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C-reactive protein (CRP) has been shown to be a potential candidate target in

the immunotherapy of severe influenza A infection. However, it is unclear on

the pathogenesis associated with CRP in influenza infections. Here, we used

influenza A H1N1 CA04 to infect human CRP transgenic mice (KI), CRP

knockout mice (KO), and wild-type mice (WT), respectively, and compared

the viral pathogenicity and associated immune response in those mice. The

results showed that CA04 infection resulted in 100%, 80%, and 60% death in

KO, KI, and WT mice, respectively. Compared to WT mice, CA04 infection

resulted in higher TCID50 in lungs on day 3 after infection but lowered HI

antibody titers in sera of survivors on day 21 after infection in KI mice. ELISA

assay showed that IFN-g concentration was significantly increased in sera of

WT, KI, or KOmice on day 7 after infection, and IL-17 was remarkably increased

in sera of WT mice but decreased in sera of KI mice while no significant change

in sera of KO mice on day 3 or 7 after infection. Quantitative RT-PCR showed

that the relative expression levels of immune checkpoint CTLA-4, LAIR-1, GITR,

BTLA, TIM-3, or PD-1 mRNA in the lung presented decreased levels on day 3 or

7 after infection in KI or KO mice. The correlation analysis showed that mRNA

expression levels of the 6 molecules positively correlated with viral TICD50 in

WTmice but negatively correlated with viral TCID50 in KI or KOmice. However,

only LAIR-1 presented a significant correlation in each lung tissue of WT, KI, or

KO mice with CA07 infection statistically. IHC results showed that LAIR-1

positive cells could be found in WT, KO, or KI mice lung tissues with CA04

infection, and the positive cells were mainly distributed in an inflammatory

dense area. Our results suggested that deficiency of CRP or human CRP

transgenic treatment aggravates influenza A virus infection in mice. CRP is a

double sword in immune regulation of influenza infection in which IL-17 and

immune checkpoint may be involved.
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Introduction

The influenza virus that causes annually recurrent acute

respiratory disease in humans is responsible for a large

proportion of morbidity and mortality (1). The WHO estimates

that annual influenza epidemics result in ~1 billion infections, 3-5

million cases of severe illness, and 290,000-650,000 deaths (2).

Severe disease and/or mortality in patients with influenza virus

infection are generally due to virus-induced pneumonia or

secondary bacterial superinfection (1). Primary viral pneumonia

is characterized by high levels of viral replication in the lower

respiratory tract accompanied by strong pro-inflammatory

responses. Influenza-mediated alveolar epithelial cell injury is

due to inherent viral pathogenicity and imbalanced host

immune response triggered by the virus (3, 4).

C-reactive protein (CRP), a pentameric protein found in

almost all organisms where the presence of CRP has been

sought, is an inflammatory biomarker and an immune

mediator (5, 6). It was first named because of its ability to

precipitate C-polysaccharide from Streptococcus pneumoniae in

vivo and became a protein expressed as a component of the acute

phase response in humans and some other species (7). Growing

studies have shown that CRP plays important roles in

inflammatory processes and host responses to infection,

including the complement pathway, apoptosis, phagocytosis,

nitric oxide release, and the production of cytokines. Several

studies suggested that CRP is a potential candidate target in the

immunotherapy of severe influenza A infection (5, 8–10).

However, to our knowledge, it is unclear on the pathogenesis

associated with CRP on severe influenza infection.

In this study, to understand the pathogenesis associated with

CRP on severe influenza infection, we used influenza A H1N1

virus to infect mice with human CRP transgenic treatment, mice

with deficiency of CRP, and wild-type mice, respectively, and

compared the viral pathogenicity and associated immune

response in the three typed mice.
Materials and methods

Mice and infection

All animal studies were performed according to the

guidelines approved by the Investigational Animal Care and

Use Committee of the National Institute for Viral Diseases

Control and Prevention of the China CDC and were

conducted following the guidelines of the Council for Animal

Care. The CRP knockout (KO), human CRP knock-in (KI), or

wild-type (WT) C57BL/6J mice were purchased from Cyagen

Biosciences (Suzhou, China). The KO or KI mice were detected

by PCR, sequencing, and southern blotting to determine the
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knockout of mouse CRP or knock-in of human CRP on the

