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Differences of macrophages in
the tumor microenvironment
as an underlying key factor in
glioma patients
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Chuanbao Zhang1, Xiudong Guan1* and Wang Jia1,2,3*

1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,
2Beijing Neurosurgical Institute, Capital Medical University, Beijing, China, 3China National Clinical
Research Center for Neurological Diseases (NCRC-ND), Beijing, China
Background:Macrophages, themajor immune cells in gliomamicroenvironment,

are closely related to tumor prognosis. Further studies are needed to investigate

macrophages, which will be helpful to fully understand the role of it and early

achieve clinical translation.

Methods: A total of 1334 glioma cases were enrolled in this study from 3

databases. In our works, the single cell cohorts from GSE89567, GSE84465,

and the Chinese Glioma Genome Atlas (CGGA) datasets were used to analyze

the key genes of macrophage. The bulk sequencing data from the Cancer

Genome Atlas (TCGA) and CGGA datasets were respectively divided into the

training set and validation set to test prognostic value of the key genes from

single cell analysis.

Results: Quantitative and functional differences significantly emerge in

macrophage clusters between LGG and GBM. Firstly, we used the Seurat R

package to identify 281 genes differentially expressed genes in macrophage

clusters between LGG and GBM. Furthermore, based on these genes, we

developed a predictive risk model to predict prognosis and reflect the immune

microenvironment in glioma. The risk score calculation formula was yielded as

follows: Risk score = (0.11 × EXPMACC1) + (−0.31 × EXPOTUD1) + (−0.09 × EXPTCHH) +

(0.26 × EXPADPRH) + (-0.40× EXPABCG2) + (0.21 × EXPPLBD1) + (0.12 × EXPANG) +

(0.29 × EXPQPCT). The risk score was independently related to prognosis. Further,

significant differences existed in immunological characteristics between the low-

and high-risk score groups. What is more, mutation analysis found different

genomic patterns associated with the risk score.
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Conclusion: This study further confirms that the proportion of macrophage

infiltration is not only significantly different, but the function of them is also

different. The signature, identified from the differentially expressed

macrophage-related genes impacts poor prognosis and short overall survival

and may act as therapeutic targets in the future.
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Introduction

Glioma is the most prominent malignancy of the central

nervous system (CNS) in adults, and it is associated with an

elevated recurrence rate, morbidity, and mortality (1). Despite

comprehensive intervention involving surgical resection, radio-,

and chemotherapies, patients often experience very poor outcome

(2). Recently, a myriad of biological indicators were identified to

facilitate the accurate diagnosis and prognosis of multiple cancer

patients. In 2016, the World Health Organization (WHO) made

revisions to their stratification of CNS tumors, based on

morphology and molecular variables, thus, indicating that

molecular evaluation is crucial to glioma diagnosis (3). However,

despite much improvement in the molecular profile-based

diagnosis and prognosis, patient outcomes are still unsatisfactory,

so it requires further enhancement (4). As a result, it is critical to

develop additional and better fit molecular models.

The tumor microenvironment (TME) mainly refers to the

microenvironment associated with immune cells (5). TME is a

vital component of tumor biology. Multiple reports suggested

that associations between TME components like tumor cells or

tumor-infiltrating immune cells strongly influence patient

outcomes (6). Hence, TME is increasingly studied in the

tumor research field. Tumor-associated macrophages (TAMs)

are the primary invading immune cells within the glioma TME,

and it accounts for 30~50% of all cells in TME (7). This raises the

possibility that targeting TAMs may emerge as an attractive

adjuvant therapy for glioma. In the past decade, high-

throughput technologies produced a massive amount of

biological data, including single-cell RNA sequencing data

(scRNA-seq), transcriptomic sequencing data, genomic

sequencing data, and so on. In addition, further mining and

analyses of these data contributed to the exploration of valuable

markers that can guide clinical treatment. Herein, we examined

macrophages within the glioma TME, based on the multi-omics

data, and revealed that both the proportion and function of

macrophages differed between the lower grade glioma (LGG)

and glioblastoma (GBM).
02
Methods and materials

Patients and datasets

The scRNA-seq data of 26 glioma cases, including 13 LGG

and 13 GBM cases, were downloaded from the GEO and CGGA

databases (8–10). A total of 16078 single cells were obtained in

this study. Bulk sequencing data, as well as matched clinical

patient profiles, of glioma patients were acquired from the

TCGA cohort, CGGA cohort1, and CGGA cohort2, which

included 623, 412, and 273 cases, respectively. The detail

information was supplemented in Table S1. Subsequently, the

RNA sequencing data were normalized. In a dataset that had

several rows for the same gene, the values from all rows were

averaged by the limma package, prior to computation via RPKM

(reads per kilobase transcriptome per million reads) (11).

