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Moving the needle: Employing
deep reinforcement learning to
push the boundaries of coarse-
grained vaccine models

Jonathan G. Faris1, Daniel Orbidan1, Charles Wells2,
Brenden K. Petersen3* and Kayla G. Sprenger1*

1Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO,
United States, 2Department of Computer Science, Rice University, TX, Houston, United States,
3Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA,
United States
Highly mutable infectious disease pathogens (hm-IDPs) such as HIV and

influenza evolve faster than the human immune system can contain them,

allowing them to circumvent traditional vaccination approaches and causing

over one million deaths annually. Agent-based models can be used to simulate

the complex interactions that occur between immune cells and hm-IDP-like

proteins (antigens) during affinity maturation—the process by which antibodies

evolve. Compared to existing experimental approaches, agent-based models

offer a safe, low-cost, and rapid route to study the immune response to

vaccines spanning a wide range of design variables. However, the highly

stochastic nature of affinity maturation and vast sequence space of hm-IDPs

render brute force searches intractable for exploring all pertinent vaccine

design variables and the subset of immunization protocols encompassed

therein. To address this challenge, we employed deep reinforcement

learning to drive a recently developed agent-based model of affinity

maturation to focus sampling on immunization protocols with greater

potential to improve the chosen metrics of protection, namely the broadly

neutralizing antibody (bnAb) titers or fraction of bnAbs produced. Using this

approach, we were able to coarse-grain a wide range of vaccine design

variables and explore the relevant design space. Our work offers new testable

insights into how vaccines should be formulated to maximize protective

immune responses to hm-IDPs and how they can be minimally tailored to

account for major sources of heterogeneity in human immune responses and

various socioeconomic factors. Our results indicate that the first 3 to 5
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immunizations, depending on the metric of protection, should be specially

tailored to achieve a robust protective immune response, but that beyond this

point further immunizations require only subtle changes in formulation to

sustain a durable bnAb response.
KEYWORDS

deep reinforcement learning (Deep RL), agent-based modelling, multiscale (MS)
modelling, affinity maturation, HIV - human immunodeficiency virus, vaccine design
protocol, immunovirology
Introduction

Vaccination has saved more lives to date than any other

medical procedure (1), and yet viruses capable of evading

traditional vaccination schemes continue to emerge, often with

devastating consequences. We have seen the rise of three global

pandemics in the last 100 years (COVID-19, HIV/AIDS, and the

1918 Spanish Flu), which have cumulatively claimed 90 million

lives (2–4). The highly mutable infectious disease pathogens

(hm-IDPs) that cause these diseases present many technical

challenges to traditional vaccination approaches, including the

ability of hm-IDPs to rapidly mutate their surface proteins

(antigens) to escape immune pressure (5). In turn, these

technical challenges lead to broader societal challenges such as

healthcare inequalities that arise in relation to the frequency with

which new vaccines must be developed and distributed to keep

pace with, and provide protection against, new variants (6).

Consequently, the need for next-generation immunotherapies to

combat existing and future hm-IDPs has never been greater.

Two schools of thought have since arisen to overcome the

aforementioned challenges presented by hm-IDPs: universal

vaccines and personalized medicine. Progress towards universal

vaccines continues to advance every year, with increasingly

informed design rules on how to elicit antibodies that target

conserved aspects of viral machinery (7–14). Much of this

newfound knowledge has come from studying crystal structures

of broadly neutralizing antibodies (bnAbs)—which neutralize

diverse viral strains by targeting conserved regions on hm-IDP

surface proteins—and attempting to reconstruct the evolutionary

pathways of these bnAbs (15–26). In the past few decades, bnAbs

have been isolated from individuals chronically infected with hm-

IDPs that, for instance, target the conserved stalk and head regions

on influenza’s hemagglutinin spike protein (27, 28) or the

conserved loops of HIV’s Env spike protein (29–32). While

bnAbs serve as ideal targets for universal vaccines, challenges

remain around how to robustly elicit them via vaccination.

Questions about universal vaccines also exist in terms of how

efficacious they would be for diverse subpopulations. A single

universal vaccine may not be able to capture major sources of
02
heterogeneity in human immune responses to hm-IDPs (33–35).

For example, compared to adults, infants and children typically

harbor an abundance of naïve B cells (36) and experience higher

viral replication rates and viral loads upon infection with HIV

during birth (37–40), all of which could influence the quantity

and quality of antibodies produced in response to a vaccine.

Further, optimal metrics of protection against hm-IDPs are

often unclear. For instance, bnAb titers are among the most

common and useful clinical measures of protection. However,

multiple studies have now shown a quality-quantity tradeoff

exists whereby the affinity maturation (AM) process by which

antibodies evolve produces either low titers of high-breadth

antibodies or high titers of low-breadth antibodies (13, 24, 41).

It is unclear which outcome may offer better protection for

different individuals and/or hm-IDPs (e.g., maximizing the

fraction of bnAbs, or maximizing the titer of bnAbs).

Additionally, for a successful vaccination strategy, the number

of immunizations required must be considered and perhaps

tailored for areas of both high and low vaccine adherence

(42, 43).

On the opposite end of the spectrum from universal

vaccines, precision medicine approaches seek to derive

personalized care and treatment plans based on an individual’s

genetics and disease progression. These approaches are being

increasingly explored for treating a variety of conditions such as

cancer (44, 45), sepsis (46, 47), and HIV/AIDS (48, 49).

However, the price tag for these personalized therapies can be

shocking, with costs to an individual of more than $10,000 a

month based on the results of genomic sequencing, which itself

can be very costly (50). Thus, whereas universal vaccines may

not offer enough flexibility and tractability to broadly protect a

large fraction of the human population, personalized medicine

approaches may be overly-tailored, rendering them

economically unviable on a global scale. We propose a

solution that lies between these two extremes, which is to

develop a minimal set of vaccines designed to elicit bnAbs

(and hence that are still “universal”) that can collectively

account for a broad range of differences in human immune

responses and socioeconomic factors.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1029167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Faris et al. 10.3389/fimmu.2022.1029167
Developing a universal vaccine against a specific hm-IDP

requires large-scale screening of vaccine-candidate antigens and

extensive laboratory resources to determine the optimal vaccine

design parameters. To circumvent these challenges, computational

agent-based models can be employed to simulate the immune

response upon exposure to hm-IDP-like antigens. These models are

capable of recapitulating the complex immune population

dynamics that take place during AM, which consists of

alternating periods of somatic hypermutation (SHM) and

selection for high-affinity B cell clones (51). Briefly, agent-based

models use mathematical, empirically informed equations to

describe how individuals, or agents, interact with each other and

with their environment. In this work, B cells (the agents) compete

with one another as AM (the environment) progresses in response

to a series of vaccine-candidate antigens. The power in these models

lies in their ability to capture highly stochastic processes, such as

SHM, as the agents navigate the parameter space (e.g., total number

of vaccine immunizations and number, concentration, and

sequences of the administered antigens). For instance, a recent

model of AM from Molari et al. showed the effects Ag

concentration has on the speed by which BCRs mature (52).

