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expression in the lung
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SARS-CoV-2 infection causes a variety of physiological responses in the lung,

and understanding how the expression of SARS-CoV-2 receptor, angiotensin-

converting enzyme 2 (ACE2), and its proteolytic activator, transmembrane

serine protease 2 (TMPRSS2), are affected in patients with underlying disease

such as interstitial pneumonia will be important in considering COVID-19

progression. We examined the expression of ACE2 and TMPRSS2 in an

induced usual interstitial pneumonia (iUIP) mouse model and patients with

IPF as well as the changes in whole-lung ACE2 and TMPRSS2 expression under

physiological conditions caused by viral infection. Histopathological and

biochemical characteristics were analyzed using human specimens from

patients with IPF and precision-cut lung slices (PCLS) from iUIP mouse

model showing UIP with honeycombing and severe fibrosis after non-

specific interstitial pneumonia. ACE2 expression decreased with acute lung

inflammation and increased in the abnormal lung epithelium of the iUIP mouse

model. ACE2 is also expressed in metaplastic epithelial cells. Poly(I:C),

interferons, and cytokines associated with fibrosis decreased ACE2

expression in PCLS in the iUIP model. Hypoxia also decreases ACE2 via HIF1a
in PCLS. Antifibrotic agent, nintedanib attenuates ACE2 expression in invasive

epithelial cells. Patients with IPF are at a higher risk of SARS-CoV-2 infection

due to the high expression of ACE2. However, ACE2 and TMPRSS2 expression

is decreased by immune intermediaries, including interferons and cytokines

that are associated with viral infection and upon administration of antifibrotic

agents, suggesting that most of the viral infection-induced pathophysiological

responses aid the development of resistance against SARS-CoV-2 infection.
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Introduction
A limited number of type II alveolar epithelial (AECII) and

ciliated cells in pulmonary bronchi express angiotensin-

converting enzyme 2 (ACE2). The transmission of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) involves

ACE2, leading to coronavirus disease-19 (COVID-19) (1, 2).

ACE2 catalyzes the conversion of the vasoconstrictor

angiotensin II to the vasodilation peptide angiotensin 1–7. The

imbalance between vasoconstriction and vasodilation through

altered ACE2 expression is associated with hypertension and

chronic pulmonary diseases such as idiopathic pulmonary

fibrosis (IPF) (3–5). ACE2 regulates ACE-induced fibrosis in a

reciprocal manner (6, 7). Transmembrane serine protease 2

(TMPRSS2), which proteolytically activates the SARS-CoV-2

spike protein, is also expressed in AECII and type I alveolar

epithelial (AECI) and ciliated cells (8). TMPRSS2 cooperates

with the internalization of SARS-CoV-2 into lung epithelial cells.

SARS-CoV-2 infection induces disease-associated bias in

type 1-helper T cells. Interferon (IFN)-g-producing T cells are

a major source of various cytokines and chemokines, including

IFNs (9). Considering the early pathogenesis of COVID-19, lung

epithelial cells produce IFNs upon SARS-CoV-2 infection and

subsequently induce the production of IFN-stimulated genes

(ISGs) (2, 10). IFNs and poly(I:C) induce ACE2 in human upper

airway basal and nasal epithelial cells (2, 11) in lung cancer cells

but not in primary human differentiated bronchial cells (12).

Interleukin (IL)-4 and IFN-g/tumor necrosis factor (TNF)-a
reduced Ace2 expression in Vero E6 cells, resulting in decreased

SARS-CoV infection; thus, genetic regulation of ACE2 via

cytokines appears to be cell type-dependent (13). A marked

increase in ACE2 expression in patients with IPF predicts severe

SARS-CoV-2 infection. ACE2 deficiency exacerbates bleomycin-

induced lung fibrosis in mice and reduces inflammatory

cytokines such as IL-6 and TNF-a (14, 15). ACE2

overexpression suppresses collagen production via hypoxia

and attenuates pulmonary fibrosis (PF) formation (16). ACE2

inhibits cancer cell migration by reducing the activities of matrix

metalloprotease (MMP) 2 and MMP9 (17). In addition, ACE

and vascular endothelial growth factor A levels were also

reduced via the angiotensin II type 1 receptor. ACE2 is

protective against acute and chronic lung failure and fibrosis

under hypoxic conditions (3). The COVID-19 cytokine storm,

which results from the rapid production of pro-inflammatory

cytokines such as IL-6, TNF-a, and IFN-g, is correlated with an

unfavorable outcome with immune dysregulation (18).

