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Exploring the causality and
pathogenesis of systemic lupus
erythematosus in breast cancer
based on Mendelian
randomization and transcriptome
data analyses

Wenjie Li , Rong Wang and Wei Wang *

Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
Introduction: There has been a cumulative interest in relationships between

systemic lupus erythematosus (SLE) and cancer risk. Breast cancer is the most

common cancer among women worldwide. However, the casual association and

pathogenesis between SLE and breast cancer remains incompletely unknown.

Methods: Mendelian randomization (MR) analysis was first conducted to

investigate the potential causality between SLE and breast cancer. Sensitivity

analyses were applied to validate the reliability of MR results. Transcriptomic data

analyses based on the Cancer Genome Atlas and Gene Expression Omnibus

databases were then performed to identify and construct a SLE-related gene

signature (SLEscore).

Results: The MR analysis demonstrated that genetic predisposition to SLE was

casually associated with the decreased risk of breast cancer in the East Asian

cohort (odds ratios: 0.95, 95% confidence interval: 0.92-0.98, p=0.006). However,

no casual associations were observed in the European population. Furthermore,

sensitivity analyses proved the robustness of the present MR results. A prognostic

SLEscore consisting of five SLE-related genes (RACGAP1, HMMR, TTK, TOP2A, and

KIF15) could distribute patients with breast cancer into the high- and low-risk

groups according to survival rates with good predictive ability (p < 0.05).

Conclusion: Our MR study provided evidence that genetic changes in SLE were

significantly associated with the decreased risk of breast cancer in the East Asian

population, while no causality was found in the European cohorts. Transcriptome

data analyses indicated that the SLEscore could serve as a novel biomarker for

predicting prognosis when breast cancer and SLE coexisted in patients.
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Introduction

Interest in the duality of the immune system in cancer has

rumbled on for years because inflammation can accelerate

tumorigenesis, whereas the immune system possesses powerful

ant i - tumor propert i es once act ivated . Sys temic lupus

erythematosus (SLE), an intricately and systematically chronic

inflammation, is typically an autoimmune disease (1). SLE

patients were reported to have at most five-times the risk of

mortality from cancers compared with the general population

(2–4). Consequently, more attention should be paid to the risks

of tumorigenesis in SLE patients. Breast cancer is the most

common cancer among women worldwide and strongly linked

to chronic inflammation (5, 6). Due to the high incidence of SLE

in females, accumulating observational or cohort studies (7–9)

have explored the association between SLE and breast cancer.

However, observational studies yielded conflicting conclusions

because resul t s may be influenced by many potent ia l

confounding factors, including sample size and anti-SLE

immunosuppressive therapy (10). Epidemiologic patterns of

SLE and breast cancer might also vary between different ethnic

populations (11). Thus, the causal relationship between SLE and

breast cancer risk needs to be assessed with a more well-

designed approach.

Regarded as a promising epidemiological method, the

Mendelian randomization (MR) analysis was proposed for

precise assessment of potential causality between exposures and

outcomes (12). MR has been likened to randomized controlled

trials where a random assortment of alleles contributes to a

random assignment of exposures (12). Moreover, the MR

method is independent on environmental risk factors and prior

to disease progression. Therefore, in order to avoid reverse

causality and potential confounding factors, genetic variants are

utilized as the instrumental variables (IVs) in the MR analysis.

Using summary-level statistics from previous genome-wide

association studies (GWASs) and transcriptomic data, we aimed

to perform a MR analysis to more feasibly explore the possible

causality between SLE and breast cancer. Besides, SLE would

increase mortality in patients with breast cancer when both

pathologies coexist (11). Thus, another purpose of this study was

to investigate common molecular mechanisms between two

diseases by using differentially expressed genes (DEGs) for risk

stratification and therapeutic targets.
Method

The overview design of our work was shown in Figure 1. Data

sources for MR and transcriptome data are publicly available online.
Abbreviations: Cis, Confidence intervals; DEGs, differentially expressed genes;

IVW, inverse variance-weighted; KEGG, Kyoto Encyclopedia of Genes and

Genomes; LASSO, least absolute shrinkage and selection operator; MR,

mendelian randomization; ORs, odds ratios; SLE, Systemic Lupus Erythematosus;

SNPs, single-nucleotide polymorphisms; WGCNA, weighted Gene Co-Expression

Network Analysis.
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Mendelian randomization analysis