Overall survival (OS) was described as the period between

diagnosis date and date of last follow-up or death.

This investigation received ethical approval from the

Beijing Tiantan Hospital, an affiliation of the Capital

Medical University.
Processing and analysis of the glioma
scRNA-seq data

The Seurat R package was employed for scRNA-seq data

analysis (12). Quality control was achieved by excluding low-

quality genes present in < 3 cells, or low-quality cells containing

< 100 total identified genes, or cells containing > 10%

mitochondrial genes. Subsequently, the remaining data was

normalized using the SCTransform method, thus properly

eliminating the batch effects (Figure 1A). Principal component

analysis (PCA) was employed to reduce scRNA-seq data

dimension (13). In short, 30 principal components were

employed for T-distributed stochastic neighbor embedding

(tSNE). Then, the macrophage cluster was annotated and

identified based on the CellMarker database (14).
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Differential and enrichment analysis

First, with the min-pct set at 0.3, log2 fold change > 3, and

p.adj < 0.05, the macrophage related marker genes (MRGs)

were computed using the Seurat function FindAllMarkers

(12). By this approach, the marker genes, most highly

expressed in macrophage, were identified, and they were

described as macrophage related genes (MRG). Second, we

compared the differentially expressed genes (DEGs) of the

macrophage cluster between the LGG and GBM, using the

Seurat function FindMarkers (filter: log2|fold change| > 1,

p.adj < 0.05). Third, we selected the intersection between the

two aforementioned sets, and defined them as differentially

expressed macrophage-related genes (DE-MRGs), which

differentially expressed in the macrophages from LGG

compared with macrophages from GBM. Subsequently, we

conducted enrichment analyses, using GO and KEGG tools,

on the DE-MRGs via the R package clusterProfiler (15).

P < 0.05 was deemed significant.
Frontiers in Immunology 03
Building the predictive model using COX
regression and LASSO analysis

We further evaluated whether DE-MRGs were associated with

OS, based on the bulk sequencing data. Using univariate Cox

analysis via the “survival” R package, least absolute shrinkage and

selector operation (LASSO) algorithm via the “glmnet” R package,

and multivariable Cox regression, we identified 8 genes and

corresponding coefficients. The risk scores (RS) were computed as

follows: sum [coefficient(genei) × expr(genei)].
The immunological role of RS in
glioma TME

Immunological characteristics of the TME in glioma were

evaluated in five ways. It included the immunomodulators

(IM) expression, the expression of inhibitory immune

checkpoints (IIC) and tumor-infiltrating immune cells (TIIC)
A B
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C

FIGURE 1

Macrophage cluster was identified based on scRNA-seq data. (A) ScRNA-seq data from three cohorts were shown based on the PCA algorithm.
(B) The tSNE algorithm was applied for dimensionality reduction and 8 cell clusters were successfully classified. (C–F) tSNE plots show the
marker genes expression for macrophage.
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effector genes, the cancer immunity cycle (CIC), the infiltration

level of TIICs, and the function of macrophage. To do this,

we first obtained 122 IMs, based on a prior investigation

(16), which included MHC, receptors, chemokines, and

immunostimulators. Second, we also obtained 18 IICs (17),

as well as some TIICs effector genes from the Hu J study (18).

Third, as reported in a prior investigation (19), the CIC reflects

the anticancer immune response and comprises seven steps:

release of cancer cell antigens (Step 1), cancer antigen

presentation (Step 2), priming and activation (Step 3),

trafficking of immune cells to tumors (Step 4), infiltration of

immune cells into tumors (Step 5), recognition of cancer cells

by T cells (Step 6), and killing of cancer cells (Step 7). The

activities of these steps demonstrate the status of anti-cancer

immunity, which was calculated by the website tool (19).