Each of these parameters has been shown to play an important

role in modulating bnAb responses by affecting the level of

frustration (see Methods) imposed on evolving antibodies (11–13,

24, 53–55), increases in which promote antibody targeting towards

conserved antigenic residues but also promote B cell death.

Pushing beyond identifying the factors that can modulate

bnAb responses, understanding how to rationally tune such

parameters to maximize bnAb responses requires efficient
Frontiers in Immunology 03
exploration of this multidimensional parameter space. To this

end, we have herein integrated a previously-published coarse-

grained model of AM (13) with an established deep

reinforcement learning (DRL) algorithm (Figure 1) (47, 56,

57). Briefly, when employing DRL, external actions are chosen

throughout the simulation based on the observed state of the

system, with the aim of guiding the agents along the path that

maximizes a chosen reward function. After performing many

simulations, DRL is able to learn a robust mapping between

states and actions, and ultimately arrives at a policy (here, an

optimal vaccination protocol) to maximize the overall reward.

The approach taken here has been shown to provide novel

solutions in the face of wide-ranging and complex problems

such as optimization of DNA transcription factors (56),

antimicrobial peptides (56), traffic signal controlling (57), and

sepsis treatment (47). To the best of our knowledge, this work

represents the first use of DRL to control a model of the adaptive

immune response for designing vaccines against hm-IDPs.

In this work, the actions chosen by the DRL agent prescribe

the level of frustration, defined by us in past work (13) to be a

metric that quantitatively describes the combined effects of

multiple vaccine design variables, on bnAb development. We

explore how the policies chosen by DRL (e.g., optimal

immunization protocols or temporal frustration profiles)

change for different reward functions (metrics of protection),

namely the total bnAb titers produced or fraction of bnAbs

produced out of the total antibody titers. We also explore how

the policies change as we vary the number of sequential

immunizations in the vaccine protocol. The large policy
FIGURE 1

Overview of how deep reinforcement learning (DRL) is coupled to the agent-based model of affinity maturation (AM) in the current work. The DRL
agent chooses an action (here, the level of vaccine-imposed frustration, modulated by changing antigen sequence and/or concentration) that is fed
into the environment (here, the AM process), after which the agent observes the state of the system (here, properties of the vaccine-induced
memory B cell receptor/antibody population). The agent then receives a reward based on how well the observed state meets a user-defined reward
metric (here, the quality and quantity of the resulting plasma B cell receptor/antibody population). Over time, the agent learns a robust mapping
between the states and actions, leading to an optimal policy (here, a vaccination/temporal frustration protocol) for maximizing the chosen reward.
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differences we observe in some cases emphasize the need to

develop a set of minimally-tailored universal vaccines against a

given hm-IDP, which can account for important variabilities in

immunoresponses based on differences in both immune and

socioeconomic factors.
Methods

Affinity maturation model

Overview
Briefly (see ensuing sections for more details), the AM process

takes place within sites in lymph nodes called Germinal Centers,

or GCs (Figure 2) (51, 58). After vaccination or natural infection,

B cells whose receptors (BCRs) can weakly bind to the

encountered antigen above some threshold affinity will seed a

GC and start the process of AM. Inside the GC, the B cells

replicate to increase the initial B cell population, after which they

accumulate mutations in their surface receptor proteins. The B

cells are then continuously recycled and selected based on their

affinity for the antigen. After AM terminates, surviving B cells

secrete their receptors as antibodies. In response to

a single antigen administered at a fixed concentration, AM has

been shown, through both computational and experimental

studies, to produce mostly “strain-specific” antibodies (51, 59–

62) These antibodies are generally ineffective against mutated
Frontiers in Immunology 04
antigens that may be encountered in the future. In contrast,

administering sequential vaccine immunizations comprised

of multiple different antigens or differing antigen concentrations

serves to focus antibody responses on the conserved antigen

regions, thus promoting the evolution of bnAbs (11, 13, 24, 63).

The AM model used in this work is the same as that

developed and employed by us in our recent past work (13),

apart from a few key differences. First, we made a minor change

to how GCs are seeded, wherein memory B cells are chosen

based on their prevalence in the memory B cell population (i.e.,

at the B cell level, rather than at the clonal level, as before). A

second minor change we made was to let some B cells from the

final cycle of AM differentiate into, and be added to the pool of,

memory B cells that could seed future GCs (vs. all B cells

differentiating into plasma B cells at the end of AM, as before).

In the following sections, we provide only a broad overview of

the key steps involved in the AM aspects of the model, focusing

instead on the coupling to a deep reinforcement learning (DRL)

algorithm. We refer readers to our past work (13) for more

details on the model and its parameters.

Sequence modeling and binding free energy
calculations

Sequences of the B cell receptor paratope (which we will

simply refer to as BCR) and antigen epitope (which we will

simply refer to as the antigen) are represented by strings of

residues of equal length (total: 46 residues; 28 variable; 18
FIGURE 2

Broad overview of the affinity maturation (AM) process by which antibodies (Abs) evolve against vaccine-candidate antigens (Ags) in a germinal
center (GC) reaction (see text for details). Here, we administered between one and ten total immunizations, NT , of a single Ag, varying only the
Ag concentration, cAg , in each immunization (indicated by the different shades of the Ags).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1029167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Faris et al. 10.3389/fimmu.2022.1029167
conserved). Antigen residues can take on only discrete values of

+1 for conserved and native variable residues, or values of -1 for

mutated variable residues, which is set at the beginning of the

simulation and does not change throughout. BCR residue values

are instead pulled from a continuous and bounded uniform

distribution (see past work (13) for details) that is shifted

towards higher values for conserved residues, reflecting the

selection pressures imposed during the germline-targeting

scheme (64–66) assumed to take place beforehand (see next

section). BCRs are allowed to evolve in response to the

administered antigen(s), as subsequently described.

Binding free energies are represented by a pairwise

summation of the interactions between contacting BCR and

antigen residues, which are in turn calculated as the product of

their individual residue values (Eqn. 1):

E = o
all   residues   k

BCR(k) · antigen(k) (1)

In this case, more positive energy (E ) values correspond to

higher binding free energies, the units of which are expressed in

thermal energy (kBT ). It is further assumed that a binding free

energy of 9 kBT is required for a B cell to seed a germinal center

(GC) (13).