Decreasing IFN-g-producing T-cells appears to be critical for

antibody production (9). As RNA viral infection sensor, toll-like

receptors (TLRs) such as TLR3 and TLR7 were activated during

SARS-CoV-2 infection (19). Poly(I:C) together with TGF-b
induces MMP9 production via TLR3 (20, 21). IL-6 acts as a

pro-fibrotic factor and stimulates collagen production in various
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cells, including fibroblasts, whereas IFN-g causes a reduction in

collagens and fibronectin as an antifibrotic agent (22, 23). Viral

infection is a risk factor for exacerbating interstitial lung disease

(ILD) (24). Worse outcomes have been reported in patients with

COVID-19 and other underlying diseases (25, 26). As

antifibrotic therapies for ILD or progressive fibrosing

interstitial lung disease, pirfenidone and nintedanib are

effective but have different pharmacological actions.

Nintedanib has shown efficacy in the treatment of COVID-19

(27). These agents may be effective in the treatment of post-

COVID lung fibrosis (28).

We developed an induced usual interstitial pneumonia

(iUIP) mouse model (29). Bimodal fibrosis was also observed

in this model. Primary fibrosis with severe acute inflammation

was observed at weeks 2–4 during the non-specific interstitial

pneumonia (NSIP) stage after BMS induction wherein

bleomycin was mixed with an equal volume of microbubbles

before sonoporation. Secondary fibrosis occurs at weeks 10–14

after BMS induction (UIP stage). Metaplastic epithelial

conversion and honeycomb formation were observed at the

UIP stage. Most metaplastic cells express secretoglobin family

1A member 1 (Scgb1a1), but not keratin 5 (Krt5). These cells

produce a laminin-degrading product (g2 proteolytic fragment,

g2PF) by disrupting the basement membrane and acquiring

invasive properties (30). These invasive cells are distinct from

lineage-negative epithelial stem/progenitor or basal cells, or

hyperplastic AECII (31). The iUIP model is based on

D1CC×D1BC transgenic mice, which develop inflammatory

arthritis followed by ILD after immunization with low doses of

arthritogenic antigen, hereafter termed the induced rheumatoid

arthritis-associated interstitial lung disease (iRA-ILD) mouse

model. The major histopathological features in the iRA-ILD

model were similar to those of NSIP with inflammation, but with

milder epithelial abnormalities than those in iUIP mice (32). The

antifibrotic agent nintedanib ameliorated fibrosis and reduced

the number of invasive epithelial cells.

Precision-lung cut slices (PCLS), an ex vivo tissue culture

using lung sections, have been applied to various translational

analyses (33). This technique was originally developed to analyze

bronchoconstriction-induced effectors and has been applied to

the evaluation of chemical toxicity (34). More recently, the lungs

from conventional bleomycin-induced IPF models and human

specimens have been used to evaluate fibrosis and the effects of

therapeutic agents (35, 36). PCLS from bleomycin-treated

animals were used to evaluate the therapeutic targets of IPF (37).

In this study, we examined the expression levels of ACE2

and TMPRSS2 in patients with IPF and iUIP mouse. We also

investigated the effects of SARS-CoV-2 infection on various

physiological conditions induced by IFNs, fibrosis-related

cytokines, poly(I:C)-induced viral infection mimicry and

hypoxia, using ex vivo cultures of PCLS from iUIP mice.

Finally, we examined whether antifibrotic agents altered ACE2

expression in iUIP mice.
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Materials and methods

Mice details and pirfenidone and
nintedanib administration protocol

D1CC×D1BC tg mice bred on a DBA/1J background were

housed in a pathogen-free animal care facility at Nagoya City

University Medical School in accordance with institutional

guidelines (38). iUIP mice were administered pirfenidone (3.6

mg/mouse/day, n = 8), nintedanib (1.8 mg/mouse/day, n = 10),

or the vehicle (sterilized 0.5% of methylcellulose, Fujifilm-Wako,

Tokyo, Japan, n = 9) orally daily from 6–14 weeks after

BMS treatment.
BMS induction protocol

Bleomycin (0.512 mg/mL in normal saline, Nippon Kayaku)

was mixed with an equal volume of microbubbles (Ultrasound

Contrast Agent SV-25, NepaGene) and administered via the i.t.

route using a spray nebulizer (40 µl/mouse, 1.28 mg/kg body

weight, Natsume), prior to sonoporation on the chest by 1.0 W/

cm2 for 1 min (Sonitron GTS Sonoporation System, NepaGene,

BMS induction). IP induction was monitored by measuring

serum SP-D levels.
Induction of inflammatory arthritis in
iRA-ILD mouse model

Inflammatory polyarthritis followed by interstitial lung

disease was induced as previously described (32). Briefly, mice

were anesthetized with isoflurane and immunized with bColII

(0.01 mg/mouse) with an equal volume of complete (1st) and

incomplete (2nd–5th) Freund’s adjuvant. The first immunization

was administered at 8–10 weeks after birth. Mice were

monitored using joint scoring.
Human specimens

We analyzed lung biopsy specimens from three patients with

IPF at Nagoya City University Graduate School of Medical

Sciences. Lung controls were obtained from US Biomax

(Derwood, MD, USA). The clinical features are presented in

Supplementary Table 1.
In situ hybridization

Lungs were harvested at 0, 2, and 14 weeks after BMS

induction for iUIP and at 43 weeks after the 1st bColII
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immunizat ion for RA-ILD, fixed overnight in 4%