Fourth, exploration of the proportion of TIICs is one of the

most important parts of the assessment of TME. Following

this, to avoid any error or bias by using a single algorithm, we

comprehensively inferred the infiltration level of TIICs using

seven independent algorithms: QuanTIseq, XCELL, and EPIC

(20) which can play the role of mutual verification. Fifth, we

further explored the relation between RS and the function of

macrophage. One of the most important functions of

macrophage is related to inflammatory cytokines (21, 22).

We explored the relationship between RS and classical

chemokines and surface markers of both M1-macrophages

(IL12A, IL-12B, IL-23A, IL-23R, TNF) and M2-macrophages

(IL-10, IL-4, IL-13, TGF-beta 1, TGF-beta 2, TGF-beta 3).

Subsequently, we further explored the correlation of RS and the

five aforementioned variables in three cohorts.
Enrichment analysis of RS in glioma

Correlation analysis was conducted between RS and gene

expression. After that, enrichment analysis, including GO

analysis and KEGG analysis, was applied for the correlated

genes (|r| > 0.5, P < 0.05). We conducted enrichment analyses

on the correlated genes via the R package clusterProfile (15).

P < 0.05 was deemed significant.
Mutation analysis of RS in glioma

Using the TCGA database, we acquired data from 582 cases

with somatic mutations and 578 cases with somatic copy number

alternations (CNAs) that corresponded with the cases with RNA-

seq data. Next, we utilized the R software package “maftool” (23) to

screen for various driver genes between the HR and LR patient

cohorts. GISTIC2.0 (24) was employed to evaluate CNAs related to

RS. Genes with GISTIC value > 1 or < -1 were regarded as

amplification or deletion, respectively.
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Statistical analysis

Normally distributed continuous data were evaluated via the

Shapiro-Wilk test. Kaplan-Meier (KM) was utilized to compare

HR and LR patient survival via the Log-rank. Stand-alone

prognostic markers were identified via univariate and LASSO

regression models. ROC curves and AUC at the 3‐ and 5‐year

follow-ups were computed to examine the predictability of RS

using the ‘timeROC’ package. R (version 3.6.3) and its packages

were applied for all data analyses (https://www.r-project.org).

Two-tailed p-value <0.05 was set as the significance threshold.
Results

ScRNA-seq analysis of glioma

Following the aforementioned workflow, we retained 15253

(94.9%) high-quality cells, with a median of 4698 RNA features

detected within an individual cell from 26 glioma cases. A total

of 7365 and 7888 single cells were obtained from LGG and GBM,

respectively. Subsequently, all cells were separated into 8

clusters, which were then visualized using t-SNE (Figure 1B).

According to the CellMarker database, Cluster 0 exhibited

markedly elevated levels of CD68, C1QB, CD74, and

RNASET2, which were later identified as macrophages

(Figures 1C–F). We also examined the macrophage quantity

and proportion between LGG and GBM (Figure 2A). The GBM

macrophage proportion was 26.9% (quantity: 2121), whereas the

LGG macrophage proportion was only 17.6% (quantity: 1294),

which was statistically significant (P < 0.001) (Figure 2B). Apart

from these differences in macrophage quantity and proportion,

there were also differences in macrophage functions (Figure 2C)

and proliferation (Figures S3A, B) between LGG and GBM as

well. Gene Ontology analysis revealed that DE-MRGs between

LGG and GBM were enriched in immune response,

inflammatory response, TNF axis, response to cytokine, and

so on.
Identification and validation of a
predictive model

According to a previously described method, we identified

281 DE-MRGs (Figure 2D). Next, we explored whether the DE-

MRGs were associated with glioma patient prognosis. In total,

eight genes were identified (Figure 2E). They not only express

differentially between LGG and GBM but are also abundant in

macrophages (Figures 2F–I, S1A–H, S2A–L).