Data sources

Our work was conducted based on summary-level data from

GWASs of European and East Asian ancestries, respectively (Table 1).
i. SLE Effect estimates of the SNPs associated with SLE risk were

acquired from a study comprising 5,201 cases and 9,066

controls of European ancestry (13). The SLE GWAS of

Wang et al. (14), which increased the sample size of East

Asian populations to the level of existing European studies

and enrolled 12,653 people, was also utilized.

ii. Breast cancer Genetic instruments in breast cancer were

extracted from a large GWAS study with 122,977 cases and

105,974 controls of European ancestry (15). Variants of East

Asian population involving 5,552 patients and 89,731

controls were obtained from the Japanese biobank (GWAS

trait ID: bbj-a-160).
Generation of genetic instruments

All MR approaches were based on three core assumptions to

minimize the influence of bias on the MR estimates (16): (i) the IVs

have a strong relationship with SLE, (ii) the IVs influence breast

cancer only through their effects on SLE, and (iii) the IVs are

independent of any other confounding parameters. Violations of

three core assumptions would cause unreliable conclusions (Figure

S1). Hence, the following steps would help to choose the best IVs

associated with SLE.

First, single-nucleotide polymorphisms (SNPs) robustly

correlated with SLE were collected from the published GWAS at a

threshold of statistical significance (p<5×10−8). Second, we conducted

an exclusion if mutual linkage disequilibrium (LD) shared the larger

p-value conjugately and exceeded the limited value (window size =

10,000 kb, R2 < 0.001) by means of LD analysis. Third, the F-statistic

was assessed using the formula F = R2(N−k−1)
k(1−R2) to evaluate potential

instrument bias. Herein, N, k, and R2 denoted sample size, the

number of SNPs, and the proportion of variance explained by

the IVs, respectively. If the F-statistic < 10, the value of IVs used in

the present study was weak.
Two-sample and multivariate MR analysis

An inverse variance-weighted (IVW) meta-analysis of the Wald

ratio estimates was performed to explore the causal effect of SLE on

the risk of breast cancer. Because the IVW test presents a weighted

regression of outcomes on exposures with the intercept constrained to

zero, the estimate might be biased. In this case, more sensitive

methods, including the MR-Egger regression (17) and weighted-

median test (18) were conducted.

The MR-Egger model could assess the causal effect from the

weighted regression of the IVs-breast cancer relationships on the IVs-
frontiersin.org
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SLE associations, and the intercept presented the average pleiotropic

effect. The casual estimates would be provided by the weighted

median analysis if over 50% IVs are effective. Moreover, basic MR

analyses could not provide an accurate estimate of the causality of SLE

on the risk of breast cancer if we included SLE-associated genetic
Frontiers in Immunology 03
variants that were also related to confounders. Smoking is one of the

most well-known risk factors causing breast cancer (19). Moreover,

smoking can trigger SLE in genetically-predisposed individuals (20).

Hence, smoking was a potential confounder of the RA-breast cancer

correlation. To estimate the independent impact of the traits
FIGURE 1

Overview of study design.
TABLE 1 Details of GWASs analyzed in the present MR analyses.

Phenotype
First author

or
Consortium

Sample
size

Number
of patients

Number
of

controls

Number
of variants Ethnicity F-

statistic
Pubmed

ID
Trait ID in
GWAS Year

Exposure

Systemic lupus
erythematosus

Bentham J 14267 5201 9066 7071163 European
Not
Applicable

26502338
ebi-a-
GCST003156

2015

Systemic lupus
erythematosus

Wang YF 12653 4222 8431 5691661 East Asian
Not
Applicable

33536424
ebi-a-
GCST90011866

2021

Outcome

Breast cancer BCAC 228951 122977 105974 10680257 European 11279 29059683 ieu-a-1126 2017

ER+ Breast
cancer

BCAC 175475 69501 105974 10680257 European 11279 29059683 ieu-a-1127 2017

ER- Breast
cancer

BCAC 127442 21468 105974 10680257 European 11279 29059683 ieu-a-1128 2017

Breast cancer
Japanese
Biobank

95283 5552 89731 8872152 East Asian 128.31 NA bbj-a-160 2020

MR, Mendelian Randomization; GWAS, genome-wide association studies; BCAC, Breast Cancer Association Consortium; NA, not available.
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associated with SLE, the multivariable MR method was applied to

adjust the effects from the potential confounder (Smoking-Trait ID:

ieu-b-4877).
Removal of horizontal pleiotropy and
sensitivity analyses

The Mendelian Randomization Pleiotropy Residual Sum and

Outlier (MR-PRESSO) analysis (21), leave-one-out analyses and

Cochran’s Q test were conducted to extensively assess the MR

results. Of note, the MR-PRESSO method can correct the presence

of horizontal pleiotropy by removing outlying SNPs (21). Leave-one-

out analysis could analyze the influence of outlying values. Cochran’s

Q test identified SNPs that were responsible for heterogeneity based

on the IVW and the MR-Egger estimates (22).
Transcriptomic analyses

Data acquisition

The microarray expression and clinical data of GSE65391 (924

SLE and 48 controls) was downloaded from the Gene Expression

Omnibus (GEO) database. The RNA-sequencing data with

corresponding clinical information of 130 normal tissues and 1208

breast cancer samples were acquired from the Cancer Genome Atlas

(TCGA) and GSE42568.
Identification of DEGs

447 overlapping SLE- and breast cancer- DEGs were identified by

the “limma” R package (23) with the threshold |log2FC| >1 and

adjusted p-value < 0.01. Subsequently, 447 DEGs were subjected to

construction of co-expression networks using Weighted Gene Co-

Expression Network Analysis (WGCNA) (24).
Functional enrichment analysis and
protein–protein interaction

To further investigate the biological mechanisms of DEGs, Gene

Ontology (GO) analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) annotation were conducted using the

“ClusterProfiler” R package (25). The PPI network was conducted

to find out the top twenty pivotal module genes using STRING

database (https://string-db.org). Spearman correlation analyses were

performed to evaluate the existence of the correlations among the top

twenty genes.
Development and validation of the
SLE-related prognostic model

First, the intersection genes associated with overall survival (OS) were

calculated by least absolute shrinkage and selection operator (LASSO)
Frontiers in Immunology 04
regression using the ‘glmnet’ R package. LASSO algorithm was herein

applied to solve redundancy problem caused by collinearity among SLE-

related DEGs in the TCGA-BRAD database. A best subset of DEGs

related to breast cancer prognosis was identified by shrinkage of the

regression coefficient. A SLE-related prognostic model (SLEscore) of five

genes (namely RACGAP1, HMMR, TTK, TOP2A, and KIF15) was

constructed. The SLEscore was defined as follows:on
x=1coefficient   x*ex

pression   x. The TCGA cohort with breast cancer from were distributed

into low- and high-risk groups based on the best cut-off risk SLEscore,

and OS would be compared between the two subgroups with Kaplan-

Meier analysis. Multivariable Cox hazards models with a concordance

index (C-index) were utilized to analyze the discrimination of clinico-

SLEscore variables. Time receiver-operating characteristic (ROC) analysis

with area under curve (AUC) was used to evaluate the prognostic

performance of the SLEscore. Besides, GSE42568 containing 104

BRAC and 17 normal samples was applied as the validation set to

verify the predictive value of SLEscore. The SLEscore for the GSE42568

cohort was estimated using the same formula obtained from the TCGA

cohort, and patients were divided into SLEscorelow and SLEscorehigh

subgroups based on the best cut-off value.
Nomogram based on the SLEscore

A predicted nomogram based on the results of multivariate Cox

analysis was developed by the “rms” R package to assess the

prediction of 1-, 3-, and 5-year OS probability. Calibration curves

could estimate the consistency between nomogram-predicted

probabilities and noted probabilities.
Estimation of immune infiltration cells and
ESTIMATEscore

The enrichment scores calculated by the single-sample gene-set

enrichment analysis (ssGSEA) (26) were analyzed to demonstrate the

abundance of 24 human tumor immune environment (TME) infiltration

cells. The ESTIMATE algorithm was performed to calculate the stromal

score and immune score that can forecast the purity of a tumor according

to the infiltration of stromal cells and immunocytes (27).
Evaluation of immune checkpoint blockade
and PANoptosis

PANoptosis is an inflammatory programmed cell death which is

triggered by the contemporaneous engagement of components from

pyroptosis, apoptosis, and/or necroptosis (28). Pearson coefficient

was calculated to estimate correlations between the SLEscore and

gene markers of ICB, apoptosis (29), pyroptosis (30, 31) and

necroptosis (32).
Statistical analysis

R software (Version 4.0.3) was applied to conduct all the data

analyses in the present study. The present MR study was performed in
frontiersin.org
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accord with the recommended items (supplemental file: Checklist item).