paraformaldehyde diluted in PBS, and embedded in paraffin

before 2 µm thick sections were cut. In situ hybridization for

Scgb1a1, Sftpc, Krt5, Ace2, and Tmprss2 was performed using the

RNAscope Multiplex Fluorescent Reagent Kit v2 (Advanced Cell

Diagnost ics , Newark, CA, USA) according to the

manufacturer’s instructions.
Immunohistochemistry

For mouse lung immunohistochemistry, the deparaffinized

sections were stained with the following primary antibodies:

rabbit anti-E-cadherin and rabbit anti- MMP7 (Cell

Signaling Technology, Danvers, MA, USA), rabbit anti-SP-C

(Hycult Biotech, Uden, Netherlands), and ACE-2 (R&D

Systems, Minneapolis, MN, USA). For human lung

immunohistochemistry, deparaffinized sections were stained

with the following primary antibodies: rabbit anti-E-cadherin

(Cell Signaling Technology), rabbit anti-proSP-C (Merck,

Darmstadt, Germany), rabbit anti-ACE-2 (R&D Systems), and

mouse anti-Laminin g2 N-terminal fragment (g2pf, Funakoshi,
Tokyo, Japan). Histofine simple stain mouse MAX-PO

secondary antibodies (Nichirei, Tokyo, Japan) and the Opal

multiplex fluorescent immunohistochemistry system (Akoya

Biosciences, Marlborough, MA, USA) were used according to

the manufacturer’s protocol. All the images were captured using

a fluorescence microscope (BZ-X710; Keyence, Osaka, Japan).

To calculate the percentage of Ace2+ cells in E-cadherin+

bronchioles or invasive epithelial cells from the UIP lungs of

four mice, five images (200× magnification) were captured and

the percentage of Ace2 positive cells was calculated by

ImageJ Fiji.
PCLS preparation

Fresh lungs were isolated from iUIP and control mice under

sterile conditions. Lungs were filled with 2% of low-melting

agarose in HBSS (agarose: Sigma-Aldrich, Steinheim, Germany;

HBSS; Thermo Fisher Sciences, Waltham, MA, USA; agarose

solution was preincubated at 45°C before use). The whole carcass

was chilled at 4°C for 10 min to allow gelling of the agarose. Each

lobe was dissected and embedded in the 2% of low-melting

agarose. The embedded lung was cut to a thickness of 300 mm
using a vibratome (Compresstome ™ VF-300 OZ, Precisionary,

Natick, MA, USA). Approximately 60 slices were collected from

each mouse. All PCLS were cultured in DMEM/F12 (Sigma-

Aldrich) media supplemented with 0.1% fetal bovine serum, 100

U/mL penicillin, 100 mg/mL streptomycin, and 2.5 µg/mL

amphotericin for 24 h and frozen with CELLBANKER 1

(Zynogen Pharma, Fukushima, Japan) before use.
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Ex vivo culture of PCLS

Ex vivo culture of PCLS was performed at 37°C in 5% CO2

for 96 h in the case of poly(I:C) and/or IFNs and for 120 h in

the case of fibrosis cocktail. IFN-g (100 ng/ml, Fujifilm-Wako),

IFN-a2 (100 ng/ml, R&D Systems), and Poly(I:C) (10 ng/ml,

Tocris, Bristol, UK) were used to simulate RNA virus infections,

such as SARS-CoV-2. The fibrosis cocktail consisted of 10 ng/ml

platelet-derived growth factor (PDGF)-BB (Fujifilm-Wako),

10 ng/mL TNF-a (Fujifilm-Wako), 5 ng/mL transforming

growth factor-b (TGF-b) (R&D systems), and 5 µM

lysophosphatidic acid (LPA) (Focus Biomolecules, Plymouth

Meeting, PA) and was replenished at 48 and 96 h (35). The O2

concentrations for hypoxia and physioxia were used as 2 and 5%,

respectively (39, 40). PCLSs were incubated under hypoxia,

physioxia, and normaxia (21% O2) for 12, 24 and 48 h with or

without Roxadustat (50 µM, Cayman, MI, USA) in hypoxia

chamber (SV-140A, Blast, Tokyo).
Western blot

The following primary antibodies were used: goat anti-ACE-

2 (R&D Systems) and rabbit anti-b-actin (Proteintech Group,

Tokyo, Japan). ECL™ anti-rabbit IgG (GE Healthcare, Uppsala,

Sweden) or anti-goat IgG (R&D Systems) horseradish

peroxidase-linked antibodies were used as the secondary

antibodies. Each signal was detected using ImmunoStar Zeta

or ImmunoStar LD (Fujifilm Wako) and Amersham Imager 600

series (GE Healthcare). Statistical analysis of the expression

levels of each protein was performed using ImageJ Fiji (41).