The detailed calculation process was as follows. First, 218

survival-related DE-MRGs were identified with univariate Cox

analysis in TCGA cohort. And then a total of 218 variables were
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reduced to 16 potential predictors in TCGA cohort (14:1 ratio) by

using LASSO analysis (Figure 3A). In addition, the features with

non- zero coefficients were employed in a multivariate Cox

regression model to calculate the risk score of the three cohorts.

Subsequently, TCGA cohort, CGGA cohort1, and CGGA cohort2

RSs were computed (Figure 3B), as shown below: RS = (0.11 ×

EXPMACC1) + (−0.31 × EXPOTUD1) + (−0.09 × EXPTCHH) +

(0.26 × EXPADPRH) + (-0.40× EXPABCG2) + (0.21 × EXPPLBD1)

+ (0.12 × EXPANG) + (0.29 × EXPQPCT). Cases were stratified into

two groups, based on the median RS value. Based on the KM of

TCGA cohort, RS was a strong prognostic indicator of glioma

patient outcome (Figure 3C). Figure 3D illustrates the AUCs were

0.93 and 0.87 for predicting 3- and 5-year OS, respectively.
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Similarly, KM analysis also revealed that RS was also markedly

correlated with patient OS in the remaining two CGGA cohorts

(Figures 3E and S4A). Moreover, the AUCs were 0.80 and 0.79 for

predicting 3- and 5-year OS in CGGA cohort1 and 0.77 and 0.76

for predicting 3- and 5-year OS in CGGA cohort2, respectively

(Figures 3F and S4B). In the meantime, using multivariate

analysis, we revealed that RS was a stand-alone indicator of

patient OS in the three cohorts (Figures 3G, H, S4C). The

relationships between RS and patient pathological profiles,

namely, survival status, WHO grade, IDH status, Subtype, 1p/

19q codeletion status, and so on were presented as heatmaps,

suggesting that the RS was significantly correlated with these

variables in the three cohorts (Figures 3I, J, S4D). WHO Grade
A B
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FIGURE 2

Significant differences emerge in macrophage clusters between LGG and GBM. (A) tSNE plot shows cell clusters of LGG and GBM. (B) Difference
in the proportion of macrophage between LGG and GBM. (C) Difference in macrophage biological process between LGG and GBM based on
gene enrichment analysis. (D) Venn diagram shows macrophage-related genes which are also differentially expressed between LGG and GBM.
List1 shows the number of macrophage-related genes. List2 shows the number of differentially expressed genes in macrophage between LGG
and GBM. (E) Volcano plot shows differentially expressed macrophage-related genes between LGG and GBM. (F–I) tSNE plots show the
expression of the identified differentially expressed macrophage-related genes. ***P < 0.001.
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FIGURE 3

Characterization of the signature predicts prognosis of glioma. (A) Texture feature selection using the LASSO regression model, lambda value was
chosen (1-SE criteria) according to cross-validation, where optimal l resulted in six non-zero coefficients in the training cohort. (B) Nomogram to predict
the 1-, 2-, 3-year OS. Kaplan–Meier curve based on the predictive model in TCGA cohort (C) and CGGA cohort1 (E). ROC curves of the signature for
predicting 3- and 5- year survival of glioma in both TCGA cohort (D) and CGGA cohort1 (F). (G, H) Multivariable comparison of clinical features and the
risk score. Subtype includes classical (reference), mesenchymal, neural, proneural. Risk score is correlated with clinicopathological features and
prognosis of glioma in TCGA cohort (I) and CGGA cohort1 (J). IDH, isocitrate dehydrogenase; RT, radiotherapy; TMZ, temozolomide; 1p19q, 1p/19q
codeletion status; MGMT, methylguanine methyltransferase. *P < 0.05, **P < 0.01, ***P < 0.001.
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subset analyses confirmed the prognostic value of RS, particularly