Seeding of germinal centers
As in our past work (13), we assume a germline-targeting

immunogen has been administered prior to vaccination to

activate the desired bnAb precursor B cells (22, 64–67). As a

result, the initial sequences of our seeding BCRs include residues

that are slightly biased towards positive values if they directly

contact conserved antigenic residues. Following the presumed

germline-targeting scheme and upon administration of the first

immunization step in the vaccination protocol, we assume that

each GC is seeded by 10 B cells (62).

Expansion and somatic hypermutation
Upon seeding a GC, the 10 B cells proliferate, without

mutation, in what is known as the “dark zone” for around

nine days (2^9), reaching a starting population size of 5,120 B

cells in each GC. The B cells then begin to undergo somatic

hypermutation, during which mutations are acquired in their B

cell receptors (BCRs) at a rate of 0.14 mutations per sequence per

division (61), with each B cell dividing twice per GC cycle (68).

For those B cells that acquire a mutation in a given round of AM,

experiments then suggest that somatic hypermutation causes

lethal mutations in ~50% of the cells, silent mutations in ~30%

of the cells, and affects the BCR/antigen binding free energy

~20% of the time (61). At present, our model does not consider

the effects of BCR framework mutations.

Furthermore, energy-affecting mutations—which are chosen

to occur randomly throughout the BCR sequence—have been

shown to improve the binding free energy just 5-10% of the time

for protein-protein binding events (69). This fact is replicated here
Frontiers in Immunology 05
by sampling changes in the BCR/antigen binding free energy from

an empirically-derived, bounded lognormal distribution (see past

work (13) for further details). Additionally, as in our past work

(13), we account for the steric and conformational effects on BCR/

antigen interactions of antigenic mutations that introduce loops to

physically shield BCRs from binding to the conserved residues

(70). We do this through the inclusion of a parameter that scales

down (weakens) a BCR’s interactions with a randomly-chosen

conserved antigenic residue if the BCR evolves a mutation that

strengthens interactions with a variable antigenic residue, and

vice versa.

B cell selection
Following somatic hypermutation, B cells compete with one

another in what is known as the “light zone” for binding to the

antigen, and upon binding, for receiving survival/proliferation

signals from T helper cells (71). BCRs which bind more strongly

to the antigen are able to internalize, break down, and display

larger amounts of antigen on their surface, which in turn

increases their chance of receiving survival/proliferation

signals from T helper cells (71). B cells that do not receive

these signals undergo apoptosis (72–74). The behavior outlined

above is implemented via Eqn. 2:

Pinternalize =
ci · e

escale(E
j
i−Eact )

1 + ci · e
escale(E

j
i−Eact )

(2)

where the probability of a B cell j internalizing antigen i is

assumed to depend on the concentration of the antigen ci , as

well as the binding free energy Ej
i , the activation energy Eact , and

an energy scaling parameter escale that serves as a pseudo inverse

temperature (chosen to be 0.08 kBT
-1) (13). The B cells that

survive this first step are then ranked by their antigen binding

free energies, and the top 70% receive productive signals from T

helper cells. These parameters were previously optimized by us

to recapitulate experimental data upon immunization with a

single antigen (51, 60–62), and they remain unchanged here.
B cell recycling and differentiation, and GC
termination

The number of B cells that exit the GC after each round of AM

is determined using a random binomial distribution, with an exit

probability of 30%. The exiting cells are then added to the potential

memory B cell pool that is used to seed new GCs upon subsequent

immunizations. The other 70% of the surviving B cells are recycled

for further rounds of mutation and selection. GCs terminate

successfully when the B cell population recovers its initial size of

5,120 cells, or unsuccessfully if all of the B cells die.

Memory b cell selection for seeding
subsequent GCs

For vaccination protocols consisting of more than one

immunization, GCs formed upon the nth immunization are
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seeded with memory B cells produced during the previous

immunizations. As in our past work (13), we assumed here

that only memory B cells become activated upon subsequent

immunizations, rather than or in addition to naïve B cells. Ten

memory B cells were chosen to seed each new GC, with selection

probabilities set equal to their relative prevalence in the memory

B cell population.
Breadth calculations
To determine the breadth of the antibodies that result from

each simulated vaccination protocol, we compute the binding free

energy of each antibody against an artificial panel of 100 different

antigens. The panel sequences contain the same conserved residue

values (all +1) as the antigen(s) administered in the vaccine

protocol, whereas the variable residues in the panel sequences

have equal probability of taking on a +1 or -1 value and thus differ

from the administered antigen sequence(s). Previously, we found

that increasing the number of antigens on the panel to 1,000 had

little-to-no effect on the resulting breadth values (13). After

calculating the set of 100 binding free energies for a given

antibody, the breadth of the antibody is computed as the

fraction of panel antigens for which the antibody binds above a

threshold value (Eth ) of 12 kBT . This value was chosen so that few

antibodies produced from a single immunization are deemed

“broad”, but so that antibodies can achieve high breadth in some

cases after multiple immunizations, in line with experiments. To

calculate meaningful statistics, each simulated vaccination

protocol is performed 100 times, representing 100 GC reactions,

and then performed in triplicate. This allows us to calculate the

mean clonal breadth for each vaccination protocol (Eqn. 3):

mean   breadth= 1
Nclones   in   all  GCs

o
all clones j in all GCs

1
Npanel  Ags

o
all   panel  Ags   i

Eij > Eth  

(3)

We can then calculate the mean bnAb titers produced per

GC as shown in Eqn. 4 below, using a value of 0.8 as the

threshold for defining a bnAb as in our past work:

bNAb   titers=GC =
1

NGCs  
o

all clones j  
in all GCs

breadth(j) > 0:8   (4)
Frustration
Exposing the immune system to multiple diverse antigens

results in conflicting selection forces in the AM process. The

degree to which these selection forces throw the evolving B cell

population off of steady state has been termed frustration in the

past (11, 12). Varying the antigen sequence and/or

concentration (among other potential variables) frustrates the

evolutionary process, and in response the B cell population is

focused towards strengthening binding to conserved antigenic
Frontiers in Immunology 06
sites in order to survive. Imposing too much frustration during

vaccination results in the survival of only a few very good (high-

breadth) B cells, while imposing too little frustration results in

the survival of primarily low-breadth (or “strain-specific”) B

cells. Indeed, previous works have shown that there is an optimal

level of frustration to impose in each immunization which

maximizes both the quality and quantity/titers of high-breadth

antibodies (e.g., bnAbs) (13, 24). Here, the frustration, Fi , of a

single immunization is represented by a linear combination of

the antigen mutational distance and inverse antigen

concentration (Eqn. 5), as determined in our past work (13):