All actual western blotting data are in Supplementary Figure 1.
Quantitative PCR analysis

Total RNA was extracted using the RNeasy Mini Kit

(Qiagen, Hilden, Germany) for lung tissues and ReliaPrep

RNA Tissue Miniprep System (Promega, Madison, WI, USA)

for PCLS samples according to the manufacturer’s instructions.

For qPCR, cDNA was synthesized using ReverTra Ace qPCR RT

Master Mix with gDNA Remover (TOYOBO, Osaka, Japan).

qPCR was performed using the PrimeTime Gene Expression

Master Mix (Integrated DNA Technologies, Coralville, IA,

USA). The relative expression of each gene was determined by

an internal control using Hprt for each sample.
Statistical analyzes

The results are shown as mean ± standard error (SE).

Differences between non-instillation (0 w) or vehicle, and the
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other groups were evaluated by one-way analysis of variance

(ANOVA) followed by Student’s t test or Dunnett’s test for

parametric data (Prism9, GraphPad). In the pirfenidone and

nintedanib administration studies, statistical significance

among data at UIP phase (14 weeks), 0 weeks, and at the

time of drug administration were evaluated using one-way

ANOVA followed by Dunnett’s test for parametric data

(Prism9, GraphPad). Values of P < 0.05 were considered

statistically significant.
Results

ACE2 is expressed in invasive epithelial
cells of iUIP mouse

SARS-CoV-2 binds to ACE2, which is specifically expressed

in AECII in the lungs. To assess the alteration of ACE2 in

interstitial pneumonia, we performed in situ hybridization using

the iUIP mouse model. In iUIP mice, bimodal fibrosis consisted

of pulmonary fibrosis with inflammation (an NSIP stage, most

sampling at week 2 after intratracheal instillation of bleomycin)

and chronic fibrosis with less inflammation (a UIP stage, most

sampling at week 14 after intratracheal instillation of

bleomycin). The expression of ACE2 was limited mainly to

surfactant protein C (Sftpc)+ AECII and bronchioles, such as

ciliated cells (Figure 1A). The number of Ace2+/Sftpc+ cells

decreased at the NSIP stage, and most Ace2+ cells were

excluded from hyperplastic AECII (3). At the UIP stage, Ace2

expression increased dramatically and was distinguished from

most cells expressing Sftpc alone (Figure 1A-3 and -4). Next, we

examined the expression of Tmprss2 at both stages. While the

expression of Tmprss2 was weak at week 0 and the NSIP stage,

the levels of Tmprss2 and Ace2 increased in Scgb1a1+ invasive

epithelial cells at the UIP stage (Figure 1B). Honeycomb-

forming epithelial cells expressed Tmprss2 and Ace2, but some

cells expressed Tmprss2 alone (Figure 1B, white arrow). The

expression of Ace2 was also observed in invasive epithelial cells

found in the iRA-ILD mouse model (Figure 1B). Some of these

invasive epithelial cells expressed E-cadherin, MMP7, and

ACE2, even at the protein level, at UIP stage (Figure 1C).

Hyperplastic AECII, honeycomb structure, and E-cadherin+

invasive epithelial cells are typical pathologies of the UIP stage.

Expression of the ACE2 protein was detected in honeycomb-

forming epithelial cells and hyperplastic areas (Figure 1D).

Approximately 20% of E-cadherin-positive cells expressed

Ace2 (Figure 1E). Thus, aberrantly expressed-Ace2 was widely

distributed throughout the lungs at this stage. Krt5+ basaloid

cells are adjacent to invasive Scgb1a1+ ones. We examined

whether Ace2 expression was excluded from Krt5+ basaloid

cells. Ace2 expression was not detected in Krt5+ basaloid

cells (Figure 1F).
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ACE2 expression is low at the NSIP stage
and high at the UIP stage

Next, qPCR was performed for Ace2, Tmprss2, and Il6

expression in whole-lung extracts of the iUIP model. Ace2 and

Tmprss2 expression decreased at the NSIP stage (Figures 2A, B).

On the other hand, Ace2 expression increased at the UIP stage

more than week 0. In contrast, Il6 expression was inversely
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correlated with, rather than coincident with, Ace2 expression

(Figures 2A–C). The expression of Ifng increased after

bleomycin induction (Figure 2D); however, the expression of

Ifna2 was not detected in qPCR (data not shown). The lungs at

the UIP stage of the iUIP mice were studied under hypoxia.

