of the

mice taking liposomes increased significantly, while had no

difference in grapefruit derived EVs (25). These results showed

that Plant EVs have significant non immunogenicity. Compared

with synthetic drug carriers, Plant EVs have a strong supporting

immunomodulatory effect, which can achieve tissue homeostasis

and contribute to the health of organisms (41). Studies have

shown that grapefruit EVs can circulate in the peripheral blood of

cancer mice model, which makes it easy for grapefruit EVs to

carry drugs into tumor tissues and function (7). A series of

transactions by large pharmaceutical companies showed that the

industry is embracing EVs to deliver nucleic acid drugs to tissues

that are hard to target. In recent years, some new companies have

appeared that aim to focus on the development of therapeutic

exosomes or other EVs as delivery vehicles for genes and RNA

drugs because they are natural nucleic acid vectors (116). A large

number of plant species can be used as resources for EVs that have

conversion function and can convert substances that are hardly

absorbed by human bodies into easily-absorbed ones (89, 117).

Compared to synthetic drug carriers, plant-derived EVs have

better biocompatibility, lower immunogenicity, and can pass

through various physiological barriers more easily, such as the

BBB, which leads to safer drug delivery. There are two research

ideas about how to load foreign substances into EVs. One is to

load them into cells so that the EVs secreted by the cells carry the

load and the other is to load exogenous substances directly after

separation of EVs using co-incubation, ultrasound, and

electroporation techniques (118). Plant EVs possess features that

qualify them as a potential drug delivery system, plant EVs are

believed to be able to cross various biological barriers, including

tissue barriers and plasma membranes, and deliver cargo across

endosomal membranes. The established cell system is used to

directly ingest drugs and load them onto secreted EVs, such as

exosomes derived from curcumin-treated (primed) macrophages

where the incorporation of curcumin into exosomes can increase

the solubility, stability, and bioavailability of curcumin (119, 120)

(Figure 2A). Under most conditions, the sonication technique is

used to attract oppositely charged drugs, such as doxorubicin,

which improves drug loading efficiency (108). Another study also

demonstrated that chemotherapeutic drugs and siRNAs could be

encapsulated into nanovectors without affecting their biological

effects in vivo (25) as shown in Figure 2B. Passion fruit-like Exo-

PMA/Au-BSA@Ce6 nanovehicles were fabricated using fresh

urinary exosomes loaded with multi-functionalized PMA/Au-

BSA@Ce6 nanoparticles using an instant electroporation

strategy. The Ce6 uptake by Exo-PMA/Au-BSA@Ce6

encapsulation increased about 1.6-fold compared to that of

PMA/Au-BSA@Ce6 and free Ce6 (121). Therefore, plant EVs

have innate bioactive delivery advantages.
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EVs have similar characteristics to secreting cells, reflect the

physiological and pathological changes in cells, and can act as

diagnostic markers for diseases (122). In recent years, it has been

reported that plants and plant extracts play an important role in

immunity, tumors, and cardiovascular diseases (123, 124), which

has further promoted studies on plant EVs.
Curcumin

Curcumin is a natural polyphenol extracted from turmeric

and is used in Chinese medicine, spices, and as a food colorant

(125). It is able to modulate various targets in a variety of cell types

due to its well-known anti-autoimmune, anti-cancer, and anti-

inflammatory properties (126). Exosomes derived from

curcumin-treated cells reduce LPS-mediated inflammation by

inhibiting IL-1b, TNF-a, IL-6, and other inflammatory factors

(127). Transcription factor 21 (TCF21) is a marker for lung cancer

and can be suppressed by methylating transferase DNA (cytosine-

5-)-methyltransferase 1. Curcumin inhibits lung cancer by up-

regulating TCF21 in EVs (128). Exosomes derived from

curcumin-treated (primed) cells alleviate oxidative stress

induced by high homocysteine levels through enhancement of

tight junction (ZO-1, claudin-5, occludin), and adherent junction

(VE-cadherin) proteins, and endothelial cell layer permeability

(120). As shown in Figure 3, curcumin can effectively cross the

BBB after being absorbed by EVs. It can combine cell-derived

exosomes by activating the Protein kinase B/Glycogen synthase

kinase-3 (AKT/GSK-3b) pathway to inhibit phosphorylation of

the tau protein, which prevents neuronal death and relieves AD

symptoms in vivo (119). Curcumin has great potential to improve

targeted bioactives delivery and restore neuronal function in AD
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therapy. MiRNA-21 can increase cell proliferation and decrease

