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Background: Aortic disease (aortic aneurysm (AA), dissection (AD)) is a serious

threat to patient lives. Little is currently known about the molecular

mechanisms and immune infiltration patterns underlying the development

and progression of thoracic and abdominal aortic aneurysms (TAA and AAA),

warranting further research.

Methods: We downloaded AA (includes TAA and AAA) datasets from the GEO

database. The potential biomarkers in TAA and AAA were identified using

differential expression analysis and two machine-learning algorithms. The

discrimination power of the potential biomarkers and their diagnostic

accuracy was assessed in validation datasets using ROC curve analysis. Then,

GSEA, KEGG, GO and DO analyses were conducted. Furthermore, two

immuno-infiltration analysis algorithms were utilized to analyze the common

immune infiltration patterns in TAA and AAA. Finally, a retrospective clinical

study was performed on 78 patients with AD, and the serum from 6 patients

was used for whole exome sequencing (WES).

Results: The intersection of TAA and AAA datasets yielded 82 differentially

expressed genes (DEGs). Subsequently, the biomarkers (CX3CR1 and HBB)

were acquired by screening using two machine-learning algorithms and ROC

curve analysis. The functional analysis of DEGs showed significant enrichment

in inflammation and regulation of angiogenic pathways. Immune cell infiltration

analysis revealed that adaptive and innate immune responses were closely

linked to AA progression. However, neither CX3CR1 nor HBB was associated

with B cell-mediated humoral immunity. CX3CR1 expression was correlated

with macrophages and HBB with eosinophils. Finally, our retrospective clinical

study revealed a hyperinflammatory environment in aortic disease. The WES

study identified disease biomarkers and gene variants, some of which may be

druggable.
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Conclusion: The genes CX3CR1 and HBB can be used as common biomarkers

in TAA and AAA. Large numbers of innate and adaptive immune cells are

infiltrated in AA and are closely linked to the development and progression of

AA. Moreover, CX3CR1 and HBB are highly correlated with the infiltration of

immune cells and may be potential targets of immunotherapeutic drugs. Gene

mutation research is a promising direction for the treatment of aortic disease.
KEYWORDS

aortic aneurysms, machine-learning, biomarkers, immune cell infiltration, whole
exome sequencing
Introduction

Aortic aneurysms (AA) are the second most common aortic

disease after atherosclerosis and can involve almost any part of

the aorta. Older age, smoking, male gender and genetic

susceptibility are strongly associated with the progression of

AA. As the world’s population ages, the incidence of AA is

increasing dramatically. Once an aortic aneurysm ruptures, it

can be rapidly life-threatening, but patients are usually

asymptomatic until the rupture event occurs (1, 2). Therefore,

early diagnosis of AA and prevention of AA rupture are

particularly important. The current treatment for AA includes

both non-surgical and surgical treatment. Non-surgical

treatment focuses on smoking cessation and blood pressure

control. It has been established that the diameter, growth rate

and symptoms of AA are important aspects in considering

whether to operate. Surgical treatments include an open (AA

resection and artificial vessel grafting) and an endovascular

(endovascular abdominal aortic repair (EVAR) and less

invasive endovascular stenting) approach (3). Over the years,

these modalities have effectively reduced and prevented AA

dilatation and rupture, which has saved the lives of many

patients with AA. However, dilemmas are faced clinically, such

as the lack of specific drugs targeting the pathogenesis of AA and

the serious complications associated with surgical treatment (4).

Thus, understanding the molecular mechanisms and immune

pathways of AA can contribute to the development of drug

targets and drug therapy for this deadly disease.

AA mainly includes two types in the thoracic or abdominal

sections [thoracic and abdominal aortic aneurysms (TAA and

AAA)]. The formation of AA is a complex and chronic process

that results from the interplay of inherited and environmental

factors. TAA and AAA are significantly different in terms of risk

factors and pathophysiology. In this respect, current evidence

suggests that the vascular smooth muscle cells (VSMCs) in the

ascending aorta originate from the neural crest, whereas the

abdominal aorta VSMCs originate from the endothelium and
02
mesoderm (5, 6). Generally, TAA has a more solid genetic

background than AAA since TAA can occur with Marfan and

Loeys-Dietz syndrome due to autosomal gene mutation, while

AAA is more associated with atherosclerosis (7). Despite these

significant differences, they share many common features, such

as a pathologically dilated aortic phenotype, loss of smooth

muscle cells, inflammatory response, and altered extracellular

matrix (8). However, whether TAA and AAA involve common

molecular mechanisms such as immune infiltration during

pathogenesis remains unclear. Indeed, understanding these

mechanisms is critical for managing and treating AA. In this

study, we innovatively combined TAA and AAA to explore

potential key biomarkers or immune infiltration cells of AA

progression compared to non-AA individuals by machine-

learning and immuno-infiltration analysis algorithms.