Endothelin-1 (Edn1) and angiotensin-converting enzyme (Ace),

which act as a counterpart of vasoregulatory ACE2, were tested;

Edn1 showed no increase either NSIP or UIP stage, whereas Ace
B

C

D

E

F

A

FIGURE 1

Ace2 expresses in AECII and epithelial cells with abnormalities. (A) In situ hybridization of Sftpc (green) and Ace2 (red), (B) Scgb1a1 (green), Ace2
(red), and Tmprss2 (white) in the lungs at week 0, the NSIP (2w), the UIP (14w) stages, and iRA-ILD. Red arrows indicate epithelial cells
expressing Scgb1a1, Ace2, and Tmprss2. The white arrow indicates the inner cells of the honeycomb structure that express only Tmprss2. A-1
to-4 are enlarged images. (C) Immunohistochemical staining for E-cadherin (E-cad, green), ACE2 (red), and MMP7 (white) at week 0, the NSIP,
and the UIP stages. (D) Immunohistochemical staining for E-cadherin (green), ACE2 (red), and SP-C (white) in the areas of hyperplastic AECII,
honeycombing, and invasive epithelial cells at the UIP stage. (E) Percentage of Ace2+ cells in E-cadherin+ bronchioles or invasive cells at the UIP
stage. Data are presented as mean ± SE of five images. (F) in situ hybridization of Scgb1a1 (green), Ace2 (red), and Krt5 (white) in the bronchiolar
epithelium at week 0, the NSIP, and the UIP stages. Scale bars indicate 50 µm (white) and 20 µm (yellow).
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decreased slightly at the UIP stage (Figures 2E, F). At the UIP

stage, increased Ace2 expression was confirmed at the protein

level (Figure 2G).
ACE2 expression is elevated in IPF

Squamous metaplasia is often observed in patients with PF.

These metaplastic epithelia were localized in the bronchioles,

including honeycombing, and diffused into the lungs

(Figure 3A). Since ACE2 expression was elevated in invasive

epithelial cells at the UIP stage of the mouse model, we

investigated whether ACE2 expression was observed in the

bronchiolar epithelium with abnormalities in patients with IPF

by qPCR. Most of these cells expressed ACE2, E-cadherin, and

SP-C (Figure 3B). In contrast, SP-C-positive AECII expressed

only ACE2 in the normal regions of the same specimens and in

the control. Bronchiolar epithelial cells that acquire invasiveness

feature increased laminin-5 expression, which is prognostically

significant for lung cancer, and high levels of ACE2 expression

have been reported in squamous carcinoma tissues (17). Thus,

we examined whether g2pf, as a cancer marker, is related to

invasiveness and colocalizes with ACE2-positive cells in patients

with IPF. A small number of ACE2/E-cadherin-positive diffused
Frontiers in Immunology 06
cells expressed g2pf, suggesting that most of the ACE2-positive

cells were not malignant (Figure 3C).
Poly(I:C) and IFNs mixture reduced
Ace2 expression

Ex vivo cultures of PCLS from iUIP mice were used to assess

the biological response of whole lung tissue to extracellular

effectors. The effects of poly(I:C) alone (mimicking SARS-

CoV-2 infection) and poly(I:C)/IFN-a2 and -g mixtures (as

IFNs production after virus infection) in PCLS were examined

by qPCR (Figure 4A). Poly(I:C) significantly increased Ifng

expression at the UIP stage but not in Ifna2 (Figures 4B, C).

The combination of poly(I:C) and IFNs mixture produced more

IFN-g. Lungs from the UIP stage were susceptible to poly(I:C)

treatment. These effectors enhanced Il6 expression; however,

there were no differences between the UIP stage and controls

(Figure 4D). The antifibrotic effects of IFNs have been well

studied. Indeed, poly(I:C) alone increasedMmp9 expression, but

an additional IFN mixture downregulated Mmp9 expression

(Figure 4E). Additionally, Col1a1 expression was strongly

downregulated (Figure 4F). Under these conditions, poly(I:C)

alone did not alter Ace2 expression, and the combination of poly
frontiersin.or
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FIGURE 2

Ace2 expression was increased at UIP stage. The expression of Ace2, Tmprss2, Il6, Ifng, Edn1, and Ace was determined by qPCR in the whole
lung extract (A–F) and western blotting for ACE2 expression (G). Data are presented at week 0 as the controls and at the NSIP, and the UIP
stages. Hprt and b-actin were used as the internal controls for qPCR and western blotting, respectively. Data are presented as mean ± SE of four
to five mice at each stage. Asterisks indicate *P < 0.05, **P <0.01, compared with week 0. “ns” is not statistically significant.
g
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(I:C) and IFNs did not increase Ace2 expression (Figure 4G).

The expression of Tmprss2 was not altered (Figure 4H). These

data suggest that Ace2 gene expression is regulated

independently of viral infection and the subsequent

cytokine storm.
Fibrosis cocktail decreased
Ace2 expression

The PCLS is also a useful tool for assessing the severity of

fibrosis. In a previous study, a mixture of TNF-a, TGF-b, PDGF-
BB, and LPA was used as a fibrosis cocktail to enhance Col1a1

expression in PCLS (Figures 5A, B) (35). We examined whether

Ace2 expression is altered under fibrotic conditions in PCLS. In the

murine PCLS system, the fibrosis cocktail enhanced Col1a1 and

Acta2 expression at the UIP stage compared with that of the

controls. The findings from this experiment suggests that UIP
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lungs are more susceptible to the fibrosis cocktail than that of

normal lungs, even though Il6 was the same in both samples

(Figures 5B–D). Under these conditions, both Ace2 and Tmprss2

were downregulated by fibrosis cocktail treatment (Figures 5E, F).