in WHO II and III grade glioma (Figures S5A–F). Besides,

IDH status subset demonstrated the stable prognostic value of

RS in both IDH -mutated and IDH -wildtype cases (Figures

S5G–L).
Role of RS in TME immunity

After removing the unexpressed IMs, we obtained 121, 108,

and 107 related genes from TCGA cohort, CGGA cohort1 and

CGGA cohort2, respectively. These included MHC molecules,

chemokines, immunostimulators, and receptors. A majority of

the IMs were elevated in the enhanced RS cohorts (Figures 4A,

S6A, S7A). Furthermore, the elevated IMs were strongly

associated with antigen-presenting activity and TIICs

recruitment. Consistently, we demonstrated that the RS was

intricately linked to most ICIs and TIICs effector genes in the

three cohorts (Figures 4B, C, S6B, C, S7B, C). The CIC served an

essential function in the TME. Relative to the low RS cohort,

most genes were augmented (Figure 4D). Compared with the LR

group, as shown in Figure 4D, most of the steps were

upregulated. Nevertheless, Step 3, Step4_Th2 cell_recruiting,

and Step 5 were diminished. Similar results were obtained

from the two CGGA cohorts (Figures S6D, S7D). Besides, the

positive correlation between RS and the infiltration level of

macrophage in TME (including two subgroups, macrophages

M1 and macrophages M2) was further investigated using three

different algorithms in the three cohorts (Figures S8A–R).

Meanwhile, we further explored the relationship between RS

and classical chemokines and surface markers of both M1-

macrophages (IL12A, IL-12B, IL-23A, IL-23R, TNF) and M2-

macrophages (IL-10, IL-4, IL-13, TGF-beta 1, TGF-beta 2, TGF-

beta 3). After the removal of the unexpressed markers, as the

result, RS was positively correlated with the most of chemokines

related to macrophages (Figures S9A–H). Comparable results

were also achieved using the remaining two CGGA cohorts

(Figures S10A–E, S11A–E). These analyses revealed that RS

played a critical role in facilitating immunological activities.
Role of RS in biological processes

We conducted enrichment analysis to further clarify

biological processes related to RS. The 1306 genes in TCGA

cohort, 898 genes in CGGA cohort1, and 644 genes in CGGA

cohort2 were analyzed by enrichment analysis, and they were

strongly associated with RS by Pearson correlation analysis

(Pearson |r| > 0.5, P < 0.05). As illustrated in Figure S12A,

enrichment analysis indicated that GO or KEGG is mainly

enriched in inflammatory response, cell migration, cell-cell

adhesion, tight junction, and so on. In the other two cohorts,

similar outcomes were obtained (Figures S12B, C).
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Correlation between RS and genomic
alterations

Based on a high to low ranking of the RS, we stratified cases

into four categories. First, we compared the gene mutation

frequencies in the 1st quarter (lower) with that of the 4th

quarter (higher) RS cohort. Based on our analysis, IDH1,

ATRX, FUBP1, TP53, CIC, NIPBL, IDH2, NOTCH1, and

ARID1A mutations were more frequent in the lower RS

cohort. In contrast, PTEN, EGFR, TTN, MUC16, SPTA1, RB1,

RYR2, COL6A3, NF1, and PIK3R1 mutations were more

prevalent in the higher RS cohort (Figure 5A). In terms of the

CNAs analysis, cases with elevated RS, focal amplification peaks,

well-characterized driver oncogenes like PIK3C2B (1q32.1),

PDGFRA (4q12), EGFR (7p11.2), and CDK4 (12q14.1), were

accompanied by a 9p21.3 (CDKN2A and CDKN2B) focal

deletion peak. In the meantime, obvious amplifications

revealed peaks in 7q34, whereas the frequently deleted

genomic regions were 11p15.5 in the lower RS cohort.

However, the corresponding G scores did not reach the

threshold that defined abnormal CNA events (Figure 5B).
Discussion

Glioma, particularly GBM, is a widespread brain tumor that

is hazardous to health and has high mortality owing to its

malignant progression and worse outcome. TME and glioma

heterogeneity are rather complicated (4, 25), and they are still

unclear at present. Generally, relative to bulk sequencing, single-

cell RNA sequencing technologies facilitate gene expression

exploration at the single-cell level. This provides unparalleled

insight into the cellular heterogeneity of biological pathways.

Previous studies primarily examined DEGs in the TME or

screened for biomarkers in bulk sequencing for the

construction of prediction models. Herein, we identified DE-

MRGs, and generated a DE-MRG-based prognostic model to

accurately predict patient OS. We also explored the correlations

between the prognostic model and various clinical features. With

emerging research, the role of macrophages in glioma is

gradually expanding.