All MR analyses were carried out by the “Two-Sample MR” and

“MRPRESSO” packages. Odds ratios (ORs), hazard ratios (HRs) with

corresponding 95% confidence intervals (CIs) were calculated. Two-sided

p-values less than 0.05 were considered to be statistically significant.
Result

Selection of SNPs

In general, this MR study analyzed a total of 243,218 European-

descent individuals (128,178 cases and 115,040 controls) and 107,936

people of East Asian descent (9,774 cases and 98,162 controls). We

extracted IVs which were significantly associated with SLE from the

GWAS (p< 5 × 10−8) and removed LD (r2<0.001,10,000-kb). Besides,

the F-statistic in our analysis were greater than 100 (Table 1),

indicating that the IVs powerfully predict the incidences of SLE.
Genetic susceptibility to SLE and breast
cancer risk

As shown in Table 2, MR analyses revealed null causal associations

between SLE and breast cancer in the European cohort (breast cancer:

OR 0.9985, 95%CI 0.9873-1.0099, p=0.79; ER+ breast cancer: OR 0.9974,

95% CI 0.9850-1.0101, p=0.69; ER- breast cancer: OR 1.009, 95% CI 0.99-

1.02, p=0.22). There was no evidence indicating that an increased risk of

breast cancer based on the other MR methods (Table 2). However, the

casual inference of genetic liability to SLE and breast cancer in East Asian

population was noted (IVW: OR: 0.95, 95%CI: 0.92-0.98, p=0.006;

weighted median: OR: 0.93, 95%CI: 0.88-0.97, p=0.002; MR-PRESSO:

OR 0.95, 95%CI: 0.92-0.98, p=0.004) (Table 2, Table S2 and Figure 2).

Multivariate MR analysis also supported the finding that SLE was

significantly associated with breast cancer in the East Asian population

(SNPs: 25, OR: 0.95, 95%CI: 0.92-0.98, p=0.0013) after adjusting the

confounder (smoking, trait-ID: ieu-b-4877).
Sensitivity analyses for MR estimates

First, we performed MR-Egger regression to investigate horizontal

pleiotropy, and the results confirmed that pleiotropy was unlikely to bias
Frontiers in Immunology 05
the causal relationship (all p-values > 0.05) (Table S1). Second, the results

of MR-PRESSO tests were in line with ones of IVW methods without

outliers, which suggested that the original results are reliable (Table S2).

Third, given the potential relationship between SLE and breast cancer in

the East Asian cohort, we conducted leave-one-out analyses and

Cochrane Q tests. The leave-one-out analysis discovered no single SNP

which drove the causal link between SLE and breast cancer (Figure 2).

The p-values of Cochrane Q tests were all greater than 0.05 (Q value for

the IVW test: 32.93, p=0.2; Q value for the MR-Egger test: 32.8, p=0.17),

indicating no heterogeneity between SNPs.
Identification of SLE−related DEGs in
patients with breast cancer

After standardizing the microarray results (Figures 3A, B), 447

common DEGs between SLE- and breast cancer-related datasets were

recognized (Figure 3C). WGCNA (soft threshold power=6) further

removed 61 obvious outliers in the grey module by clustering, and

recognize 386 hub genes of interest (Figures 3D, E and Table S3).
Analysis of the functional characteristics

To further figure out the latent functions of 386 SLE-DEGs in breast

cancer, we conducted GO and KEGG enrichment analyses. GO analysis

showed DEGs were enriched in cell cycle, cell proliferation, and response

to hormone (Figure 3F). KEGG enrichment analysis were mainly

involved in cancer- and cell cycle-related pathways including metabolic

pathways, microRNAs, transcriptional mis-regulation, proteoglycans,

and central carbon metabolism (Figure 3G).
PPI network and analysis of hub genes

First, the PPI network of were constructed for the 386 common

DEGs. Second, Cytuhubba plug-in of Cytoscape was used to

calculated top 20 hub genes (AURKA, UBE2C, CDC20, PTTG1,

CCNB2, MELK, NDC80, CENPF, PRC1, KIF23, TOP2A, RACGAP1,

NUSAP1, HMMR, ASPM, KIF15, TTK, DLGAP5, CCNA2, and

NCAPG) (Figure 4A). Third, spearman correlation analysis

exhibited remarkably close connections among twenty hub genes

(all p-values<0.0001) (Figure 4B).
TABLE 2 Mendelian randomization estimates of the casual relationships between SLE and breast cancer risks.