Next, we examined the effects of exposure to a mixture of poly(I:C)

and IFNs and subsequent treatment with a fibrosis cocktail

(Figure 5G). This sequential exposure had no effect on the

decreased expression of Ace2 and Tmprss2 (Figures 5H, I).
Hypoxia decreased Ace2 expression

The overall lung condition in the UIP stage was relatively

hypoxic (Supplementary Figure 2). Therefore, we examined

whether hypoxia (2% O2) or physioxia (5% O2) alters the

expression of Ace2 in PCLS (Figure 6A). Hypoxia decreased

Ace2 expression at 24 and 48 h (Figure 6B). In contrast, Tmprss2

expression was increased after 48 h of hypoxia (Figure 6C).
B

C

A

FIGURE 3

ACE2 was detected in epithelial cells of patients with IPF. (A) Histopathology of human normal lung and IPF lung. Specimens were stained with
hematoxylin and eosin. (B) Immunohistochemical staining for E-cadherin (green), ACE2 (red), and SP-C (white) in the honeycombing region and
normal area of IPF lung or the control. (C) Immunohistochemical staining for E-cadherin (green), ACE2 (red), and g2PF (white) in squamous
hyperplasia and the control area. Scale bars indicate 50 µm (black or white).
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Under these conditions, Edn1 increased in a less oxygen-

concentration-dependent manner (Figure 6D). Expression

levels of Hif1a and Gapdh were increased under hypoxia

(Supplementary Figures 3A, C). The hypoxia-inducible factor

roxadustat inhibits prolyl hydroxylase (PHD), which stabilizes

hypoxia inducible factor 1 subunit a (HIF1a) and induces gene
Frontiers in Immunology 08
transcription via HIF1a (Figure 6E). Thus, even under

normoxia, roxadustat decreased Ace2 expression but had no

effect on Tmprss2 (Figure 6F, G). Because roxadustat inhibits Ace

and End1, it activates HIF1a but may have some side effects on

gene regulation in the whole lung, including PCLS

(Supplementary Figures 4A, C).
B C

D E F

G H

A

FIGURE 4

Poly(I:C) and the combination of poly(I:C) and INFs decreased Ace2 expression in ex vivo culture using PCLS qPCRs using ex vivo culture of
PCLS treated with poly(I:C) and the combination of poly(I:C) and IFNs were performed. (A) Schematic diagram of the protocol using poly(I:C)
and a combination of poly(I:C) and INFs in PCLS. (B–H) Fold changes in expression levels of each gene, Ifna2 (B), Ifng (C), Il6 (D), Mmp9 (E),
Col1a1 (F), Ace2 (G), and Tmprss2 (H) at week 0 and the UIP stage. Hprt expression was used as an internal control for qPCR. Each bar
represents the control (vehicle, white bar), poly(I:C) alone (red bars), poly(I:C), and the combination of poly(I:C) and IFNs (blue bars), respectively.
Each mRNA was prepared from PCLS samples from each stage of the iUIP mouse model. Data are presented as mean ± SE of five to six mice.
Asterisks indicate *P < 0.05, **P <0.01, compared with week 0. “ns” is not statistically significant.
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B C D

E F

G

H I

A

FIGURE 5

Fibrosis cocktail decreased Ace2 and Tmprss2 expression qPCRs using ex vivo culture of PCLS treated with fibrosis cocktail were performed.
(A) Schematic diagram of the protocol for using a fibrosis cocktail in PCLS. (B–F) Fold changes in the expression levels of each gene, Col1a1
(B), Acta2 (C), Il6 (D), Ace2 (E), and Tmprss2 (F) at week 0 and the UIP stage. (G) Schematic diagram of the protocol using a fibrosis cocktail
following the combination of poly(I:C) and IFNs in PCLS. (H, I) Fold changes in the expression levels of Ace2 (H) and Tmprss2 (I). Hprt expression
was used as an internal control for qPCR. Each bar represents the vehicle (white bars) or fibrosis cocktail (green or orange bars). Each mRNA was
prepared from PCLS samples from each stage of the iUIP mouse model. Data are presented as mean ± SE of five or seven mice. Asterisks indicate
*P < 0.05, **P <0.01, ***P <0.001, compared with week 0. “ns” is not statistically significant.
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Antifibrotic agent, nintedanib decreased
Ace2 expression

