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Multiple Sclerosis (MS) is an autoimmune disease that is characterized by

inflammation and demyelination of nerve cells. There is strong evidence that

Epstein-Barr virus (EBV), a human herpesvirus infecting B cells, greatly

increases the risk of subsequent MS. Intriguingly, EBV not only induces

human interleukin-10 but also encodes a homologue of this molecule, which

is a key anti-inflammatory cytokine of the immune system. Although EBV-

encoded IL-10 (ebvIL-10) has a high amino acid identity with its cellular

counterpart (cIL-10), it shows more restricted and partially weaker

functionality. We propose that both EBV-induced cIL-10 and ebvIL-10 act in

a temporally and functionally coordinated manner helping the pathogen to

establish latency in B cells and, at the same time, to balance the function of

antiviral T cells. As a result, the EBV load persisting in the immune system is kept

at a constant but individually different level (set point). During this

immunological tug of war between virus and host, however, MS can be

induced as collateral damage if the set point is too high. Here, we discuss a

possible role of ebvIL-10 and EBV-induced cIL-10 in EBV-driven pathogenesis

of MS.
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Introduction

Epstein–Barr virus (EBV), a human gammaherpesvirus, persists in 95% of the world

population due to sophisticated immune evasion strategies (1). After transmission of

EBV to naïve individuals, the first site of replication is in the orophayryngeal epithelium

(2). Subsequently, the virus crosses the mucosal barrier, infects naïve B cells, and
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establishes latency within a few days post infection (3). Latency

requires expression of viral proteins that induce proliferation,

growth transformation and differentiation of naïve B cells into

memory B cells (4, 5). EBV persists lifelong as episomal DNA in

resting memory B cells that percolate through lymphoid tissue

and are detectable in the circulation (6). After stimulation,

latently infected memory B cells terminally differentiate into

plasmablasts and plasma cells resulting in reactivation, lytic

replication and production of infectious particles, which infect

new naïve B cells completing the viral life cycle and replenishing

the EBV reservoir (7, 8). EBV reactivation is tightly controlled by

memory T cells, which keep the EBV-load for each individual at

a constant level (9–11). During EBV reactivation, epithelial cells

of the oropharynx can be reinfected and shed viral particles into

the saliva (12), which passes EBV on to new individuals (13).

EBV like human cytomegalovirus encodes a viral IL-10

homologue (ebvIL-10) of cellular IL-10 (cIL-10) (14). ebvIL-10

has 82% amino acid identity to cIL-10 (15, 16), a key anti-

inflammatory cytokine of the host with pleiotropic biological

activity (17–19). EBV exploits cIL-10 and its viral homologue to

evade host immunity and establish a balance with antiviral T

cells similar to other viruses that persist in the host (20–23).

ebvIL-10 is expressed within a few hours of starting the EBV lytic

cycle (24, 25). Approximately 20-30 hours later, in the pre-latent

phase, EBV-encoded latent membrane protein-1 (LMP-1) and

EBV-encoded small non-coding RNAs (EBERs) upregulate the

production of cIL-10 (25–28).

EBV infection seems to be a conditio sine qua non for

development of multiple sclerosis (MS), the most common

chronic inflammatory disease of the central nerve system

(CNS) (29–34). The hallmark of MS pathogenesis is an

immune attack against axons and their insulating myelin

sheath together with disruption of the blood-brain barrier

(BBB) (35). As a consequence, inflammation, demyelination,

remyelination, neurodegeneration and glial scar formation

occur (36). These pathological lesions are either focally or

diffusely distributed in the white and grey matter of the brain

and spinal cord and result in neurological deficits that differ

substantially among patients and over the disease course (37).

The global prevalence of MS is rising with nearly 3 million

people living with MS worldwide, mostly adults between 20

years and 40 years with females affected twice as likely as males

(38, 39). With increasing age, new demyelinated lesions appear

less often, but some inflammatory plaques remain. A body of

evidence indicates that the immune response is critically

involved in MS pathogenesis (40, 41). For development of

effective MS therapy and prophylaxis, it is crucial to

understand the detailed mechanisms of how EBV drives MS

underlying immunopathology.