sampled tail of each mouse. We performed a viral challenge by

i.n. Inoculation of 1.5×104 TCID50 of A/California/04/2009

(H1N1) to anesthetized 8- to 10-week aged KO, KI, or WT

female mice in 50 mL PBS. After the mice were infected with the

virus, their body weight was measured daily to observe the

changes. If the mice lost over 25% of their initial body weight,

they were humanely euthanized and necropsied.
Viral titration

The influenza viruses used in this study were titrated by a

TCID50 (50% tissue culture infectious dose) inMDCK cells. Briefly,

100 ml/well of MDCK cells (3 × 105 cells/ml) were seeded one day

before infection in 96-well microtiter plates. Serial semi-logarithmic

dilutions of each virus or supernatants of mouse lung homogenates

were made with Dulbecco modified Eagle medium containing 1%

bovine serum albumin and 2 mg/ml TPCK-treated trypsin from

10−2 to 10−7. Each virus or sample’s dilution was added to MDCK

cells (4 wells for each dilution, 100 ml/well). The cells were incubated
for 72 h at 35°C. The contents of each well were tested for

hemagglutination by incubating 50 ml of the tissue culture

supernatant with 0.5% turkey erythrocytes. The TCID50 was

calculated according to the Reed and Muench method. For

mouse lung tissue processing, in brief, left lung tissues from each

mouse were homogenized in 1 mL of phosphate-buffered saline

(PBS) by the tissue lyser (Qiagen). The supernatant was sampled

after centrifugation at 3000 rpm for 15 min at 4°C.
Hemagglutination-inhibition (HI) assay

Prior to testing by the HI assay with turkey RBC, the serum

samples were treated with 4-fold receptor destroying enzyme

(RDE) dilutions at 37°C for 18 h, followed by incubation at 56°C

for 30 min. The serum samples were titrated in 2-fold dilutions

of PBS and tested at an initial dilution of 1:10. Virus was added

at a concentration of 4 HAU/25 mL. After 1 hour, 50 mL of 1%

turkey RBC was added.
Histopathological and
immunohistochemical staining

Routine hematoxylin and eosin staining was used for

histopathology evaluation. For immunohistochemistry, 4mm
deparaffinized formalin-fixed paraffin-embedded sections were

stained with polyclonal antibody against LAIR-1 (51030-R119,

Sinobilogical, China) by using a polymer-based colorimetric

indirect peroxidase method (ZSBio, China).
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Cytokine IL-17 and IFN-g assay

The concentration of IL-17 and IFN-g in mice sera was

determined using an enzyme-linked immunosorbent assay

(ELISA) according to the manufacturer’s instructions (R&D

system, USA). The serum samples were detected in 10-fold

dilutions of PBS. The concentrations of IL-17 and IFN-g were

calculated through standard curves using the standard product

(Supplemental Figure 1).
RNA extraction and quantitative RT-PCR

RNA was extracted from mouse lung tissues using an animal

tissue total RNA extraction kit (TIANGEN BIOTECH, China)

per the kit’s protocol. To quantify the relative expression levels of

immune checkpoint glucocorticoid-induced TNF receptor

family-related protein (GITR), B- and T-lymphocyte

attenuator (BTLA), T-cell immunoglobulin and mucin-3

(TIM-3), cytotoxic T lymphocyte-associated antigen-4 (CTLA-

4), human leukocyte associated Ig-like receptor-1 (LAIR-1) or

programmed death 1 (PD-1) mRNA in mice lung tissues, a

quantitative real-time RT-PCR was performed by QuantiFast

SYBR Green RT-PCR Kit (Life Science Technologies, USA) on a

real-time PCR detection system (Agilent Technologies Inc.,

Santa Clara, CA). The housekeeping gene GAPDH was used

as the internal control. The specific primer sets were used as

follows: GITR forward: GCCAGACGCTACAAGACT, GITR

reverse: ATCGTAACTCACCGCTCT; BTLA forward:

GTGACTTGGTGTAAGCACAATGGAA, BTLA reverse:

TACGACCCGTTATCACTGAGATGTA; TIM-3 forward:

AACCCTGCGAAAGGCAAACTT, TIM-3 r eve r s e :

GGTGACGACTGTCCTCCCAAA; CTLA-4 forward:

AACCTTCAGTGGTGTTGGCTAG, CTLA-4 reverse:

CCTCAGTCATTTGGTCATTTGT; LAIR-1 forward:
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TTGTCTTTCCGCCCTTCTGTTCTG, LAIR-1 reverse:

CTGCTGCTGTCTTTTGTTGTTTGG; PD-1 forward:

TATAACCTTGACGCAAACCA , PD - 1 r e v e r s e :

CTTGCTCATTTCAGAGTCCT ; GAPDH rev e r s e :

A TGGGAGTTGTTTTCTTG , GAPDH f o r w a r d :