Fi = di + wi ·
1
ci

(5)

Where di is the mutational distance, ci is the concentration

(as in Eqn. 2), and wi is an empirical weighting factor for the two

components [here, we used a value of 24.6, as in our past work

(13)]. In our simulations, di was kept constant, and so frustration

was modulated only through changing the concentration of the

administered antigen in each immunization.
Coupling the AM model with deep
reinforcement learning

Background and nomenclature
Reinforcement learning (RL) is a subfield within machine

learning that seeks to find near-optimal solutions to complex,

stochastic problems that are intractable to solve analytically. For

a detailed description of the application of RL in both biological

and artificial systems, readers are directed to the comprehensive

text by Sutton and Barto (75), and to the free online resource

Spinning Up by OpenAI (76) for an introduction to both RL and

DRL. DRL expands upon standard RL by employing neural

networks to represent the mapping between states and actions.

Below, we provide a high-level overview of DRL, then describe

how DRL is coupled to our model of affinity maturation.

Typically, agent-based modeling simulations progress without

any outside intervention. That is, the parameters which govern the

environment are set at the onset of the simulation and do not

change once the simulation has commenced. When coupling DRL

to agent-based models, actions are chosen by the DRL agent during

the simulation which drive the parameters toward optimal, or near-

optimal, values, based on maximizing a user-defined reward

function. The mapping from states of the environment leads to

actions (or a distribution over actions) constitutes a policy, or

strategy, which is then optimized to maximize the chosen

cumulative reward.

A DRL algorithm contains a few pieces: first, an

environment, which can best be described as a Markov

decision process with several core components, namely, a state

space S , an action space A , a reward function r, and transition
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dynamics (i.e., the simulation environment, E ); second, it

contains a policy or agent, p , which maps states to a

distribution of actions. It should be noted the DRL

environment and DRL agent are separate entities from the

simulation environment and agents within the agent-based

model itself. A state, s∈S , is the complete description of all

values within the agent-based model at each step. As the

simulation proceeds, the agent-based model will maintain an

internal state, and the DRL agent will make observations o=O(s)

which may limit the amount of information available (see

Observation Space below). An action, a∈A, is an input

parameter selected by the DRL agent which then feeds into the

agent-based model at a given time step t. The simulation

environment, E , is represented as a black box: the DRL agent

takes an action at at time t , given state st, and then updates its

observation to st+1 . The trajectory taken during a simulation is

then referred to as an episode.

The actions a DRL agent takes p : S↦ P(A). The policy maps

a given state to a probability distribution of possible actions.

Here, we use the Proximal Policy Optimization (PPO)

reinforcement learning algorithm (77). Implementation of the

PPO algorithm was obtained from OpenAI Baselines and

utilized the open-source machine learning platform and

numerical computational library TensorFlow. Open AI’s Gym

interface was used to create custom DRL agents by serving as a

standardized platform to connect the custom-built AM

environment with the PPO algorithm. For a rigorous

discussion of the PPO algorithm, we direct readers to the

original publication (77).

Finally, the reward function, r :S×A×S↦R , maps the state at

a given time (st) , action (at) , and the subsequent state (st+1) to a

scalar value R . The DRL agent then receives the return, which is

the cumulative future reward from time t to the end of the

episode, discounted by a discount factor, g∈(0, 1] . The discount
factor determines the relative weight of immediate versus future

rewards. The return is thus calculated via Eqn. 6 below.

Rt = o
tf

t=t0
rt0g

t0−t (6)

Here, Rt is the return, rt′ is the initial reward at time t , tf is the

terminal time, and gt
′
−t is the discount factor. The workflow of

DRL is then as follows: The DRL agent makes an observation, st,

then using the current policy, p , takes an action, at , which

results in a new state, st+1 , and subsequent reward, rt . These

interactions can be represented as a feedback loop (Figure 1).
Affinity maturation as a DRL environment
In the present work, an episode is defined as 100 vaccination

protocols (or GC reactions) consisting of one or more

immunizations, or the time until the B cell population dies,

and the GC reaction terminates unsuccessfully. A DRL step is

defined as a single immunization and finishes when the B cell
Frontiers in Immunology 07
population recovers its initial size of 5,120 cells. The simulations

were all run for 48 hours of wall-time and typically consisted of

100,000 - 150,000 DRL steps.

Observation space

Observations were designed to reflect the components of the

immune system that would be activated upon/respond to a

subsequent immunization—i.e., the memory B cell population

produced in the prior immunization—and relevant metrics that

can be observed clinically after each immunization, namely

variables characterizing the distribution of breadth of the total

memory B cell population produced after the 100 GC reactions.

To this end, our observations include: (1) the number of bnAb-

producing memory B cells,NbnAbs , and (2) non-bnAb producing

memory B cells, Nnon−bnAbs , divided by a scalar (the initial B cell

population size of 5,120×NGCs ); (3) the weighted mean breadth

(�B = (NB,iBi)=oNB,i), where Bi is the breadth of clone i and NB,i

is the number of B cells in clone i ; and (4), the weighted

standard deviation of breadth (sB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(NB,iBi)

2=oNB,i

q
 ).

Action space

The actions taken by the DRL agent correspond to the level of

frustration imposed during each immunization on B cell receptor

evolution (see earlier section on Frustration for more details). For

immunization i , an individual action, at , is selected and then

scaled and shifted according to Eqn. 7, essentially converting the

action into a frustration value. While the action space is bounded

to the range of A∈[−100, 100], in practice most of the selected

actions fall in the range of [−1, 1] , resulting in actions that

typically fall within the range of [20, 40] after being scaled and

shifted. In our past work, this was found to be the relevant range of

frustration values to explore in a single immunization.

Fi = 10� at + 30 (7)

Fi is then converted to an antigen concentration value using

Eqn. 5, for later use in Eqn. 2.

Reward function

In addition to observing the state of the system after each

immunization/step, the DRL agent receives a reward following

each immunization. To explore the effects of optimizing for

different metrics of protection upon vaccination on the

resulting DRL policy (or optimal temporal frustration

profile), we tested two relevant reward functions. First, we set

our reward function to be the number of bnAb-producing

plasma B cells, or essentially the produced bnAb titers, scaled

by the initial B cell population size of 5,120 cells. We note that

while the observation space is based on memory B cells, the

reward function is based on plasma B cells, since these cells are

responsible for secreting the antibodies that will seek out and

fight the infection and thus directly reflect the quality of the

immune response. In a second set of experiments, we set our
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reward function to be the fraction of bnAb-producing plasma B

cells (or simply bnAbs produced) out of the total number of

nAbs produced.