In this article we discuss how ebvIL-10 and EBV-induced

cIL-10 could help the virus evade the immune system and persist

in then host while at same time drive inflammatory processes

that contribute to MS pathogenesis.
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Biological activity of viral and virus-
induced cellular IL-10

Biologically active IL-10 binds with high-affinity to a private

receptor subunit (IL-10R1), and with low-affinity to a public

receptor subunit (IL-10R2) shared in common with other

members of the cytokine class II family (42). IL-10R1 represents

the ligand binding subunit of the receptor complex, whereas IL-

10R2 is the signaling subunit. Upon binding to IL-10, IL-10R1

induces a conformational change in IL-10R2, permitting IL-10R2

to also bind IL-10. Subsequently, the intracellular Janus tyrosine

kinases Jak1 and Tyk2 are activated resulting in phosphorylation

of signal transducer and activator of transcription 3 (STAT3),

which induces the cellular responses.

The affinity of IL-10R1 for ebvIL-10 is approximately 1000-

fold less than for cIL-10 (43). Thus, ebvIL-10 is a selective agonist

with impaired binding to the IL-10R1 (16). This implies that cIL-

10 and ebvIL-10 share some but not all biological activities. In

accordance, ebvIL-10 is unable to signal thymocytes and mast

cells, which both express low levels of IL-10R1, whereas cIL-10

signals normally (44–46). Moreover, ebvIL-10 does not upregulate

MHC class II molecules on B cells (47). In comparison to cIL-10,

ebvIL-10 impacts only weakly on DC function (48). Furthermore,

ebvIL-10 can inhibit the effects of cIL-10 on monocytes (49). In

fact, ebvIL-10 reduced cIL-10 induced STAT3 phosphorylation to

levels similar to monocytes stimulated with ebvIL-10 alone (49).

In contrast, ebvIL-10 has retained the ability to increase B cell

growth and differentiation (50).

Thus, ebvIL-10 has evolved to retain some but not all

functions of cIL-10 and in some circumstances can even

compete with cIL-10. Both molecules act in a coordinated

fashion, however, to facilitate EBV persistence in the host by

balancing viral load and antiviral immune responses.
Infectious mononucleosis as a
prelude to MS

Primary EBV infection in developing countries takes place

during childhood and is in general asymptomatic (51). In contrast,

primary infection in developed countries occurs during

adolescence (11 to 19 years of age) and young adulthood (20 to

24 years of age) and is associated with infectious mononucleosis

(IM) (52). IM is a self-limiting disease with fever, sore throat, skin

rash, tender lymphoadenopathy and hepatosplenomegaly. These

IM symptoms are a consequence of an exaggerated antiviral T cell

response involving predominantly CD8+ T cells (53–55). In IM

patients, cIL-10 levels as well as the EBV load in circulating B cells

are increased compared to healthy controls (56–58). Moreover,

EBV-infected B cells dramatically enlarge the CD8+ T cell

compartment resulting in up to 50% of CD8+ T cells reacting

to lytic EBV antigens (59). The disease severity correlates with
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both blood EBV load and proliferation of CD8+ T cells (53).

Although the blood EBV load is high in both asymptomatic

primary infection and IM, only IM patients showed exaggerated

T cell responses (60). Strikingly, the risk for MS is absent in EBV-

seronegative individuals, increases after EBV infection, is high

after IM in adolescence and particularly high after IM in early

adulthood (56, 61–66). Accordingly, developed countries

experience most cases of IM and have considerably higher

prevalences and incidences of MS compared to developing

countries (38, 67).

Taken together, primary EBV infection in adolescents and

young adults is associated with IM, high blood EBV load, high

cIL-10 levels, exaggerated T cell responses, and a high risk for MS.
Increased EBV load as a risk factor
for MS

After primary infection, T cells continuously control and

interact with EBV-infected B cells (68). The size of the peripheral

EBV reservoir is determined to a large part by the frequency and

functional activity of CD8+ T cells eliminating EBV-infected B cells.