CTCGTCTTCTGTCATCTCTGCTG. The relative expression

level was displayed by DCt in previous studies (11, 12).
Statistical analysis

The mouse survival curve analysis was performed using

Fischer’s exact test. Mouse body weight changes, viral TCID50

in mouse lung tissue, sera HI antibody titers, sera concertation of

cytokines, and mRNA expression levels of immune checkpoints

in mouse lung tissues were observed using unpaired t-tests for

significant differences. The correlations between mRNA levels of

checkpoint and sera levels of cytokines were analyzed by

Pearson’s correlation method. Differences were considered

significant at P <.05 with a two-tailed test. All analyses were

performed using Instat software (Vision 5.0; GraphPad Prism).
Results

The impact of CRP on pathogenicity of
influenza virus in mice

CA04 infection resulted in 60% (n=10), 80% (n=10), or

100% (n=10) fatality in WT, KI, or KO mice respectively. The

body weight changes suggested that the body weight loss of KO

mice was higher than one of WT or KI mice after day 4 of

infection, and the body weight loss of KI mice presented higher

than one of the WT mice on day 7 after infection till to day 14

after infection (Figure 1). Furthermore, histopathological
BA

FIGURE 1

The survival rate and body weight changes in WT, KO, or KI mice with CA07 infection. (A) Kaplan-Meier survival curves were recorded. n=10
mice for each group. *P <0.05, **P <0.01 (log-rank test) when comparing the WT or KI mice. (B) Body weight loss was recorded for all survived
mice until 21 days post-infection. *P <0.05, **P <0.01 (two-tailed t-test) when comparing the WT or KI mice.
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changes were observed on WT, KI, or KO mice with CA07

infection lung tissues. The results showed that, compared to

MOCK, the CA04 resulted in typical histopathological damages,

including infiltration of inflammatory cells and congestion and

edema of alveoli and bronchus in the lungs of WTmice as well as

in the lungs of KO or KI mice (Figure 2). On day 3 after

infection, CA04 raised focal damages with scatted

bronchopneumonia in WT, KO, or KI mice.

In comparison, the infiltration of inflammatory cells presented

more inWT or KI mice than in KOmice (Figures 2A–C). On day 7

after infection, defuse alveolar damages were observed in the lungs

of WT, KO, or KI mice. In comparison, the damages were more

serious and extensive in the lungs of KO or KI mice than those of

WTmice (Figures 2D–F). Taken together, the results suggested that

deficiency of CRP or human CRP transgenic treatment enhanced

the pathogenicity of influenza virus in mice.
The impact of CRP on viral replication
and antibody response in mice with
influenza virus infection

Viral titration showed that the viral TCID50 presented a

significantly higher level in the lungs of KI mice than WT or KO
Frontiers in Immunology 04
mice on day 3 after infection. In contrast, no significant

difference was observed between them, although viral TCID50

presented a higher level in the lungs of KO mice than KI or WT

mice on day 7 after infection (Figure 3A). The HI assay showed

that the sera HI antibody titer against CA07 presented a much

higher level in WT survivors than in KI survivors (Figure 3B).

The results suggested that CRP was related to the viral clearance

and antibody response in influenza infection.
The impact of CRP on levels of cytokine
IFN-g and IL-17

As shown in Figure 4, the ELISA assay showed that IFN-g
concentration was significantly increased in sera of WT, KI, or

KO mice on day 7 after infection, and no significant difference

was observed between them. However, compared to PBS

inoculated mice, IL-17 was remarkably increased in sera of

WT mice with CA04 infection but decreased in sera of KI

mice with CA04 infection on day 3 or 7 after infection, while

there was no significant change in sera of KO mice infected with

CA04 on day 3 or 7 after infection. The results suggested that

deficiency of CRP or human CRP transgenic treatment

decreased IL-17 immune response in influenza infection.
FIGURE 2

Histopathological damage in lung tissues of WT, KO or KI mice infected with CA04. Representative lung histopathology of CA04 or PBS
challenged WT (A, D, G), KO (B, E, H) or KI (C, F, I) mice on day 3 or 7 after infection. The lungs of PBS inoculated WT (G), KO (H) or KI (I) mice
were set as MOCK. The infiltration of inflammatory cells (black arrow) and hyaline membrane formation (black square arrow) were presented in
lung sections. Original magnification: ×10.
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The impact of CRP on immune
checkpoint mRNA expression
of infected mice