Hyperparameters and hardware

The following hyperparameters were used and are defined

using the terminology seen in PPO baselines from OpenAI.

Unless explicitly stated, the hyperparameters were kept at their

default values. The DRL agent performed 32 steps before then

performing stochastic gradient descent updates on four

minibatches for four epochs. These parameters set the rate at

which the policy is updated. To guide the step size of the policy

update, a clipping range of 0.2 was used, with a value of 0.5 for

the maximum value of gradient clipping. Evaluations were

conducted every 5000 episodes, using 100 episodes per

evaluation. In our preliminary studies using this system, the

DRL agent adequately explored a wide range of frustration

values, and thus the entropy coefficient for this study was set

to zero. To shape the reward function, and to balance the

variance-vs-bias of the Generalized Advantage Estimator (78),

we selected gamma and lambda to be 0.99 and 0.95, respectively.

The value function loss coefficient was set to 0.5. All simulations

were performed on the Alpine supercomputing cluster at the

University of Colorado, Boulder on 64-core AMD Milan CPUs.
Results

Overview and justification of approach

Previous work using this AM model (13) (without DRL)

varied the frustration imposed on GC reactions across two

immunizations and revealed an optimum level of imposed

frustration exists for each immunization to maximize the

number of bnAbs produced. Further, the optimum level of

frustration was found to increase from the first immunization

to the second. Here, rather than manually adjusting the level of

imposed frustration to determine the optimum temporal

frustration profile, a DRL agent was responsible for selecting

frustration values and learning to map these values to the

result ing immune response for a given number of

immunizations. In this manner, DRL efficiently steered the

choice of frustration values towards those values that directly

affect the breadth of binding (or other properties of interest) of

the evolving antibody population, thereby speeding up

exploration of the relevant regions of the frustration landscape.

Such sequence-property relationships are usually impossible

to know a priori. In this case, however, previous work (13) with

this model has shown that imposing frustration values below ~35

or above ~45 in the first vaccine immunization results in relatively

low bnAb titers—the former due to the production of primarily

low-breadth antibodies with few mutations, and the latter due to
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the production of very few antibodies overall. The DRL agent

reached this same conclusion after the first vaccine immunization

extremely quickly (within a few thousand DRL steps/

immunizations), without needing to spend much time exploring

these unimportant regions of the frustration landscape. This

finding was observed to be true for both metrics of protection

(Figure 3A, “bnAb titers”; Figure 3B, “bnAb fraction”).

Consistent with results from previous work (13), we also find

that the level of frustration that maximizes the bnAb titers

produced in the first vaccine immunization—as chosen by the

DRL agent—is a value of F1≈39 (Figure 3A, blue line). The

optimal frustration value for maximizing the fraction of bnAbs

produced in the first vaccine immunization is observed to be

slightly higher, at a value of F1≈40 (Figure 3A, pink line). We

describe why these differences emerge in the following section,

which provides an analysis of the temporal frustration profiles

across multiple immunizations for the two reward functions.

Figures 3B, C show the corresponding scaled reward values

obtained by the DRL agent as a function of the number of DRL

steps/immunizations for the bnAb titers and bnAb fraction

reward functions, respectively. The reward profiles closely

parallel the frustration profiles show in Figure 3A in terms of

the number of DRL steps needed to converge to an optimal

value, indicating that sampling the optimal frustration value

results in the optimal reward being obtained by the DRL agent,

as expected.
Optimal temporal immunization
protocols differ for the two
metrics of protection

We explored how changing the DRL reward function (or

metric of protection) leads to changes in the optimal temporal

frustration profile for a vaccination protocol with four

sequential immunizations of a single antigen. Specifically, we

performed simulations with the DRL reward function set to:

(1) the total number of bnAbs produced (“bnAb titers”),

enabling us to compare against our past work, and (2) the

number of bnAbs produced divided by the total number of

nAbs produced (“bnAb fraction”). We find that the optimal

temporal frustration profile chosen by the DRL agent using the

bnAb titers reward function reproduces the conclusion from

our previous work that frustration should be optimally

increased from the first to the second vaccine immunization

in order to maximize bnAb titers (Figure 4A) (13).

Furthermore, this fact is observed to hold true across all four

immunizations, though, as discussed in the next section, the

optimal difference in the level of frustration imposed on GC

reactions between immunizations becomes increasingly small

at high numbers of immunizations, NT , in a given vaccine

protocol. Similar to the results obtained with the bnAb titers

reward function, using the bnAb fraction reward function we
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observe that the optimal frustration value increases across the

four immunizations (Figure 4B).

Also in line with our past work (13), with the bnAb titers

reward function we observe an increase in the mean number of

bnAbs produced per successful GC (out of n=100 GCs) after

each sequential immunization (Figure 4C), while the mean

number of successful GCs decreases slightly with each

subsequent immunization (Figure 4D). We note that while

Figures 4C, D were constructed using all of the acquired data

for each immunization, as discussed earlier, the DRL agent

quickly arrives at the optimal frustration values, and thus the

mean and standard deviation of the values in Figures 4C, D are

highly representative of the optimal policy. The increases in

bnAb production with each additional immunization may be

attributed to the fact that the seeding B cells bind increasingly

strongly to the conserved antigen residues with each ensuing

immunization, so their paths towards becoming bnAbs are

shorter and more streamlined. In addition, the increased

binding strength to conserved antigen residues with

subsequent immunizations provides B cells with an increased

tolerance for higher frustration values that serves to further focus

B cell responses on the conserved antigen residues that confer

breadth and bnAb-like character to the B cell receptors. Similar

to the results obtained with the bnAb titers reward function,

results obtained with the bnAb fraction reward function show an
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increase in the number of bnAbs produced per successful GC

with each additional immunization (Figure 4C). The use of the

bnAb fraction reward function results in the production of

slightly more bnAbs per successful GC, though this occurs at a

notable cost to the number of GCs that survive after a given

immunization (Figure 4D).

Differences emerge among the two reward functions when

comparing the final bnAb titers (Figure 4E) and fraction of

bnAbs (Figure 4F) that result after all four vaccine

immunizations have been administered, as a function of the

level of frustration chosen by the DRL agent for immunization.