This loss is countered by periodic virus reactivation and fresh

infection of naïve B cells, which are then reprogrammed into

latently EBV-infected memory B cells within a few days post

infection (3). Healthy EBV-seropositive humans vary greatly in

the number of latently infectedmemory B cells, from 1 to 50 per 106

peripheral B cells (69). However, in each person the levels of latent

EBV remains stable over time, defining a steady state or “set point”

for each individual (69–71). After IM, the EBV loads in the saliva

are persistently high and the pool of latently EBV-infected B cells

remains elevated for a considerable time period as compared to

healthy EBV carriers without a record of IM (53, 72).

An elevated set point of the EBV load may facilitate and drive

MS. In accordance, peripheral blood mononuclear cells from MS

patients harbor increased numbers of latently EBV-infected B cells

compared to healthy controls (73). Moreover, monoclonal

antibodies directed against CD20+ cells, which reduce MS

pathology, spare plasma cells and do not reduce the amount of

immunoglobulin but remove B cells including those with latent

EBV thereby decreasing the set point (74, 75). Accordingly, the

effectiveness of anti-CD20 treatment in MS patients is probably

not based on the reduction of autoantibody levels but rather on

depleting B cells that drive MS by presenting auto-antigens (76).

Consistent with this view, individuals overexpressing B-cell

activating factor (BAFF), which increases B-cell activation,

differentiation, and survival, have a higher risk for MS (77, 78).

Moreover, adoptive transfer of EBV-specific T cells, a promising

strategy in MS treatment, reduces the pool size of latently EBV-

infected B cells (79–81). The observation that high serum titres of

antibodies against EBV nuclear antigen 1 (EBNA1), an essential

viral protein for EBV latency, enhance the risk for MS supports
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this notion (82). Importantly, anti-EBNA1 antibody titres were

already significantly elevated 5 or more years prior to MS onset

suggesting that a high EBV set point leads MS and not vice versa

(83, 84). In MS, the anti-EBNA1 IgG titre correlate inversely with

the frequency of EBV-specific CD8+ T cells supporting the notion

that these immune cells control EBV reactivation and the set point

of the virus load (85). Intriguingly, the anti-EBNA1 antibody

levels after primary EBV infection are to a large part genetically

determined, for example by variants of MHC class II molecules

(86–89). Moreover, co-infection with Malaria increases the

circulating EBV load (90). Thus, genetic and environmental

factors such as coinfections with other pathogns or gut

microbiota influence the EBV load and MS development, for

example through modulating the cytokine network and triggering

EBV reactivation (55, 68, 91–96).

Altogether, these data support the idea that an increased load

of latently EBV-infected memory B cells after primary infection

is due to genetic and environmental factors and represents an

important risk factor for MS.
IL-10 dependent mechanisms
adjusting the set point of
the EBV load

The coordinated action of EBV-induced cIL-10 and ebvIL-

10 regulates the set point of the EBV load not only by enhancing

differentiation, proliferation and survival of EBV-infected naive

B cells but also by regulating the activity of antiviral T cells

(Figure 1). Dysregulation of this delicate balance could facilitate

the spread of latent EBV in the memory B cell compartment

thereby increasing the set point and the risk for MS. In line with

this view, MS patients show decreased T cell reactivity against

autologous lymphoblastoid cell lines (LCLs) indicating an

attenuation of the immune surveillance (97). LCLs are EBV-

transformed B-cell lines that continuously proliferate in vitro.

They can be easily established by EBV infection or derived

spontaneously ex vivo from peripheral blood B lymphocytes in

the absence or inhibition of T and NK cells. Emphasizing the

regulatory role of IL-10 in this context, in a mouse model

gammaherpesvirus-induced IL-10 was required for expansion

and differentiation of latently infected B cells, while at the same

time interfering with the activity of antiviral CD8+ T cells (98).