Exposure PubmedID Ethnicity nSNPs IVW method Weighted median method MR-Egger

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Breast cancer 29059683 European 39
0.9985 (0.9873-

1.0099)
0.79

0.9997 (0.9878-
1.0119)

0.96 0.99 (0.97-1.02) 0.52

ER+ Breast
cancer

29059683 European 39
0.9974 (0.9850-

1.0101)
0.69

0.9999 (0.9856-
1.0143)

0.98 0.99 (0.96-1.02) 0.56

ER- Breast cancer 29059683 European 39 1.009 (0.99-1.02) 0.22 1.01 (0.99-1.03) 0.25 1.01 (0.98-1.04) 0.35

Breast cancer NA East Asian 28 0.95 (0.92-0.98) 0.006* 0.93 (0.88-0.97) 0.002* 0.94 (0.84-1.04) 0.23

SLE, systemic lupus erythematosus; IVW, inverse-variance weighted; MR, mendelian randomization; OR, odds ratio; CI, confidence interval; NA, not available; *, statistically significant.
The bold values means statistical significance.
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A B D

E F G

C

FIGURE 3

(A) Principal component analysis for tumor samples and normal breast tissues. (B) The volcano plot presents the expression pattern of DEGs in the
coalescent cohort of TCGA and GSE42568. Green, downregulated genes. Red, up-regulated genes. (C) Venn diagram showing the intersecting 447 SLE-
related differentially genes associated with overall survival. |log2FC| >1, adjusted p-value < 0.01. (D) Analysis of scale-free index for the different soft-
thresholding powers. the appropriate soft-power was 6. (E) Clustering dendrogram of 447 genes according to the measurement of dissimilarity. Genes
are hierarchically divided into three modules with different colors. (F) Gene ontology enrichment analysis. (G) Kyoto Encyclopedia of Genes and
Genomes enrichment analysis.
A B

DC

FIGURE 2

The causality of systemic lupus erythematosus on breast cancer risk in East Asians. (A) Forest plot. The red points demonstrate the integrated estimates
using all SNPs together, using IVW method. Horizontal lines represent 95% confidence intervals. (B) Leave-one-out analysis. Black points depict the IVW
method was used to assess the causal effect, excluding single specific variant from the analysis. The red point denotes the inverse-variance weighted
estimate using all SNPs. (C) Scatter plot. The slope of each line denotes the estimated effect of per mendelian randomization method. (D) Funnel plot.
Vertical lines represent estimates with all SNPs. Symmetry in the funnel plot demonstrates no obvious horizontal pleiotropy. IVW, Inverse‐variance
weighted; SNP, single-nucleotide polymorphism.
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Construction and verification of the
prognostic model

LASSO regression method was utilized to refine twenty hub genes.

Finally, the most valuable five predictive genes (RACGAP1, HMMR,

TTK, TOP2A, and KIF15) were selected for the construction of

SLEscore (Figures 4C, D). The SLEscore was calculated as follows:

[-0.036 × Expression value of TOP2A] + [0.032 × Expression value of

TTK] + [0.32 × Expression value of RACGAP1] + [0.024 × Expression

value of HMMR] + [-0.16 × Expression value of KIF15]. All five hub

genes of the SLEscore were significantly up-regulated in tumor

samples (Figures 4E–G). Patients with breast cancer were divided

into two subgroups according to the SLEscore, in which the

SLEscorehigh was related to the higher expression levels of five

prognostic molecules (Figure 5A). Compared with the low-SLEscore

group, the high-SLEscore group was associated with noticeable worse

OS (Figure 5B). The ROC curve indicated that SLEscore could be a

sensitive marker for predicting OS of patients with breast cancer (3-

year AUC: 0.81, 5-year AUC: 0.91) (Figure 5C). Furthermore, the

multivariate COX regression analysis presented that the SLEscore was

an independent risk factor of patients with breast cancer (HR 7.1, 95%

CI 1.50-33.4, p=0.013) (Figure 5D). The C-index of the SLEscore we

established was 0.73 (standard error: 0.043). The SLEscore was further

corroborated in the GSE42568 dataset, suggesting that the SLEscore

constructed using the TCGA database was an independent prognostic

factor for patients with breast cancer (HR 1.92, 95%CI 1.08-3.42,

p=0.02) (Figure 5E). Afterward, we built a nomogram for patients

with breast cancer by integrating SLEscore, age, and TNM stage,

which performed well in predicting the 1-, 3- and 5-year OS in

patients with breast cancer (Figures 6A, B).
Frontiers in Immunology 07
Exploration of TME cells, ESTIMATEscore,
ICB and PANoptosis