With the bnAb titers reward function, the DRL agent initially

chooses many similar frustration values between 43 and 47 for

all four immunizations (Figure 4A), corresponding to the small

elliptical-shaped clusters in Figure 4E (note, the cluster for

immunization 2 overlays that of immunization 1). With this

temporal frustration profile (or policy), relatively low bnAb titers

result, leading to low rewards for the DRL agent. Continuing its

exploration of the frustration landscape, the DRL agent then

shifts to testing a broader range of frustration values, converging

on a lower frustration value for the first immunization (F1≈39 ,

as stated earlier) and higher frustration values in the subsequent

immunizations (F2≈52, F3≈65, and F4≈76). The lower

frustration in the first immunization serves to maintain a

relatively high mean GC success rate (Figure 4D), leading to a
A

B C

FIGURE 3

Convergence profiles of (A) the level of frustration imposed on GC reactions in the first vaccine immunization, as chosen by the DRL agent, and
(B, C) the corresponding scaled reward values obtained by the DRL agent. Results are shown in blue for the bnAb titers reward function, and in
pink for the bnAb fraction reward function. The data shown represents a rolling average with 500 DRL steps for both the mean and standard
deviation (shown in lighter colors).
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large B cell population that can be translated into high bnAb

titers (and high rewards) in response to the high levels of

frustration imposed in the ensuing immunizations (Figure 4E).

In our past work, manually exploring this landscape led us to

conclude that a frustration value of F2≈45 was optimal in the
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second vaccine immunization (13). While this initially looked

promising to the DRL agent as well, due to the changes in how

memory B cells were chosen (see Methods), the agent quickly

found that higher rewards could be achieved at F2≈52 . We

found that when reverting to our previous model—but keeping
A B

D

E

F

C

FIGURE 4

Convergence of frustration values F1 (green), F2 (orange), F3 (purple), and F4 (pink) for (A) the bnAb titers reward function (RF) and (B) the bnAb
fraction RF, across four total immunizations; (C) bnAb titers produced per successful GC (out of n=100 GCs) for both RFs after each of the four
immunizations; (D) number of successfully terminating GCs after each immunization for both RFs; (E) distribution of bnAb titer response for a
given Fi after the four immunizations; and (F) fractional bnAb response for a given Fi after the four immunizations. In (A, B), the rolling average
+/- the rolling standard deviation is plotted using 500 DRL steps. In (C, D), error bars are +/- the standard deviation of the respective metric
(bnAb titers/successful GC and total successful GCs, respectively). In (E, F), the y-values shown are the responses after administering all four
immunizations; that is, the y-values are plotted as (Fi∈4, R4) for R4≡ total bnAb titers and bnAb fraction, respectively.
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the DRL agent in the driver’s seat—the agent converged on the

same frustration value as we saw in our past work. This

observation highlights a major benefit of using DRL to steer

agent-based models of biological processes, which is that DRL is

able to adapt quickly and efficiently to changes in agent-based

models that are made to better reflect new biological insights

and/or changing circumstances, as they become available.

With the bnAb fraction reward function, the DRL agent

again begins by choosing many similar frustration values

between 43 and 47 for all four immunizations (Figure 4B).

However, in this case, at these frustration values the DRL

agent can occasionally receive high rewards (bnAb fractions

near 1.0) after the third and fourth immunizations. This is

possible because the high frustration in the first vaccine

immunization serves to immediately focus B cells on

conserved antigenic sites, while also promoting an extremely

high GC extinction rate (i.e., less than ~10 out of 100 GCs

survive) to drive down the number of GCs that must primarily

produce bnAbs in order to collectively achieve a high bnAb

fraction. By the third and fourth immunizations (i.e., with

sufficient maturation time), the few surviving GCs do

occasionally all produce high fractions of bnAbs and thus

stochastically produce high rewards, while the produced bnAb

titers remains low. Following the sampling of this first policy

(temporal frustration profile), the DRL agent then shifts to

explore a higher and broader range of frustration values to

identify a policy that will achieve more consistent rewards.

Similar to the case with the bnAb titers reward function, the

DRL agent converges on a lower frustration value for the first

immunization (F1≈40 , as stated earlier) and higher frustration

values in the subsequent immunizations (F2≈55, F3≈73, and

F4≈86). Once again, the lower frustration in the first

immunization serves to increase the mean GC success rate

(Figure 4D), maintaining a larger pool of B cells that can be

evolved into bnAbs in response to the high levels of frustration

imposed in the subsequent immunizations (Figure 4F). Here,

however, the frustration values are much higher in these later

immunizations than with the bnAb titers reward function in

order to simultaneously eliminate non-bnAb-producing GCs

and maximize the overall bnAb fraction. This is evidenced by the

lower mean numbers of GCs that succeed after the second, third,

and fourth immunizations with the bnAb fraction reward

function (Figure 4D), yet this new policy still produces

appreciable bnAb titers as well as a high bnAb fraction.

While the second policy discussed above with the bnAb

fraction reward function leads to more consistent rewards for the

DRL agent, the agent’s ability to arrive at this conclusion is

complicated by the fact that both policies can produce similarly

successful outcomes. This behavior is demonstrated in Figure 4B

by the period of stagnation in the frustration values sampled by

the DRL agent during the first ~25,000 DRL steps before the

frustration jumps up, which occurs in an almost stepwise

manner in the fourth and final immunization. Furthermore,
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this behavior explains the increased variance observed in the

reward and frustration curves (Figures 4A, B, respectively) as

well as in the range of frustration values explored (Figures 4E, F)

with the bnAb fraction reward function compared to the bnAb

titers reward function. Specifically, we can see in both the

variance of Figure 4B and spread of Figure 4F that the DRL

agent can receive reward values for bnAb fractions between 0

and 1.0 for F4∈[60, 70] , though, in this frustration range, higher

bnAb fractions are observed—and thus rewards are received—

only sporadically. As a result, the agent must continue to raise F4
until it arrives at a frustration regime with a more persistent

reward, precisely, within F4∈(70, 105] . The ability of DRL to

navigate through this jagged reward space and arrive at an

optimal policy further exemplifies its usefulness as a tool in

biological simulations.
A sustained BnAb response is
revealed at high numbers of
minimally-tailored immunizations

Here, we sought to take advantage of the speed with which

DRL can navigate multidimensional landscapes by exploring a

large number of immunizations (NT=10) to understand if we

eventually reach a point at which additional immunizations lead

to diminishing returns in the titers or fraction of bnAbs produced.

If so, such results could offer practical considerations for

manufacturing vaccines against highly mutable pathogens; as we

have seen with the COVID-19 pandemic, vaccine/pandemic

fatigue (79) can occur even with a disease that can cause severe

health effects. While a protocol with ten immunizations is likely

unrealistic in most scenarios, such a deep exploration of this facet

of the vaccine design space may provide new insights into AM

dynamics and possible tradeoffs in antibody-mediated protection

and vaccine manufacturability.