It has been shown that cIL-10 can inhibit CD8+ T cell

function directly thereby facilitating persistent virus infection

(99). EBV-induced cIL-10 abrogates the capacity of T cells to

inhibit the outgrowth of autologous LCLs (100). Similarly, ebvIL-

10 has been reported to interfere with elimination of newly

infected B cells by CD8+ T cells (100–102). As a potential

mechanism, both EBV-induced cIL-10 and ebvIL-10

downregulate the transport of peptides into the endoplasmic

reticulum resulting in reduced surface expression of MHC class
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I molecules and presentation of viral epitopes to CD8+ T cells

(103). However, other investigators reported that ebvIL-10 can

also enhance the activity of EBV-specific CD8+ T cells (104).

Moreover, cIL-10-stimulatory effects on functionality of CD8+ T

cells have also been described (105–107). Thus, the coordinated

action of ebvIL-10 and EBV-induced cIL-10 may allow minimal

activity of EBV-specific CD8+ T cells that is required to push EBV

back into latency and prevent outgrowth of B cell lymphomas due

to opportunistic expansion of latently infected B cells.

In conclusion, ebvIL-10 and EBV-induced cIL-10, which are

regulated by genetic host factors and environmental cues, play a

crucial role in defining the set point of the individual EBV load

in the periphery.
Pathological consequences of a
disproportionally increased EBV load

Individuals with high EBV load display virus-specific CD8

+ T cells showing signs of exhaustion such as surface

upregulation of programmed cell death protein 1 (PD-1)

(108). In a vicious cycle, EBV-specific CD8+ T cells

confronted with a high EBV load may be further stimulated

to proliferate without being able to re-establish a balance (68,

109). As a consequence, control of EBV reactivation in MS

patients becomes defective resulting in further expansion of
Frontiers in Immunology 04
latently EBV-infected B cells that may also include autoreactive

B cells contributing to MS pathogenesis (85). Possibly due to T

cell exhaustion the impairment of EBV control by antiviral T

cells in MS patients worsens with age (110) whereas strong

CD8+ EBV-specific T cell responses are found in patients with

early and active MS (111, 112).

A high EBV load is associated with frequent but stochastic

reactivation that is randomly distributed in lymphoid tissue of

the host. The local release of infectious EBV particles could

create an inflammatory microenvironment, periodically flaring

up before subsiding again. These oscillating stimulatory events

increase the likelihood of breaking self-tolerance and molecular

mimicry (113). An increased number of B cells could present

EBV-derived peptides that contain molecular mimicry motifs

allowing stimulation of auto-reactive T cells (114). In

accordance, peripheral memory B cells drive proliferation of

CD4+ T cells that recognize peptides expressed in MS brain

lesions (115). Indeed, homologies between EBV-encoded

proteins on the one hand and myelin and other CNS antigens

on the other have been found (34). T cell clones from MS

patients recognizing myelin basic protein are activated by

peptides derived from EBV-encoded DNA polymerase, which

is expressed during lytic infection (116, 117). EBNA-1 is not only

expressed in all forms of latent infection but also during the lytic

phase of infection (118). A recent study demonstrated that

antibodies against EBNA-1 cross-react with glial cell adhesion
FIGURE 1

Regulation of the EBV load by IL-10. After transmission, EBV infects naïve B cells, which are then reprogrammed and replenish the pool of
latently EBV-infected memory B cells. Occasionally, EBV reactivates and lytically infected plasma cells produce new virus particles, which infect
new naïve B cells completing the viral life cycle. After reinfection, epithelial cells of the oropharynx shed viral particles into the saliva, which
passes EBV on to new individuals. Importantly, the coordinated action of EBV-induced cIL-10 and ebvIL-10 regulates the individual set point of
the EBV load not only by reprogramming EBV-infected naïve B cells but also by regulating the activity of antiviral T cells that eliminate newly
infected B cells.
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protein (GlialCAM), a self-antigen expressed in the CNS (119,

120). EBV-specific B cells cross the BBB and form ectopic

lymphoid-like structures, which are often found in infection

and autoimmunity (121). After undergoing somatic

hypermutation, B cells that produce cross-reactive antibodies

with high affinity for GlialCAM are selected by ENBA-1 specific

CD4+ T follicular helper cells and follicular dendritic cells. These

cross-reactive antibodies subsequently damage myelin-

producing glial cells (119). Moreover, clonally expanded

EBNA1-specific CD4+ T cells cross-reacting with myelin are

observed in MS patients (122).