In recent years, high-throughput sequencing and machine-

learning algorithms have been widely applied in scientific

research to identify novel genes associated with a variety of

diseases, such as COVID19 (9), heart attack (10), atrial

fibrillation (11) and cancer (12). These genes may serve as

drug targets, disease diagnostic and prognostic biomarkers

(13). In our study, we integrated two machine-learning

algorithms (least absolute shrinkage and selection operator

(LASSO) and support vector machine-recursive feature

elimination (SVM-RFE)) to increase the accuracy of the

signature genes for screening and further validated the

diagnostic value of the identified biomarkers using receiver-

operating characteristic (ROC) curve analysis. Moreover, we

utilized two cutting-edge immune infiltration analysis

algorithms, “CIBERSORT” and “ssGSEA” to deepen our

understanding of the level of immune infiltration in TAA and

AAA. In addition, the correlation between biomarkers and

infiltrating immune cells was assessed using spearman’s rank

correlation test. Overall, we identified biomarkers associated

with the pathogenesis of immune infiltration in AA and

provided the foothold for further research on drugs targeting

characteristic molecules and immune cells.
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Finally, we retrospectively assessed serum inflammation

biomarkers and lipid levels in patients with AD, which

revealed activation of the inflammatory milieu in aortic

disease. The WES study provided further insight into gene

mutations and whether biomarkers are abnormally mutated in

aortic disease (14). Importantly, the sequencing analysis allowed

the prediction of druggable variants of genes, which may lead to

breakthroughs in treating aortic diseases.
Materials and methods

Data download and introduction

The microarray expression datasets (GSE47472, GSE57691

and GSE26155) related to AAA and TAA were downloaded

from the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo/) (15). The GSE57691 (16) and

GSE26155 (17) datasets of AAA and TAA were used for the

training group, and dataset GSE47472 (18) of AAA was used for

the validation group. The training dataset of GSE57691

contained 49 cases of AAA, and 10 cases of controls, based on

the GPL10058 platform. In addition, dataset GSE26155, based

on the GPL5175 platform, contained 43 cases of TAA and 13

cases of controls. The validation dataset of GSE47472 contained

14 cases of AAA, and 8 cases of controls. The 92 AA (Treat,

including 43 TAA and 49 AAA) samples belonging to the

training group and the 14 AAA samples belonging to the

validation group were derived from aortic wall tissue biopsy

specimens, while the 23 controls (Con, including 13 TAA and 10

AAA) belonging to the training group and the 8 controls

belonging to the validation group were derived from normal

aortic tissue of organ donors. In the training dataset, samples

that did not meet the diagnostic criteria for AAA and TAA were

removed (3). Specifically, we removed the sample of 9 patients

with aortic occlusive disease from the GSE57691 dataset and 30

patients with non-dilated aorta diameter (<40 mm) and 10

patients with aortic dilatation at borderline from the

GSE26155 dataset. The mean maximum aorta diameter of AA

and characteristics of the three datasets are presented in Table 1.
Frontiers in Immunology 03
Data merging, preprocessing, and
screening of DEGs

The “sva” and “limma” R software packages (version 4.2.0)

were used to merge, probe-annotate, normalize and batch-

correct the data from GSE57691 and GSE26155 datasets (19,

20). Platform annotation files were utilized to convert probes in

each dataset into gene symbols. The “combat” function of the

“SVA” package was utilized to eliminate batch effects between

the two datasets (21). Probes with the same gene symbol were

averaged to define the gene expression for a given sample.

Subsequently, the DEGs were identified based on the merged

and preprocessed data files. The “pheatmap” package and

“ggplot2” package were deployed to create DEGs heatmaps

and volcano plots, respectively (22). The thresholds for DEGs

included a log2 fold change (FC) > 1 and adjusted P-value < 0.05.
Functional enrichment analysis

Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Disease Ontology (DO) enrichment

analyses were conducted on DEGs using the “clusterProfiler”,

“enrichplot” and “DOSE” packages of the R software (23).