Spearman correlation analyses disclosed a significantly

association between twenty molecules and TME infiltrating cells

(Figure 6C). Notably, the high-SLEscore was significantly related to

lower dendritic cell, eosinophil, mast cell, CD4+ T cell, and helper T

cell expressions (Figure 6D). The ESTIMATEscores were negatively

correlated with the expression levels of five hub genes (all p-

values<0.05) (Figure 6E and Figures S2–S4), indicating the

relationship to disease outcomes and tumor-infiltrating immune

environment. The SLEscore was significantly associated with eight

kinds of ICB and gene patterns of PANoptosis (Table 3), which were

proved to be prognostic biomarkers in patients with breast cancer.
Discussion

Immunity has continuously been a vital direction to study in the

progression of cancers. However, no convincing evidence exists that

SLE is related to the mechanisms of tumorigenesis. To avoid potential

confounders and inverse causation, the present MR analysis was

designed to evaluate the causality between SLE and breast cancer risk

with less susceptibility. Our MR results demonstrated that genetical

predisposition to SLE was associated with a decreased risk of breast

cancer in East Asian-descent individuals. However, no causal

associations of genetic liability to SLE with breast cancer were

observed in the European populations. Furthermore, when two

serious diseases coexist, a SLE‐related DEGs risk signature

(SLEscore) could stratify patients with breast cancer into two
A

B

D E

F

C

FIGURE 4

(A) Protein–protein interaction network of top 20 hub clustering genes. (B) Spearman correlations among 20 genes. The size of circle denotes the
correlation intensity. ****, p<0.0001. (C, D) The least absolute shrinkage and selection operator regression model to evade overfitting of recurrence
features and narrow the range of SLE-related key differentially expressed genes. (E) Expression levels of 5 prognostic genes in the normal tissues and
cancer samples. (F) Immunohistochemical results revealed that expression levels of 5 prognostic molecules were higher in tumor samples than those in
normal breast tissues.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1029884
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1029884
groups and predict the clinical endpoints. The SLEscore was further

validated to be remarkedly correlated with the levels of tumor-

infiltrated immune cells, ESTIMATE scores, ICB, and PANoptosis.

Accumulating evidence indicated that SLE was related to an

incidence of cancers affecting multiple organs as well. Previous
Frontiers in Immunology 08
studies has showed SLE may be an independent risk factor for

developing lymphoma, pancreatic, cervical, thyroid, lung, ovarian,

and oral cancers (3, 4). Nonetheless, other evidence revealed that SLE

was associated with reductions of several malignancies (melanoma,

prostate, endometrial, and uterine cancers) (33). As a result of high
A B

D

E

C

FIGURE 6

(A) Construction of a nomogram for overall survival prediction in patients with breast cancer. (B) Calibration plot of 1-, 3- and 5-years actual risk
probability was exhibited, indicating moderate power for predicting survival for patients with breast cancer. (C) Spearman correlations presenting the
correlation between 24 kinds of immune cells and prognostic genes. Red, positive correlation. Blue, negative correlation. (D) Differential expression of 24
kinds of immune cells in the high- and low-risk SLEscore groups. Blue, the low-risk group. Red, the high-risk group. ****, p<0.0001; ***, p<0.001; **,
p<0.01; *, p<0.05; ns, no significance. (E) The correlations between the ESTIMATE scores and the expression levels of TOP2A and KIF15.
A B

D E

C

FIGURE 5

(A) Risk score distribution, survival status scatter plots, and gene expression heatmap in the prognostic model. (B) Kaplan-Meier survival analysis of the
high- and low-risk SLEscore groups. Blue, the high-risk group. Yellow, the low-risk group. (C) The time receiver-operating characteristic curve showing
the accuracy of the SLEscore. 3-year AUC: 0.81, 5-year AUC: 0.91. (D) Multivariate COX regression analysis indicating the riskscore signature was an
independent risk factor. (E) The Kaplan-Meier curve of overall survival in the GSE42568 cohort to validate the predictive power of the SLEscore. Blue, the
low-risk group. Red, the high-risk group.
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incidences of SLE and breast cancer in women, many efforts have

been made to investigate the correlations between SLE and breast

cancer. However, the most recent pooled data from observational or

cohort studies failed to find an increased risk of breast cancer in SLE

patients (2, 7, 34). These results were partly consistent with our

findings that SLE was not a risk factor of breast cancer in Europeans.