Taken together, a high EBV load in the periphery could

facilitate pathogenic B–T cell interactions resulting in

stimulation and accumulation of auto-reactive immune cells

that cross the BBB and drive demyelination.
Pathological role of IL-10 in
CNS autoimmunity

B cells crossing the BBB represent an important immune

axis between periphery and CNS of MS patients (123–125).

Thus, the latently EBV-infected B cell reservoir in the CNS is
Frontiers in Immunology 05
continuously replenished by the immune axis between

periphery and CNS. The presence of EBV-infected B cells in

the CNS of MS patients has been reported by numerous studies

(126). In ectopic lymphoid-like structures of the CNS, latently

EBV-infected B cells differentiate into plasma cells, resulting in

EBV reactivation, lytic infection and stimulation of cytotoxic

CD8+ T cells (127–129). EBV gene expression patterns found

in the brain of MS patients support the idea of EBV

reactivation and EBV entry into the lytic cycle (130).

Moreover, cytotoxic CD8+ T cells interacting with plasma

cells lytical ly infected with EBV were observed in

inflammatory white matter lesions and meninges from post-

mortem MS brain samples (111). In these lesions, CD8+ T cells

recognizing lytic EBV antigens tended to be more frequent

than those recognizing EBV latent proteins (131). Thus, ebvIL-

10 and EBV-induced cIL-10 are likely released in the CNS

thereby maintaining a reservoir of latently EBV-infected B cells

that stimulate pathogenic T cells also at this site. In accordance,

cIL-10 drives CNS inflammation by promoting survival of

pathogenic T cells in mouse models of CNS autoimmunity

(132, 133). Accordingly, periodic reactivation of EBV and the

release of infectious virus particles could create an

i nfl amma t o r y en v i r o nmen t t h a t f a c i l i t a t e s MS
FIGURE 2

Link between EBV load, risk for MS development, and EBV transmission. At a high set point of the EBV load (left side), reactivation of EBV in
latently infected memory B cells and release of infectious EBV particles occurs frequently in lymphoid tissue. This may allow not only persistent
oral shedding with high EBV transmission but also facilitate pathogenic B–T cell interactions thereby drastically increasing the risk for
pathogenic T ell responses that initiate and drive MS through molecular mimicry. The latter occurs when B cells present EBV-derived peptides
that are similar to self-peptides found in CNS antigens. At a low set point (right side), however, EBV reactivates only rarely resulting in inefficient
EBV transmission due to reduced oral shedding and only a low risk for MS.
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immunopathology. In line with this view, lytic EBV was

restricted to chronic MS plaques (134).
Concluding remarks

The coordinated action of both EBV-induced cIL-10 and

ebvIL-10 plays an important role in viral immune evasion and

virus persistence. By reprogramming EBV-infected naïve B cells

and regulating the antiviral T cell responses, these cytokines

could define the set point of the latently EBV-infected B cell

reservoir, which varies from person to person but remains stable

in each person over time. At a low set point, EBV reactivates only

rarely and is not efficiently passed on from one person to another

due to minimal oral shedding coincident with low MS risk

(Figure 2). In striking contrast, if the set point is too high as

observed after IM, reactivation and release of infectious EBV

particles occurs frequently in lymphoid tissue that harbors

latently EBV-infected memory B cel ls creat ing an

inflammatory microenvironment. This may allow not only

persistent oral shedding with high virus transmission but also

drastically increases the risk for pathogenic immune responses

that initiate and drive MS (Figure 2). In the future, it might be

sensible to calculate the risk of young adults with a previous

record of IM by quantifying the EBV load and develop

prophylactic and therapeutic measures that adjust the set point

of a disproportionally high EBV load downwards. Most

importantly, an effective vaccine against EBV infection could

prevent MS and its deleterious consequences.
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