“c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.v7.4.symbols.gmt”

obtained from the Molecular Signature Database (GSEA |

MSigDB (gsea-msigdb.org)) were used for Gene Set

Enrichment (GSEA) (24). The top five significantly enriched

pathways gene sets were displayed. Adjusted P-values < 0.05

were statistically significant.
Identification and verification of potential
biomarkers in AAA and TAA

To identify potential biomarkers for AAA and TAA, the two

machine-learning algorithms (“LASSO” and “SVM-RFE”) were

applied to the DEGs of the training group. The “LASSO”

algorithm was performed based on the R package “glmnet”

and could identify genes significantly associated with AA and
TABLE 1 Characteristics of the three AA datasets.

Datasets Disease Type/groups Contains mean maximum aorta diameter, mm

GSE47472 AAA/validation 14 AAA
8 controls

62.6 ± 18.0 mm

GSE57691 AAA/training 49 AAA (29 large, 20 small)
10 controls

68.4 ± 14.3 (large)mm
54.3 ± 2.3 (small) mm

GSE26155 TAA/training 43 TAA
13 controls

53.6 ± 7.5mm
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non-AA using ten-fold cross-validation (25). The “SVM-RFE”

algorithm was performed based on the R package “e1071” to

identify genes with a significantly strong distinguishing power

(26). The genes obtained by these machine-learning methods

were intersected. Subsequently, in the validation dataset of AAA,

the expression levels of the overlapping genes were compared

between the AA and control groups using a boxplot. The

accuracy of the intersected genes as potential biomarkers for

AA and control groups was assessed using ROC curve analysis.
Immune infiltration analysis and potential
biomarkers correlation with infiltrating
immune cells

The R software’s “CIBERSORT” package was used to assess

the level of immune cell infiltration based on 22 immune cell

types of the “LM22” document (https://cibersort.stanford.edu/

index.php) (27), The results were filtered using the screening

criteria: P value< 0.05. The “ssGSEA” algorithm was used to

assess the correlation of all gene expression profiles with the 28

immune cell types of “immune.gmt” based on R software’s

“GSVA” packages (28). Depending on the results obtained by

these two immuno-infiltration assays, the differential expression

levels of 22 and 28 immune infiltrating cell types in the AA and

non-AA were visualized using heatmaps and violin plots. The

correlation analysis of 22 infiltrating immune cell types was

visualized by the R software’s “corrplot” package. The degree of

association between the 22 immune cell types and potential

biomarkers was evaluated by “Spearman” correlation and

visualized using R software’s “ggplot2” package.
Frontiers in Immunology 04
A retrospective clinical study of
AD patients

Blood samples were collected from 78 patients with aortic

dissection (AD) who were hospitalized at the Affiliated Hospital

of Youjiang Medical University for Nationalities from 2007-

2019. We retrospectively studied patient clinical information

and serum inflammation markers and lipid levels. Serum

inflammatory markers and lipid levels are tested using the

Sysmex XN-1000™ Hematology Analyzer and Roche Cobas

C702 fully automated biochemistry analyzer. The aortic

computed tomography angiography (CTA) results of all

included cases met the diagnostic criteria for AD (29). All

patients provided written informed consent. The baseline

characteristics of the patients and information after grouping

according to Stanford classification were presented in Table 2.

The Stanford classification divides dissections by the most

proximal involvement into types A and B. The DeBakey

classification divides AD into types I, II, and III based on the

location of the primary rupture and the extent of entrapment.

Our study was approved by the Ethics Committee of Affiliated

Hospital of Youjiang Medical University for Nationalities

(YYFY-LL-2016-06) and was in accordance with the principles

of the Declaration of Helsinki.
Whole Exome Sequencing

The peripheral blood samples of six patients with AD at the

Affiliated Hospital of Youjiang Medical University for

Nationalities were collected and underwent WES sequencing
TABLE 2 Baseline characteristics table of AD based on the Stanford classification.