To observe the correlation of CRP with the local immune

response of lung in mice to influenza infection, we quantified

the relative expression levels of 6 immune checkpoint mRNAs

in lung tissues of mice, including GITR, BTLA, TIM-3, PD-1,

CTLA-4, and LAIR-1. The results showed that compared to

PBS inoculated mice, relative expression levels of GITR, BTLA,

TIM-3, and PD-1 mRNA were significantly decreased on day 3

or 7 after infection in KI or KO mice with CA07 infection but

not in WT mice with CA07 infection, and their levels were

significantly higher in WT mice than in KI or KO mice

(Figures 5A–D). Whereas the relative expression levels of

CTLA-4 and LAIR-1 were increased on day 3 or 7 after
Frontiers in Immunology 05
infection in WT, KI, and KO mice, and their levels were

significantly higher in WT mice than in KI or KO mice on

day 7 after infection (Figures 5E, F). In addition, the correlation

analysis showed that mRNA expression levels of the 6

molecules presented a respectively positive correlation with

viral TICD50 in WT mice but a negative correlation with viral

TCID50 in KI or KO mice (Figure 6). However, only LAIR-1

presented a significant correlation in each lung tissues of WT,

KI, or KO mice with CA07 infection statistically (Figure 6A). In

addition, IHC results showed that LAIR-1 positive cells could

be seen in lung tissues of WT, KO, or KI mice with CA04

infection, and the positive cells were mainly distributed in an

inflammatory dense area. Given the comparison, more stained

cells were seen on day 7 after infection than on day 3 after

infection and in WT and KI mice than in KO mice on day 7

after infection (Figure 7).
BA

FIGURE 4

IFN-g and IL-17 levels in WT, KO, or KI mice sera. (A) The concentration of IFN-g tested by ELISA in sera of WT, KO, or KI mice infected with
CA04 on day 3 or 7 after infection, PBS inoculated mice were set as mock control. (B) The concentration of IL-17 tested by ELISA in sera of WT,
KO, or KI mice infected with CA04 on day 3 or 7 after infection, PBS inoculated mice were set as mock control. Unpaired t-tests were
performed to assess statistical significance, *P <0.05, **P <0.01, ***P <0.001 (two-tailed)..
BA

FIGURE 3

Viral load and HI antibody titer in mice with CA04 infection. (A) The viral TCID50 in lung tissues of CA04 infected WT, KI, or KO mice on day3 or
7 after infection, n=5 mice per group (mean ± SEM). (B) HI antibody titers in sera of CA04 infected WT or KI mice on day21 or 7 after infection.
Unpaired t-tests were performed to assess statistical significance, *P <0.05, (two-tailed).
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Discussion

The modulation of host factors involved in regulating viral

replication and/or injury or tissue recovery has been

demonstrated to be a potential strategy against viral diseases,

including influenza (13, 14). Whereas, CRP has been considered

a potential therapeutic target for inflammatory diseases,

including infections, since CRP bound to a multivalent ligand

can efficiently initiate the assembly of a C3 convertase through

the classical pathway and thus decorate the surface of the ligand

with opsonic complement fragments (6, 15, 16). However, the

detailed response pathway of CRP to the disease is still unknown,

although CRP is related to the outcome of severe influenza

disease and joined in the mediation of immunopathological

lesions (8, 17, 18).

Our data demonstrated that deficiency of CRP or human

CRP transgenic treatment aggravated influenza A virus infection

in mice, and deficiency of CRP resulted in a much more severer

outcome than human CRP transgenic treatment. Human CRP

transgenic mice have been demonstrated to be a good model for

studying the in vivo function of the protein (19) and have been

used to study infectious diseases (6, 20–25). Transgenic or

passively administered human CRP was protective against

lethal bacterial infection in transgenic mice (6). In contrast,

increasing studies have shown that excessively high CRP level

was a risk factor for virus infection’s severity or fatal outcome,

including influenza (8, 17, 26–28). Studies have demonstrated

that the antiviral immune response represents a balancing act

between the elimination of the virus and immune-mediated
Frontiers in Immunology 06
pulmonary injury (29). Our previous study showed that CRP

joined in mediating immunopathological lesions in severe

influenza (8). Hence, our results here indicated that CRP

might play an important role in the immune balance of

influenza infection, and the role may be a double-edged sword

in influenza infection, overexpression or deficiency of CRP

would be a disadvantage to the infection. Besides survival rate

and body weight loss, our results showed that human CRP

transgenic treatment or deficiency of CRP resulted in more

serious and extensive damage to the lung in mice with influenza

A infection on day 7 after infection, and human CRP transgenic

treatment increased the viral load in the lung of mice with

influenza A infection on day 3 after infection but decreased the

HI antibody titer in survivor on day 21 after infection. The

results indicated that deficiency of CRP or human CRP

transgenic treatment impacted the immune response

associated with tissue damage, viral clearance, and/or

antibody production.