apoptosis and therefore increase cancer incidence (129). Studies

have shown that curcumin reduces miRNA-21 levels by

accelerating the efflux of miRNA-21 in exosomes and inhibiting

transcription of the miRNA-21 gene. The down-regulation of

miRNA-21 inhibits proliferation and the differentiation of tumor

cells through its effects on the phosphatase, tensin homolog/

phosphoinositide 3-kinase (PI3K)/Akt and the nuclear factor

kappa-B (NF-kB) pathway (130). Its downregulation can

improve the bioavailability of curcumin and miR-144-3p by

combining curcumin with heart-targeted EVs. This process

could potentially protect the heart and treat MI (131). The

current co-incubation of curcumin and EVs could have

significant clinical roles, and curcumin-encapsulated EVs show

good therapeutic potential.
Grapefruit

Many components in citrus fruits have physiologically active

functions. For example, many have antioxidant, anti-cancer,

antibacterial, and antiviral effects (132, 133). Importantly,

grapefruit EVs can be modified to achieve specific cellular

targeting (25). Researchers have packaged miR-18a in

grapefruit EVs by targeting Irf2 and macrophages that

synthesize interferon-g. This leads to the production of IL-12,

which activates natural killer cells and inhibits the metastasis of

colon cancer cells (134). As shown in Figure 4, a study has

patched doxorubicin-loaded heparin-based nanoparticles (DNs)

onto the surface of natural grapefruit EVs to develop an EVs that

is rich in DNs. This EVs can also protect the effective

transportation of DNs, thereby significantly improving the
A B

FIGURE 2

Bioactives delivery methods for edible plant-derived EVs. (A) Proposed unique features of extracellular vesicles, EVs are believed to be able to
cross various biological barriers and deliver cargo across endosomal membranes, and display lower toxicity in spleen, brain and liver as well as
reduced immunogenicity. (B) A schematic diagram displaying the strategy for endogenous loading of engineered EVs, EVs package exogenous
substances through ultrasound, co-incubation, electroporation and chemical modification, then pass various biological barriers.
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efficacy of anti-glioma compounds. EVs increase drug loading

by 4 times compared to traditional drug loading systems. They

can also pass through the BBB and enter the glioma tissue by

binding to the receptor and through exocytosis, which greatly

promotes the internalization and anti-proliferation ability of

cells, increases the utilization of drugs and maximizes the

inhibition of glioma proliferation (60).
Ginger

Recent studies have shown that ginger has anti-

inflammatory and anti-tumor effects (135). Ginger-derived

EVs also have anti-inflammatory effect and relieve alcoholic

fatty liver (17, 90). The ginger-derived EVs carriers have high

drug loading efficiency. Under ultrasonic treatment, ginger is

loaded with negatively charged drugs to form nano-drug

particles. Arrowtail RNA nanoparticles on ginger-derived EVs

that display ligands for siRNA delivery can inhibit tumors when
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administered intravenously (47). This provides a broad

application prospect for the development of anti-cancer drugs.
Role of EVs in medicinal and edible
plant treatments

In recent years, studies on plant extracts across various fields

have become more extensive, such as research into their anti-

cancer, anti-inflammatory, and anti-diabetes effects (136–140).

Researchers use plant extracts to treat various diseases and have

revealed that EVs play an important role in the alleviation of

disease by plant extracts.

Medicinal and edible homologous plants play a role by

changing the EVs components of mammalian cells, which is

different from general plant derived EVs, with disease targeting

and high heterogeneity. Unlike plant derived EVs, they are

limited by the lack of plant texture and extraction methods.

They can achieve anti-cancer and drug loading functions by
FIGURE 3

Interaction mechanism between EVs and curcumin. In vitro, curcumin-primed exosomes potently ameliorate cognitive function in AD model by
inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3b pathway. In vivo, Exo-Cur mediates various effects on cancer cells
including proliferation, apoptosis, metastasis and anti-cancer drug resistance. Cur, curcumin; Exo, Exosomes; AD, Alzheimer’s disease; PTEN/
PI3K/AKT, phosphatase and tensin homolog/phosphoinositide 3-kinase/protein kinase B; PDCD4, programmed cell death protein 4; GSK-3b,
glucogen synthase kinase-3 beta; BBB, blood brain barrier.
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changing the composition and yield of EVs in the body or cells.

Berberine significantly reduces the synthesis of fatty acids in

HCT116 cells and Hela cells, thereby affecting the formation and

secretion of EVs and inhibiting the growth of some tumors

(117). Berberine can reduce the transforming growth factor

(TGF)-b1 in exosomes released by high glucose induced

podocytes injury via the TGF-b1-PI3K/AKT pathway (141).

TGF-b1-containing exosomes from high glucose-treated

glomerular endothelial cells can activate glomerular

endothelial cells to promote renal fibrosis (142). Amla extract

can increase release of miR-375 in ovarian cancer, reduce tumor

production, and prevent rises in exosomes miR-375 levels (143).