iUIP mice were treated with the antifibrotic agents

pirfenidone and nintedanib, and levels of ACE2 in whole

lungs were compared by western blotting, qPCR, and in situ

hybridization (Figure 7A, schematic diagram of pirfenidone or

nintedanib treatment). Nintedanib and pirfenidone treatment

decreased type I collagen expression (Figures 7B, C, and western

blotting photos in Figure 2E). ACE2 expression was reduced

with nintedanib treatment but not with pirfenidone (Figures 7D,

E, 2E). This nintedanib-induced decrease in Ace2 expression was

also confirmed at the mRNA level (Figure 7F). In contrast, Ace

expression was reduced at the UIP stage, suggesting that

nintedanib restored the pulmonary blood pressure

(Figure 7G). Nintedanib did not affect the expression of

Tmprss2 (Figure 7H). Since Ace2 expression was increased in

invasive epithelial cells at the UIP stage, we examined whether
Frontiers in Immunology 10
nintedanib reduced Ace2 expression in these cells using in situ

hybridization. Nintedanib reduced Ace2 expression but not

Tmprss2 expression (Figure 7I).
Discussion

We investigated whether patients with IPF are more

susceptible to SARS-CoV-2 infection and whether subsequent

virus-induced interferons and cytokines affected levels of ACE2

and TMPRSS2. ACE2 expression decreased with acute

inflammation in the lung; however, it increased in the

pulmonary epithelium with abnormalities in the iUIP mouse

model. A similar pathological feature has been observed in

patients with IPF. The combination of poly(I:C) and IFNs

weakly decreased Ace2 expression and did not alter Tmprss2

expression in PCLS of the iUIP mouse model. Fibrosis-related

cytokines suppress TMPRSS2 and elevate ACE2 expression.
B C D

E

F G

A

FIGURE 6

Hypoxia decreased Ace2 expression qPCRs using ex vivo culture of PCLS at week 0 under hypoxia were performed. (A) Schematic diagram of
protocol in PCLS under normoxia (21%), physioxia (5%), and hypoxia (2%). (B–D) Fold changes in the expression levels of each gene, Ace2
(B), Tmprss2 (C), and Edn1 (D). (E) Schematic diagram of the protocol using roxadustat, which is an HIF-a prolyl hydroxylase inhibitor, under
normoxia in PCLS. (F–G) Fold changes in the expression levels of Ace2 (F) and Tmprss2 (G). Hprt expression was used as an internal control for
qPCR. Each bar represents vehicle (white bars) and roxadustat (blue bars). Each mRNA was prepared from the PCLS samples after 12, 24, and 48
h of treatment. Data are presented as mean ± SE of five to six mice. Asterisks indicate *P < 0.05, **P <0.01, and ****P <0.0001 compared with
week 0. “ns” is not statistically significant.
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Thus, SARS-CoV-2 infection enhances host defense, leading to

suppression of viral entry into pulmonary epithelial cells.

Nintedanib also suppress the expression of ACE2 in invasive

epithelial cells during the UIP stage. However, it did not alter

TMPRSS2 expression.

Notably, the level of ACE2 in a conventional bleomycin

mouse model was controversial in previous studies (3, 4). In

most cases, upregulation of ACE2 is observed in isolated
Frontiers in Immunology 11
epithelial cells or cell lines, such as lung cancer cells (12).

However, consistent with the data on overexpression and loss

of function of ACE2, we concluded that acute inflammatory

conditions, such as the NSIP stage, induced the downregulation

of ACE2 expression (Figure 2). In contrast, in chronic diseases

such as IPF, pulmonary hypertension is present due to decreased

pulmonary vascularity and decreased cytokines/chemokines in

the lung, which may upregulate ACE2 expression. As a result,
B C D E

F G H

I

A

FIGURE 7

Nintedanib attenuated the degree of Ace2 and Ace expression (A) Schematic diagram of protocol for the oral administration of nintedanib or
pirfenidone. Both treatments were started from six weeks after BMS administration and were carried out daily for next eight weeks. (B–E) Western
blotting was performed using protein extracts from each lung at week 0, the UIP stage, and the UIP stage with nintedanib (UIP+nintedanib) or
pirfenidone (UIP+pirfenidone) treatments. (B, C) Nintedanib (B) and pirfenidone (C) decreased the expression of type I collagen at the UIP stage.
(D, E) Nintedanib (D) decreased the expression of ACE2, whereas pirfenidone did not (E). Expression data from western blotting were normalized to
b-actin expression levels. (F–H) qPCR were performed using whole lungs from each mouse. Fold changes in expression levels of Ace2 (F), Ace
(G), and Tmprss2 (H). Hprt expression was used as an internal control of qPCR. (I) in situ hybridization of Scgb1a1 (green), Ace2 (red), and Tmprss2
(white) in the lungs from each mouse at week 0, the UIP stage, and the UIP+nintedanib. Data are presented as mean ± SE averaged over 4-5 mice.
Asterisks indicate *P < 0.05, **P <0.01, and ***P <0.001 compared with week 0. “ns” is not statistically significant.
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vasodilation may be enhanced in patients with IPF. Severe

capillary dysplasia is observed at the UIP stage of the iUIP

mouse model (29). Hypoxia immediately induces ACE2

expression via a HIF-1a-independent pathway (42). The

Subsequent HIF-1a expression increased ACE expression and

reduced ACE2 expression by angiotensin II. Rather, hypoxia

downregulated Ace2 expression immediately in PCLS (Figure 6).