We first sought to determine if and how an individual

immunization’s frustration value, Fi, changes as the total

number of immunizations, NT, is increased. For the bnAb

titers reward function, as NT increases, Fi∈NT
tends to decrease

(moving down each column in Figure 5A), the implications of

which are discussed in detail in the following section.

Interestingly, this trend does not appear to hold true for the

bnAb fraction reward function (Figure 5B), except for at higher

values of i (i= 7, 8, and 9). Instead, we observe that as NT

increases, Fi goes through a maximum for intermediate values of

i (i= 4, 5, and 6). We also observe that for a given NT , higher

frustration values are required in each immunization in order to

maximize the bnAb fraction versus the bnAb titers that are

produced, consistent with our earlier results.

Figures 5C (bnAb titers reward function) and 5D (bnAb

fraction reward function) show, as a function of i, the mean

optimal Fi values after being averaged across all data at the

relevant NT (e.g., for i= 3, the data is averaged across all values of
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F3 in NT= 1, 2, and 3). The results show that for both reward

functions, the differences in the mean optimal Fi value from one

immunization to the next decrease as i increases, leading to a

leveling out of the optimal frustration values. To understand this

behavior more quantitatively, we fit our frustration data to a

Michaelis-Menten saturation equation (Eqn. 8), leading to high

R2 values of 0.98 for both reward functions.

Fi =
Fmax · i
iF50 + i

(8)

In this equation, Fmax represents the maximum optimal

level of frustration that can be imposed on GC reactions for a

given reward function, with FMax found to be 100.7 and 123.3
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for the bnAb titers and bnAb fraction reward functions,

respectively. The iF50
parameter represents the number of

immunizations that must be administered (at their optimal

values of Fi ) in order to impose a level of frustration that is half

that of Fmax , with iF50 found to be 1.6 and 2.2 for the bnAb titers

and bnAb fraction reward functions, respectively. More

intuitively, iF50
can be thought of as the number of

immunizations in which 50% of the diversity in the overall

vaccine formulation is encompassed (e.g., in terms of how the

antigen sequences or concentration profiles are designed). As

such, our results suggest that approximately the first 3-4

immunizations for the bnAb titers reward function or the

first 4-5 immunizations for the bnAb fraction reward
A B

D

E F

C

FIGURE 5

Frustration values of a given immunization, i , out of a total number of immunizations, NT , where the column corresponds to the ith

immunization, and the row corresponds to the total immunizations for both the (A) bnAb titers reward function and (B) bnAb fraction reward
function; the average frustration for a given immunization, Fi , averaged across all NT for (C) the bnAb titers reward function (purple) and (D) the
bnAb fraction reward function (pink), with their respective Michaelis-Menten saturation fits (red) +/- the standard deviation (gray); the average
reward for a given immunization, Ri , for the bnAb titers reward function (E, blue) and bnAb fraction reward function (F, green), with their
respective fits (red) and standard deviation of the fit (gray). In (C–F), the error bars represent the standard deviation. Fitted parameters for the
Michaelis-Menten model are shown in (C–F).
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function must be carefully tailored to impose the optimal

frustration values—and in turn achieve the optimal reward

values—in each immunization. Beyond these numbers of

immunizations, our results suggest that immunizations can

be more similarly designed or perhaps even kept the same to

maintain a strong protective antibody response.

This latter point is exemplified in Figures 5E, F, which show

as a function of i the mean achieved reward values Ri averaged

across all data at the relevant NT , for the bnAb titers and bnAb

fraction reward functions, respectively. The data has once again

been fit to a Michaelis-Menten saturation curve (Eqn. 9),

resulting in R2 values of 0.95 and 0.90, respectively.

Ri =
Rmax · i
iR50

+ i
(9)

In this equation, Rmax represents the maximum reward that

can be achieved, found to be a bnAb titer of 3.0x105 (Figure 5E)

and a bnAb fraction of 1.0 (Figure 5F). The iR50
parameter

represents the number of immunizations that must be

administered in order to achieve 50% of Rmax, found to be 6.8

and 3.3 for the bnAb titers and bnAb fraction reward functions,

respectively. Notably, the iR50
values are higher than the iF50

values for both reward functions, though the difference is much

greater for the bnAb titers reward function. This finding,

discussed in more detail in the following section, is exciting, as

it implies that even if the same or very similarly formulated

immunizations are administered in later immunizations, the

produced bnAb titers will continue to increase (at least up to

i =10). Though, we do observe the bnAb titers curve begin to

level out as well at high values of i (Figure 5E). For the bnAb

fraction reward value, this saturation behavior is much more

pronounced by i = 10, in line with the fact that the iR50
and iF50

values are more similar.
Discussion

The need for robust and easily accessible vaccines to aid in

combating infectious diseases has been made evident by the

recent COVID-19 pandemic, with a major issue arising in the

lack of vaccine equity globally (80). Vaccine equity operates on

the premise that regardless of geographical or socioeconomic

status, all individuals worldwide should have access to vital

vaccines. Universal vaccines—the colloquial “silver bullets”—

could help to make this objective feasible. A universal vaccine

aims to elicit broadly neutralizing antibodies (bnAbs), which

target conserved sites on viral surface proteins and which

therefore should be able to provide protection to an individual

even if the virus mutates. However, having equal access to such a

vaccine does not ensure all subpopulations will equally adhere to

the vaccine’s immunization protocol, especially as more

immunizations are required, or that all subpopulations will
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respond equally as effectively to the vaccine due to various

sources of heterogeneity in their immune responses.

To account for these factors, one possible solution is to

develop a set of minimally-tailored universal vaccines against a

given hm-IDP. The feasibility of such an idea relies on how

much the vaccination protocol would need to be altered to be

sufficiently comprehensive (i.e., how large would the minimal set

of universal vaccines need to be), which is currently unknown.

To this end, we used a novel in silico approach combining a

coarse-grained agent-based model of affinity maturation with

deep reinforcement learning (DRL), to elucidate optimal

temporal immunization protocols against hm-IDPs like HIV

and influenza, for which universal vaccines remain elusive.

Harnessing the power of DRL to increase the sampling

efficiency of the relevant vaccine design space, we explored

how the optimal temporal immunization protocol differs for

different metrics of protection (DRL reward functions), namely

the titers or fraction of bnAbs produced. We show that for both

metrics of protection, a minimal set of bnAb-eliciting (and thus

universal) vaccines may suffice to confer protection against a

given hm-IDP. Specifically, our results suggest a set of 3-5

immunizations is sufficient to achieve a robust protective

immune response. Additional immunizations may boost the

immune response—increasing the bnAb titers—but do not

require changes in formulation to elicit these titers.