TAMs strongly modulate neoplasia, metastasis, immune

escape, and tumor angiogenesis (26, 27). TAMs between LGG

and GBM are also dramatically different. Specifically, the

proportion of proliferating TAMs (G2M and S phage) is

higher in LGG (28), while the proportion of TAMs is higher

in GBM (29), which is in agreement with our study. Apart from

the differences in these aspects, functional differences also exist

between these two groups. Multiple factors mediate TAM

recruitment, activation, and polarization. These include

chemokines, complement receptor ligands, and neuro-

transmitters, such as, CCL2 (30) and SDF-1 (31). These factors

have marked differential expression between LGG and GBM.
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FIGURE 4

Significant differences exist in immune landscape. (A) Differences in the expression of 121 immunomodulators (chemokines, receptors, MHC,
and immunostimulators) between high- and low-risk score groups in glioma. (B) Differences in the expression of 18 inhibitory immune
checkpoints between high- and low-risk score groups in glioma. (C) Differences in the effector genes of the tumor-associated immune cells
between high- and low-risk score groups in glioma. (D) Differences in the various steps of the cancer immunity cycle between high- and low-
risk score groups. **P < 0.01, ***P < 0.001, ns non-significant.
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In our study, we identified eight macrophage-specific genes,

which were MACC1, OTUD1, TCHH, ADPRH, ABCG2,

PLBD1, ANG, and QPCT. As previously published, MACC1

(32) and ADPRH (33) ABCG2 (34), and ANG (35) correlate

with glioma cell proliferation, invasion, immune infiltration,

drug efficacy, and worse prognosis in glioma patients. Hence,
Frontiers in Immunology 09
it is not surprising that this model showed superior performance

in predicting worse patient outcomes. Interestingly, not much is

known about the functions of OTUD1, TCHH, ADPRH,

PLBD1, and QPCT in glioma, which need further research in

future. Additionally, a majority of these findings were made by

investigating the bulk sequencing data, and there was no specific
A

B

FIGURE 5

Different genomic profiles are associated with risk score. (A) Differential somatic mutations were detected by comparing glioma with low- and
high- risk score groups. (B) A different CNAs profile could be observed between low- and high- risk score groups. Chromosomal locations of
peaks of significantly focal amplification (red) and deletions (blue) were presented.
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mention of which cell type these genes were expressed in. In the

current study, multi-omics approaches were applied to construct

a prognostic model to estimate glioma patient OS. We also noted

that these genes were specifically and highly expressed genes in

macrophages, thus laying the foundations for future treatment in

precision oncology medicine. Interestingly, RS is not only

significantly associated with immune checkpoint markers,

inflammatory factors, and immune steps, but also with the

infiltration level of macrophage and chemokines related to

macrophages. It shows RS is a composite indicator. Besides,

except for the immune response, gene enrichment analysis

shows RS is related to cell migration, regulation of cell shape,

and cell adhesion, which was a clearly defined relationship with

tumor invasion and poor prognosis in glioma (36, 37). These

results might show the reason why RS exhibits accurately

predictive performance for the survival of glioma patients.

In addition, we assessed genetic alterations that occurred

in patients with low versus high RS. Upon close observation

of somatic mutation events, CNAs were closely correlated

with RS, indicating an unstable genomic status in high RS

patients. Generally, genomic alterations occur in glioma cells,

and they are correlated with drug resistance, poor prognosis,

and tumor aggressiveness. However, the risk model

based on DE-MRGs was still associated with genomic

alterations. Genomic alterations and heterogeneity may

have substantial roles in editing the glioma TME. Elevated

RS induces an intensive immune phenotype that further

aggravates genomic instability (38), thus creating a positive

feedback that exacerbates poor prognosis and treatment

resistance (39). However, the question remains whether the

genomic alteration observed between LR and HR patients is a

consequence or a cause of the differences in macrophages

between glioma patients. More research is warranted to

elucidate this unanswered question.
Conclusion

This study confirmed that the proportion and function of

macrophages in glioma TME are significantly different. Moreover,

we developed a DE-MRG-based prognostic model which accurately

predicted patient prognosis, and may, therefore, be applicable to the

development of therapeutic targets.
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