These events suggests that normoxia is rather persistent in the

whole lung of IPF because of the elevated expression of ACE2

but downregulated ACE (Figures 1, 2). Furthermore, ACE2

works in opposition to ACE and may lead to vasodilation

from vasoconstriction, either locally or throughout the lung, to

ameliorate pulmonary hypertension due to poor angiogenesis

(29, 43). In contrast, infection with SARS-CoV-2 results in the

downregulation of ACE2, both by the production of the

infection itself and by the subsequent production of cytokines

and chemokines. This event abrogated the beneficial changes in

the increased ACE2 expression in IPF, even though it reduced

the number of SARS-CoV-2 receptors.

Previous studies have suggested that IFNs might increase

ACE2 expression and render lung epithelial cells more

infectious. Interestingly, poly(I:C) or a mixture of Poly(I:C)

and IFNs (IFN-a2 and IFN-g) significantly induced Ifng at

UIP stage, but not at week 0. Even under presumed autocrine/

paracrine-mediated positive feedback by IFN-g, Ace2 expression
was not induced, suggesting that IFN-g and IFN-a2 have no

potential to induce Ace2 in PCLSs. Col1a1 was also dramatically

reduced by poly(I:C) and IFNs. Activation of TRL3 by poly(I:C)

and subsequent IFNs functioned as an antifibrotic agent in the

whole lung. Poly(I:C) and IFNs simultaneously enhanced Il6

expression. Therefore, IFN treatment may lead to a therapeutic

approach as an anti-fibrosis agent if it can block the function of

de novo IL-6; otherwise, it is less effective (44). Focusing on

inflammation, we can see that IL-6 and ACE2 are reciprocal;

however, further investigation is needed. These data suggest that

SARS-CoV-2 is unlikely to spread via elevated ACE2 expression

to promote viral entry into lungs after infection. Under such

conditions, these factors exert an antifibrotic effect, at least for

short periods of time, such as during acute inflammation.

Recently, deltaACE2, a truncated form of ACE2 without a

binding site for SARS-CoV-2 and enzymatic activity, was

identified only in primates (45). Canonical ACE2 is not an

IFN-stimulated gene (46). No activation of IFN or OAS-RNase L

was observed in alveolar type 2-derived pluripotent stem cells by

SARS-CoV-2 infection (47). In contrast, mimicking SARS-CoV-

2 infection with poly(I:C) induced the expression of both IFNs

and IL-6, which appeared to be similar to the situation in virus-

infected lungs. Under these conditions, the effect of IFNs

overcomes the fibrotic condition induced by Il6 (Figure 4). In

fact, IFN-g suppresses Col1a2 and Col1a1 expression (48). Since

PCLS could respond to fibrosis cocktails and induce Il6 and

Col1a1, we concluded that viral infections, such as SARS-CoV-2,

strongly suppress fibrosis (Figure 5). Therefore, after SARS-
Frontiers in Immunology 12
CoV-2 infection, under normal conditions, at least two phases

function: an antifibrotic effect by IFNs and a hypoinfectious state

for SARS-CoV-2 due to decreased ACE2 expression.

Post-COVID-19, reducing the incidence of pulmonary

fibrosis has become an urgent global issue. It will be

interesting to determine the effects of pirfenidone and

nintedanib in this regard. In the mouse model, there were no

obvious changes after pirfenidone treatment, but nintedanib

decreased Ace2 and increased Ace expression (Figure 6). This

suggests a beneficial change in drug treatment for the disease. On

the other hand, note that in the RA-ILD mouse model, there was

no significant differences in gene expression with nintedanib

treatment (49). Thus, nintedanib treatment induced a balanced

host response to blood pressure in the lungs.

Using PCLS, we investigated the effect of viral infection on

the entire lung. These results suggest that SARS-CoV-2 infection

cannot directly and extensively promote viral entry into lung

cells. Rather, severe capillary dysplasia is observed during the

UIP stage of IPF, and ACE2 expression may increase to

compensate for hypertension in the lungs. Thus, the decrease

in ACE2 under viral infection may cause vasoconstriction rather

than vasodilation, which may strain the blood vessels, especially

capillaries. These results suggest that the lungs are resistant to

further infection after the initial SARS-CoV-2 infection.

However, SARS-CoV-2 infection may adversely affect blood

vessels by reducing the expression of ACE2.
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