Compared with previous findings from observational study designs,
Frontiers in Immunology 09
our MR studies may provide more robust evidence. Several potential

confounding factors, including time periods, environmental

exposures, and population-specific genetics in observational studies

might make results more or less affected. However, MR analysis can

minimize the effect of confounders and serve as a potential mimic of

randomized controlled trials. Moreover, racially diverse may lead to a

different breast cancer risk in SLE patients (11). Previous research did
TABLE 3 Correlations of gene markers.

Type Gene marker SLEscore

Cor P-value

ICB

PD-L1 0.14 9.1e-0.7*

Lag3 0.19 1.2e-11*

CTLA-4 0.2 1e-12*

CD47 0.3 0*

TIM 0.17 7.5e-09*

TIGIT 0.18 1e-09*

HAVCR2 0.17 7.5e-09*

DNAM-1 0.15 2.8e-0.7*

Apoptosis

TNF 0.22 3.2e-14*

Bcl-2 -0.076 0.0082*

SMAC 0.38 0*

NLRP3 -0.26 1.4e-19*

XIAP 0.15 1.9e-07*

Pyroptosis

SEMA3B -0.1 0.00053*

IGKC 0.013 0.64

KLRB1 -0.14 5.9e-07*

BIRC3 0.082 0.0046*

PSME2 0.29 0*

GZMA 0.068 0.018*

GZMB 0.19 2.4e-11*

IL18 0.11 8.5e-05*

IRF1 0.16 1.4e-08*

Necroptosis

FASLG 0.15 1.2e-07*

IPMK 0.24 0*

FLT3 0.06 0.0036*

SLC39A7 0.24 0*

HSP90AA1 0.43 0*

LEF1 0.08 0.0079*

*, statistically significant; Cor, the value of Pearson’s correlation; ICB, immune checkpoint blockade.
The bold values means statistical significance.
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not take the heterogeneity of the study populations into account. In

the present study, we elucidated that genetically tendency to SLE was

related to a decreased risk of breast cancer in East Asian-descent

populations. The racial differences of breast cancer risk observed in

SLE pa t i e n t s may i nd i c a t e d i ff e r en t b r e a s t c an c e r

prevention strategies.

Although we found that females with SLE were not at increased

risk for developing breast cancer, it is of paramount importance to

assess the outcomes of the coexistence of two diseases, since current

evidence suggested that SLE may be detrimental for breast cancer

outcomes (11). Elderly breast cancer patients with SLE had worse 5-

and 8-year OS when compared to those without SLE (11). Another

cohort study validated that SLE patients with cancers had an

increased risk of mortality (35). One of the probable explanations

for excess mortality may be comorbidities, which were increased in

patients with both SLE and breast cancer. Additionally, some of the

differences in OS may be explained by both SLE and breast cancer

therapies. For example, patients with both conditions were less likely

to receive corticosteroids or antimalarials compared to those with SLE

without breast cancer (11). Radiotherapy is an another important

treatment for breast cancer, but radiotherapy may conceivably worsen

SLE flares, and thus be withheld from SLE patients when compared to

general patients (36). Moreover, a recent study indicated that SLE

might increase mortality in elder women with breast cancer due to

corticosteroid insufficiency.

Given the detrimental effects of SLE on breast cancer, we

performed WGCNA to identify 386 SLE-related DEGs in 130

normal breast samples and 1208 breast cancer samples. We noticed

that the genomic difference exhibited a significant correlation with

cancer or cell cycle-related pathways, including metabolic pathways,

transcriptional mis-regulation, and fatty acid biosynthesis. These

findings were consistent with some earlier prior studies in which

the presence of aberrant transcription (37) or fatty acid metabolic

reprogramming (38) was ascertained to be a crucial driver of breast

cancer progression. The PPI network further introduced the top

twenty molecules, which exhibited substantially close interactions in

breast cancer. The novel prognostic SLEscore with five key

therapeutic targets (RACGAP1, HMMR, TTK, TOP2A, and KIF15)

was developed for the management of breast cancer patients with SLE

using the LASSO algorithm. Several experiments have shown the roles

of these five genes in breast cancer. RACGAP1 modulates

mitochondrial quality control to drive breast cancer metastasis (39).