Features/
Groups

Participants
(%) N=78

Stanford A
(%) N=30

Stanford B
(%) N=48

p-
value

Gender: 0.499

Female 14 (17.9%) 7 (23.3%) 7 (14.6%)

Male 64 (82.1%) 23 (76.7%) 41 (85.4%)

Age(years) 54.5 ± 14.8 55.7 ± 17.0 53.7 ± 13.4 0.578

Ethnicity: 0.350

Buyei 4 (5.13%) 3 (10.0%) 1 (2.08%)

Han 18 (23.1%) 8 (26.7%) 10 (20.8%)

Yao 1 (1.28%) 0 (0.00%) 1 (2.08%)

Zhuang 55 (70.5%) 19 (63.3%) 36 (75.0%)

Smoking 34 (43.6%) 13 (43.3%) 21 (43.8%) 1.000

Hypertension 66 (84.6%) 20 (66.7%) 46 (95.8%) 0.001

Debakey: <0.001

I 26 (33.3%) 26 (86.7%) 0 (0.00%)

II 4 (5.13%) 4 (13.3%) 0 (0.00%)

III 48 (61.5%) 0 (0.00%) 48 (100%)
fronti
The Stanford A involves any part of the aorta proximal to the origin of the left subclavian artery (A affects ascending aorta). The Stanford B arises distal to the left subclavian artery origin.
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by Wuhan Huada Medical Laboratory Co. The six AD patients

included five male patients and one female patient, two of whom

(one male and one female) had lesions involving the thorax and

abdomen, while the other four patients had lesions involving the

thorax only. Subsequently, the Genome Reference Consortium

Human Build 37 (GRCh37/hg19) was used to annotate the WES

sequencing data. The mutation annotation results were further

filtered using the following filters: ExAC_ALL, ESP6500,

1000G_EAS mutation frequency < 0.01 and VAF threshold >

0.05. The filtered mutation data were converted to the Mutation

Annotation Format (maf) and further visualized using the

“maftools” package in R (30). Finally, the Drug Gene

Interaction Database (DGIdb) was applied to make predictions

of potentially druggable genes based on the “drugInteractions”

function of “maftools”.
Results

Data curation and DEGs screening in
AAA and TAA

Based on the research design, we downloaded and organized

the list of gene symbols matrix information of training

(GSE57691 and GSE26155) and validation (GSE47472)

datasets (Supplementary File 1). Then, the training data from

GSE57691 and GSE26155 datasets were merged, intersected,

normalized and batch-corrected (Supplementary File 2). Based

on the filtering criteria (log2 fold change (FC) > 1 and adjusted

P-value < 0.05) for significant DEGs, a total of 82 DEGs were

obtained. DEGs expression in the samples was visualized in a

heatmap and volcano plot (Figures 1A, B). Collated results for all

genes and DEGs are provided in Supplementary File 3.
Frontiers in Immunology 05
Functional correlation analysis

GO, KEGG and DO enrichment analyses were conducted on

DEGs to understand biological functions, signaling pathways,

and disease mechanisms in AAA and TAA. Based on the

screening criterion of adjusted P-value < 0.05, we obtained

606, 42 and 214 terms for the GO, KEGG and DO enrichment

analyses, respectively (Supplementary Files 4–6). The top ten

GO terms associated with biological process (BP), cellular

components (CC) and molecular function (MF)) are shown in

Figures 2A, B. The KEGG and DO analyses of the top 30 terms

are displayed in Figures 2C–F. Significantly enriched BP terms

included leukocyte cell-cell adhesion, leukocyte migration,

regulation of angiogenesis, regulation of vasculature

development and regulation of immune effector process.

Significantly enriched CC and MF GO terms included external

side of the plasma membrane, tertiary granule, vacuolar lumen,

immune receptor activity and integrin binding. KEGG analysis

showed significant enrichment in Leishmaniasis, Tuberculosis,

Th17 cell differentiation, Leukocyte transendothelial migration

and cell adhesion molecules. DO analysis showed that lung

disease, coronary artery disease, myeloma and bone marrow

cancer were highly associated with the DEGs.
GSEA analysis

We further performed GSEA enrichment analysis on all

DEGs to better understand their potential functions and

signaling pathways in AA (Treat) and non-AA (Con) cases

(Supplementary File 7). Huntington’s disease and oxidative

phosphorylation were significantly enriched in the Con group

(Figure 3A). In contrast, the complement and coagulation
A B

FIGURE 1

DEGs screening in AAA and TAA. (A) Heatmap of DEGs expression in aortic aneurysm (Treat) and non-aortic aneurysm (Con) groups. (B) Volcano plots
of DEGs expression in Treat and Con groups.
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cascades, cytokine-cytokine receptor interaction, hematopoietic

cell lineage, Leishmania infections, and systemic lupus

erythematosus were significantly enriched in the Treat

group (Figure 3B).
Identification of potential
biomarkers in AAA and TAA by
two machine-learning algorithms