Our results also suggested that deficiency of CRP or human

CRP transgenic treatment decreased or blocked the immune

response of IL-17 in influenza A infection. Studies showed that

IL-17 plays a critical role in mediating the recruitment of B cells

to the site of pulmonary influenza virus infection in mice (29)

and suggested that anti-IL-17A or anti-IFN-g treatment

attenuated the severity of immunopathology by influenza virus

(30, 31). However, studies also suggested that IL-17 plays a

crucial role in enhancing effective antiviral immune responses,

including the maintenance of tissue integrity and the generation

of protective immune responses to infectious microorganisms,
B C

D E F

A

FIGURE 5

The relative quantification level of checkpoint mRNA GITR (A), BTLA (B), TIM-3 (C), CTLA-4 (D), PD-1 (E), or LAIR-1 (F) in lung tissues of WT, KO,
or KI mice with CA04 infection on day 3 or 7 after infection. PBS inoculated mice were set as mock control. Unpaired t-tests were performed to
assess statistical significance, *P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed).
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FIGURE 6

The correlation between relative quantification level of checkpoint mRNA LAIR-1 (A), CTLA-4 (B), PD-1 (C), TIM-3 (D), BTLA (E), GITR (F), and
viral TCID50 in lung tissue of WT, KO, or KI mice infected with CA04 on day 3 or 7 after infection. Pearson correlation analysis was performed.
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especially at epithelial barrier sites (32–34). Our results showed

that both deficiencies of CRP and human CRP transgenic

treatment decreased IL-17 response but had no influence on

IFN-g response in mice with influenza A infection, indicating

that IL-17 antiviral response was deficient or decreased in

influenza A infection in mice with deficiency of CRP or

human CRP transgenic treatment or.

We further analyzed the impact of CRP on the expression of

immune checkpoint molecules in lung tissues of mice with

influenza A infection because several immune checkpoint

molecules have been demonstrated to be crucial for

maintaining self-tolerance and for modulating the length and

magnitude of effector immune responses in peripheral tissues to

minimize tissue damage (35–37). In addition, studies of the

interplay between immune activation and suppression have

shown an important role for immune checkpoint molecules in

the pathogenesis of infectious diseases (37). In this study, our

results showed that, compared to WT mice, influenza A

infection resulted in decreased expression of checkpoint

molecules GITR, BTLA, TIM-3, PD-1, CTLA-4, and LAIR-1

in lung tissues of KI or KO mice on day 7 after infection, and

expression levels of these molecules presented a positive

correlation with viral TICD50 in lungs of WT mice but

negative correlation with TCID50 in lungs of KI or KO mice
Frontiers in Immunology 08
although the significant correlation was not observed in all them

(Figure 5 and Supplemental Figure 1). And the results showed

the only LAIR-1 presented significant correlation with viral

TCID50 in each infection of the three typed mice. The IHC

stains also showed that LAIR-1 positive cells were mainly

distributed in the inflammatory dense area of lung tissues in

WT, KO, or KI mice with CA04 infection. Studies showed that

LAIR-1 plays a role in regulating immune cells (38) and limits

neutrophilic airway inflammation as a functional inhibitory

receptor on airway-infiltrated neutrophils (39, 40). The results

indicated that deficiency of CRP or human CRP transgenic

treatment impacted the balance of immune regulation

by immune checkpoint molecules. In contrast, the

delicate immune balance is a key factor in maintaining normal

immune responses such as viral clearance (41), tissue tolerance,

antibody responses, and tissue repairment (29, 42, 43).

In summary, we observed the impact of human

CRP transgenic treatment and deficiency of CRP on the

pathogenicity of influenza A virus in mice and analyzed

immune factors associated with innate immune regulation in

those mice. Our results showed that both deficiencies of CRP

and human CRP transgenic treatment aggravated influenza A

infection in mice, and the aggravation may be owed to

imbalance immune regulation, including decreased antibody
FIGURE 7

LAIR-1 immunopathology of lung sections from WT, KO, or KI mice. Immunohistochemistry for LAIR-1 + pulmonary cells (black arrows) in
representative lung sections of WT, KO, or KI mice infected with CA04 on day 3 (A–C) or 7 after infection (D–F). PBS inoculated mice were set
as mock control (G–I). Original magnification: ×40 (A–F) or ×20 (G–I).
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response, IL-17 levels, and/or expression of several immune

checkpoint molecules.
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