The overexpression of HMMR increases breast cancer-mutant

tumorigenesis by modifying the cancer cell phenotype and TME

(40). TTK expression levels are associated with mesenchymal and

proliferative phenotypes in breast cancer (41). A high TOP2A gene

dosage has a strong inverse prognostic impact (42). KIF15 promotes

tumor proliferation and migration in breast cancer, thus resulting in a

significantly worse prognosis (43). The present study also supported

the above experimental findings, indicating that high expression levels

of five pivotal molecules were observed in breast cancer samples, and

low expression levels were related to prolonged OS.

We therefore constructed the SLEscore based on SLE-related

DEGs as well as a nomogram to predict the prognosis of breast

cancer patients complicated with SLE. Multivariable Cox models, KM

survival analyses, and ROC curves further confirmed the predictive

accuracy of the SLEscore. The latest research demonstrated that the
Frontiers in Immunology 10
addition of ICB to chemotherapy could contribute to significantly

longer OS than chemotherapy alone (44). In the present study, we

validated that the SLEscore was associated with eight kinds of

immune checkpoints in breast cancer patients, indicating five

prognostic genes may act as potential therapeutic targets.

Increasing studies have confirmed that breast cancer evolves on

account of a close interaction with TME (45). The ESTIMATE

algorithm substantiated that the high expression levels of five key

genes significantly decreased the overall immune and stromal activity

in the TME of breast cancer. These molecules may provoke immune

tolerance by changing TME cell infiltration characterizations and

evade attack from the immune system by restructuring the TME

structures. We also discovered a remarkably negative correlation

between expression levels of the key molecules and several kinds of

TME infiltration, such as dendritic cell, eosinophil, mast cell, and

CD4+ T cell. These cells play an initial tumor-suppressor role, and the

present results of TME cell infiltration were in line with the results of

survival analyses for these key molecules. Given the inherent

inflammation between the two serious disorders, we hypothesized

that PANoptosis, an inflammatory programmed cell death, got

involved. PANoptosis were beneficial in anti-cancer effects by

stimulating cell death defense mechanisms for the host (46). In the

present study, we estimated the correlations between SLE and

PANoptosis markers which were proved as prognostic biomarkers

in breast cancer. Of interest, we found that the SLEscore was

significantly related to the expressions of these gene markers,

suggesting the dysfunction of PANoptosis in cases with

both conditions.

Several limitations in the present study should be highlighted.

First, although various MR methods were performed, potential

horizontal pleiotropy could not be entirely eliminated.

Fortunately, multiple tests for horizontal pleiotropy and sensitivity

generated consistent and reliable results, and no evidence of

heterogeneity was discovered, confirming this MR analysis’s

findings. Second, we observed an insignificant MR-Egger causal

estimate p-value (p=0.23) in the present analysis. Generally, the

direction and magnitude of MR estimates were consistent among

IVW, weighted median, and MR–Egger methods in the present

study. MR–Egger estimates may be less precise, while the MR–Egger

intercept could denote the absence of pleiotropy (17). Third,

although we demonstrated that SLE was genetically associated

with the decreased risk of breast cancer in the East Asian

population, underlying mechanisms remain unclear and need to

be investigated in further studies. Nonetheless, it is worth noting

that, Asian females have a lower risk of breast cancer than whites.

Given that Asians might be more vulnerable to SLE (47), the

decreased risk of breast cancer in Asian females could be partly

explained by our MR results that genetic changes in SLE were

significantly associated with the decreased risk of breast cancer in

East Asian females.
Conclusions

Our MR analyses suggested that patients with SLE were less

susceptible to the risk of breast cancer among East Asians. The

present study also provided a roadmap for the stratification of
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patients with both breast cancer and SLE, which was conducive to

improving strategies for individualized follow-up and personalized

decision-making.
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SUPPLEMENTARY FIGURE 1

Study flowchart of the present MR analysis. The MR method follows three

assumptions: 1. the IVs are robustly associated with SLE; 2. the IVs affect breast
cancer only through the effects on SLE; 3. the IVs are independent of any

confounder. MR, Mendelian randomization; IV, instrumental variable; SLE,
systemic lupus erythematosus.

SUPPLEMENTARY FIGURE 2

The correlation between the ESTIMATE score and TTK expression.

SUPPLEMENTARY FIGURE 3

The correlation between the ESTIMATE score and HMMR expression.

SUPPLEMENTARY FIGURE 4

The correlation between the ESTIMATE score and RACGAP1 expression.
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