To identify common potential biomarkers in AAA and TAA,

the DEGs obtained above were further screened using two

machine-learning (“LASSO” and “SVM-RFE”) algorithms. 12

genes were screened by “LASSO” and 6 genes were screened by

“SVM-RFE” algorithms (Figures 4A, B). The intersection of the

results of the two algorithms yielded three genes (SYNC,

CX3CR1 and HBB) (Figure 4C).
Frontiers in Immunology 06
Verification of the discrimination power
of the potential biomarkers and their
diagnostic accuracy

The expression levels of the three potential biomarkers

between AA (Treat) and non-AA (Con) in the validation

dataset GSE47472 were visualized in boxplots (Figure 4D).

The expression levels of CX3CR1 and HBB were significantly

higher in the Treat group than in the Con group (P < 0.001). In

contrast, SYNC did not differ between the two groups with a P

value of 0.27. The diagnostic accuracy of the three potential

biomarkers between the Treat and Con groups was assessed by

ROC curve analysis in the training and validation datasets. In the

training datasets, the AUC values of CX3CR1, HBB, and SYNC

genes were 0.938, 0.917 and 0.943, respectively (Figure 5A). In

the validation datasets, the AUC values of CX3CR1, HBB and

SYNC were 0.920, 0.938, and 0.652, respectively (Figure 5B).
A B D

E F

C

FIGURE 2

GO, KEGG and DO enrichment analyses. (A) Histogram of GO analysis. Enrichment significance increases with red color intensity. (B) Bubble
plot representing GO analysis. Bubble size is proportional to the number of enriched genes. Red bubble color intensity increases with
enrichment significance. (C) Histogram of KEGG analysis. (D) Bubble diagram representing KEGG analysis. (E) Histogram of DO analysis.
(F) Bubble plot representing DO analysis.
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These results suggest that CX3CR1 and HBB have higher

discrimination power and diagnostic accuracy and can be used

as common biomarkers for AAA and TAA.
Immune infiltration analysis and the
correlation between infiltrating immune
cell types

Based on the normalized and merged gene expression data

(Supplementary File 2), we compared Treat and Con groups by

imputing the composition of immune cell populations using two

algorithms, “CIBERSORT” and “ssGSEA” (Figures 6A, B;

Supplementary Files 8, 9). The correlations between the

infiltrating immune cell types of “CIBERSORT” are shown in

Figure 6C. Finally, a violin plot was generated to visualize the

differences in immune infiltrating cell types of “ssGSEA” between

the Treat and Con groups (Figure 6D, Supplementary File 10).

The results showed a positive correlation between resting mast

cells and resting memory CD4 T cells (r=0.50), while a negative

correlation was found between regulatory T cells (Tregs) and

resting memory CD4 T cells and resting mast cells (r=-0.59 and

-0.53). In addition, both adaptive (activated CD4+ T cells, CD8+ T

cells, activated B cell, effector memory CD4 + T cells and so on)

and innate immune cells (activated dendritic cell, MDSC, natural

killer cell and so on) were significantly higher in the Treat group

than in the Con group. In contrast, infiltrations of neutrophils,

effector memory CD8+ T cells and immature dendritic cells did

not differ between the two groups.
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Correlation analysis between biomarkers
(CX3CR1 and HBB) and infiltrating
immune cell types

The correlations between the biomarkers CX3CR1 and

HBB and infiltrating immune cell types were assessed based

on the results of “ssGSEA” (Figure 7A) and “CIBERSORT”