Black bean extract can enhance exosomes anti-cancer capacities

in various types of cells (144), whereas fermented lingonberry

juice has anti-invasive and anti-proliferation effects similar to

curcumin. Loading curcumin and into Candida EVs improved

its poor bioavailability (145). Lingonberry juice can also

reinforce tumor cell anti-proliferation via co-incubation with

milk derived EVs (146). These results support the idea that EVs

can be affected by medicinal and edible plants.
Conclusions and perspectives

Edible plant EVs can transport substances carried by plants,

such as proteins, miRNAs, lipids, or exogenous substances, into

animal bodies. Therefore, plant EVs can deliver plant derived

signal materials and carry useful materials to animal organs.

However, whether the material delivery of edible plant EVs is
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purposeful or arbitrary has not been shown. In addition,

researchers have recently discovered that edible plant EVs can

act as nanotherapeutics or as delivery mechanisms for proteins,

nucleic acids, and other bioactive cargoes across various

biological barriers. However, to date, there is very little

information about the biosynthesis of edible plant EVs, their

endogenous substances, and the biological functions of edible

plant EVs. Edible plant EVs can be derived from many different

sources. They are considered as natural bioactive carriers, which

is going to greatly accelerate the study in edible plant EVs.

Animal-derived EVs also play an important role in diseases.

Their synthesis, secretion, and absorption mechanisms are much

better known compared to plants. Therefore, further studies on

the mechanisms underlying plant EVs are required. Differential

ultracentrifugation to extract plant EVs is the main method used

in current studies. However, the equipment required for this

extraction method is expensive. Therefore, it is important to

develop methods similar to those used for animal-derived EVs.

At present, the composition of EVs in plants is not completely

understood and the functions of the proteins, nucleic acids,

lipids, and other substances contained in EVs are still not clear.

In addition, plant EVs are highly diverse so there is an urgent

need to develop standardization guidelines for plant EVs

research that are similar to those for animal-derived EVs.

The expected expansion of EVs in the treatment and

prevention of IBD, skin damage, and other related diseases by

medicinal and homologous edible plants has bright prospects in

the disease treatment field. Plant regionality, species differences,

and growth period have obvious effects on the efficacy of plant
FIGURE 4

Grapefruit EVs-doxorubicin loaded nanoparticles for glioma treatment. The pH-sensitive DNs as a carrier were devised to incorporate to the
surface of grapefruit EVs for the treatment of glioma by natural biomacromolecule heparin. DN, doxorubicin-loaded heparin-based
nanoparticles; BBB, blood brain barrier.
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based medicines, which means that it is extremely important to

detect the EVs active ingredients in specific medicinal and

homologous edible plants.

Studies on plant extract uses in the field of alternative

antibiotics have become more extensive and plant EVs have an

obvious anti-inflammatory function. However, current studies on

plant EVs are limited to cell andmouse experiments. Furthermore,

how to deliver the correct anti-inflammatory dose to animals needs

to be addressed. Analyses of the active ingredients in a variety of

plants and how to apply them to enhance anti-inflammatory

activity should be the focus of research over the next few decades.

Plant resources are plentiful compared to animals, and cells,

can be used as donors for EVs, which means they have broad

prospects (Figure 5A). There are differences in plant varieties,

growth environments, growth cycles, composition, function, and

the heterogeneity of plant-derived EVs. The unique medicinal
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value of edible plants, such as ginger-derived EVs, can affect

inflammation, and succulent plants as a source of EVs, such as

grapefruit, grape, and broccoli, can be used to deliver siRNA and

anti-cancer drugs (Figures 5B, C).

Plant EVs are already innately laden with bioactive

compounds, and further packaging these nanoparticles with

siRNA as bioactives is a challenge. The ultimate target of any

drug delivery system is to realize real clinical applications and

tangible patient benefits. In order to achieve these goals, there

needs to be a robust understanding of how administered plant

EVs will be transported in vivo, reach the intended tissue target,

and deliver their therapeutic cargo. It is accepted that plant EVs

can deliver bioactives in vivo. However, their conversion

efficiency and absorption efficiency are technical challenges. To

fully understand the potential of plant EVs-mediated bioactives

delivery, we believe that the field must look to intelligently
A B

C

FIGURE 5

Prospects for plant EVs. Consideration of the different source and associated risks and efficiency (A), Consideration of the plant-based source
and associated risks and efficiency (B), The function of plant-derived EVs by colour-coded guidelines (C).
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designed strategies that actively exploit the biological

characteristics of EVs.

In summary, plant EVs have many advantages, such as low

toxicity and strong absorption. They can as nano-therapeutics for

diseases (immunological modulation, anti-tumor, treatment of fatty

and colitis etc.), and deliver information substances and package

bioactive substances so that they can pass through BBB, which can

relieve stroke and Alzheimer’s Disease. Over the past few years,

research into plant EVs has made great progress, but it also has

many challenges. However, these problems will be overcome in the

future. Plant EVs are becoming a widespread force in the EV field.
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