High neutralizing antibody (nAb) titers are often the desired

end goal for protecting against infectious diseases (bnAbs are the

ideal target but have yet to be robustly and consistently elicited

via vaccination). However, there are other factors that must be

considered to ensure broad protection of the population against

future pandemic events. One example could be the time-to-

response, or the time it takes for the AM process to produce the

first batch of bnAbs. Vaccines that aim to streamline the process

of evolving bnAbs (i.e., evolve high antibody breadth via the

fewest mutations possible), may enable the use of vaccines to

curtail acute infectious disease outbreaks. Another example is

that a reduction in sustained GC response and an increase in the

fraction of bnAbs produced, rather than the total bnAb titers

produced, could result in fewer off-target antibody responses. In

the case of HIV, a recent study showed off-target antibodies

elicited by an HIV vaccine actively hindered the acquisition of

protection by destabilizing and degrading the components in the

vaccine (81). Minimizing off-target responses by administering

low-dose vaccines to operate at higher levels of frustration (see

Methods) could also circumvent the theoretical concern that

high-dose and/or adjuvanted vaccines may induce autoimmune

responses or augment autoimmune disease activity (82).

For both metrics of protection we explored, our results

indicate frustration should be optimally increased in each

subsequent immunization, but that the degree to which the

frustration should be increased from one immunization to the

next differs for the different metrics of protection. More

specifically, we find that the imposed frustration should be
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higher in each immunization to maximize the fraction of bnAbs

produced rather than the total bnAb titers (for which the

production of non-bnAb titers, or off-target antibody

responses, may also be high). However, the use of the bnAb

fraction reward function results in only about a 6.7% increase in

the mean fraction of bnAbs produced compared with the bnAb

titers reward function (Figure 4C). Additionally, this slight

increase in the fraction of bnAbs produced comes at a steep

reduction in the mean bnAb titers produced of nearly 50%, using

the bnAb fraction versus bnAb titers reward function

(Figures 4C, D). Thus, a vaccine strategy that aims to

maximize the overall bnAb titers rather than the bnAb

fraction may be more beneficial for the general populace,

especially considering that more consistent results can be

achieved with this approach (see earlier discussion of

Figures 4E, F). For situations where it is crucial to minimize

off-target responses, our results indicate there are multiple

strategies for producing a high fraction of bnAbs. However,

only one of these strategies is expected to elicit good results with

any consistency, which entails ramping up the frustration in the

later immunizations (here, starting in the fourth immunization),

to ensure only a small handful of GCs survive that produce

primarily bnAbs.

We also explored how the optimal temporal immunization

protocols changed as the overall number of immunizations was

increased between one and ten, leveraging DRL’s ability to efficiently

parse such high-dimensional landscapes. Our results indicate vaccines

must be tailored to be optimally different from one another (e.g., in

terms of the antigen sequences or concentrations) in the first 3 to 5

immunizations in order to achieve broadly protective immune

responses, based on either metric of protection explored, providing

support for our idea of “minimally-tailored” universal vaccines.

Beyond this number of immunizations, our results indicate that

further immunizations need be designed to be only minimally

different, if at all, from the prior immunizations, without causing a

diminished immune response upon administration. As such, these

later immunizations may be useful as boosters, akin to those

administered for COVID-19, without reformulation.

In line with these observations, we found in our past work

that for a total of two immunizations (NT=2), there is an

optimal frustration to impose in the first immunization (F1)

that enables maximum bnAb titers to be produced (if F2 is also

at its optimal value), and that if F1 is decreased below its

optimal value, this enables fewer bnAbs to be produced after

the second immunization. This was found to be true regardless

of how much F2 is increased to try and refocus B cell receptors

on conserved antigen residues, as extensive B cell death

occurred before a high enough frustration could be imposed

to recoup the losses in the produced bnAb titers. Here, our

results suggest that this effect can be mitigated by increasing

NT, which will serve to slowly refocus B cell receptors on

conserved sites over several sequential immunizations, thus

minimizing B cell death along the way and producing high
Frontiers in Immunology 14
bnAb titers. In other words, our results indicate that the

optimal level of frustration to impose in any given

immun i z a t i on depend s on th e t o t a l numbe r o f

immunizations in the vaccine protocol. Alternatively, one can

adopt the perspective that increasing NT may serve as a remedy

for administering sub-optimal levels of frustration in the

previous immunization(s). However, such a remedy may run

into practical considerations in terms of administration costs

(manufacturing costs would presumably remain relatively low

due to the high similarity of the later immunizations), or issues

with maintaining high vaccination adherence rates in certain

subpopulations and/or geographical locations.

The scope of our results is limited in that the model we

employed uses coarse-grained representations for the antigen

sequences, simplifying the physics and focusing our

investigation on the population-level dynamics of the immune

response. As previously mentioned, this work explores the

immune dynamics of AM after a successful germline-targeting

scheme has been presumed to have taken place to recruit the

desired precursor B cells to germinal centers. Recent advances in

targeting germline B cells known to evolve into VRC01-class,

anti-HIV bnAbs have demonstrated some success (22, 64, 66, 83,

84), but success has yet to be realized in a clinical setting. The

variance of germline precursor frequencies, as well as the effects

of polyclonal Fc-mediated antibody responses also play

important roles in vaccine design and warrant further

investigation. Moreover, as previously mentioned, recent

studies have demonstrated the importance of Ag capture in

the AM process (52, 55), which we plan to incorporate into our

model in the future. As the complexities of AM continue to be

unraveled, so too shall our models evolve to better recapitulate

the in vitro and in vivo findings of the field. Future studies with

this DRL-driven computational framework will be performed to

investigate if the results derived herein—which were based on

modulating frustration only through changes in the temporal

antigen concentration profiles—may change when allowing the

DRL agent to vary the administered antigen sequences, and

ultimately to vary both variables simultaneously. In addition, the

capability of DRL to efficiently navigate complex landscapes will

be further leveraged in future studies with models of AM that

operate at the amino acid sequence level, such as a model

recently developed by us (24), for which the design space is

considerably larger. We look forward to future experimental

studies that may enable validation of our computational findings

that: (1) if an immunization is administered at a sub-optimal

setting (e.g., at a setting that produces less bnAb titers than at a

different setting), the production of high bnAb titers may be

rescued by administering several additional immunizations

designed to be highly similar to one another and to the prior

immunization, and (2) that the imposed frustration should be

slightly higher in each immunization to reduce off-target

responses, versus simply maximizing the production of bnAbs.
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