analysis (Figures 7B–L). The correlation results of ssGSEA

showed that macrophage (p<0.001), mast cell (p<0.05), MDSC

(p<0.01), dendritic cell (p<0.01), monocytes (p<0.05), Tregs

(p<0.001), CD56bright natural killer cell (p<0.001), central

memory CD4 T cell (p<0.001), activated CD8 T cell (p<0.05),

gamma delta T cell (p<0.001), T follicular helper cells

(p<0.001), and type 1 T helper cell (p<0.01) were highly

correlated with CX3CR1. In contrast, eosinophil (p<0.001),

mast cell (p<0.001), neutrophil (p<0.001), dendritic cell

(p<0.01), monocyte (p<0.001), Treg (p<0.01), natural killer

cell (p<0.001), MDSC (p<0.001), activated CD4 T cell (p<0.01),

activated CD8 T cell (p<0.01), effector memory CD4 T cell

(p<0.01) and T helper cell (p<0.001) were highly correlated

with HBB. “CIBERSORT” analysis showed that CX3CR1 was

positively correlated with resting mast cells (p<0.001), resting

memory CD4 T cells (p<0.006), monocytes (p<0.008), M2

macrophages (p<0.043) and gamma delta T cells (p<0.047),

and negatively correlated with CD8T cells (p<0.002) and Tregs

(p<0.003) (Supplementary File 11). HBB was positively

correlated with activated dendritic cells (p<0.001) and

eosinophils (p<0.044) and negatively with M1 macrophages

(p<0.005) (Supplementary File 12).
A B

FIGURE 3

GSEA enrichment analysis. (A) KEGG pathway set scores enriched in the control group. (B) KEGG pathway set scores enriched in the Treat group.
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Baseline characteristics and serum
markers analysis in patients with AD

Analysis of the baseline patient characteristics (Table 2)

showed that the prevalence was 82.1% and 17.9% in males and

females, respectively, and the age of onset was 54.5 ± 14.8 years.

43.6% (n=34) of patients had a previous smoking history.

66.49% (n=66) of patients had a previous history of

hypertension, of whom 95.8% (n=46) were Stanford type B

patients (P < 0.001). Subsequently, we analyzed the statistics of
Frontiers in Immunology 08
serum inflammation and lipid levels in 78 patients with AD in

Table 3 and visualized them by box plots (Figures 8A–F). The

median of white blood cell count (WBC) and neutrophil ratio

(NEUT%) values in patients with AD were 11.0×109/L and

78.1%, respectively. 63% (n=49) and 79% (n=62) of cases had

WBC and NEUT% values greater than the upper limit of normal.

The median of the four lipid indicators LDL-C, HDL-C, TC and

TG, were 2.13 mmol/L, 1.32 mmol/L, 4.47 mmol/L, and 1.00

mmol/L, with 6% (n=5), 9% (n=7), 6% (n=5) and 18% (n=14) of

cases with values above the upper limit of normal, respectively.
A B

C

D

FIGURE 4

Identification and Verification of the discriminating power of potential biomarkers in AA. (A) Tuning feature selection in the “LASSO” model. The
DEGs evaluated by 10-fold cross-validation in the “LASSO” regression model yielded 12 potential biomarkers. (B) The biomarkers screened by
the SVM-RFE algorithm yielded 6 potential biomarkers. (C) Venn plot of potential biomarkers identified by “LASSO” and “SVM-RFE” algorithms.
(D) The discrimination power of 3 potential biomarkers was verified in the validation dataset (GSE47472).
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Whole exome sequencinganalysis

As a preliminary investigation of genetic variation in aortic

disease, peripheral blood samples from 6 AD patients were

subjected to whole exome sequencing. The distribution density

of unfiltered single-nucleotide variant (SNV) and INDEL in

chromosomes following WES analysis is shown in Figure 9A.

The overall characteristics of the filtered mutation data are

shown in Figure 9B. The top 100 high-frequency mutation

genes are shown in Figure 9C. The top 30 high-frequency

mutation genes and their corresponding mutation types are

shown in Figure 9D. Transitions (Ti), Transversions (Tv) and

the overall distribution of the six different Ti/Tv are shown in

Figure 9E. The mutations in biomarkers (CX3CR1 and HBB) in

the 6 samples are shown in Figure 9F. Correlation analysis of the

top 13 mutated genes is shown in Figure 9G. Potentially

druggable genes are shown in Figure 9H. It could be found

that missense mutations accounted for the major part; the

frequency of SNP was higher than that of insertions or

deletions; C>T was the most common mutation in SNV, with

a mutation frequency of about 40%, followed by T>C, with a

mutation frequency of about 25%. The ratio of Ti to Tv in the six

sequenced samples was approximately 2:1, and the median
Frontiers in Immunology 09
variance per sample was 495.5. Among the top mutated genes,

100% mutation frequency was observed for ATN1, HRCT1,

KRT4, LNP1, MUC4, RP1L1 and TRBV7-6 and 83% for TTN

and KDM6B. Insertion frameshift mutation, nonsense mutation

and missense mutation were the main types of forward

mutations. In contrast, the biomarkers CX3CR1 and HBB were

not found to have abnormal mutations in the six sequenced

samples. In addition, the correlation analysis of 13 mutated

genes in six samples showed no significant correlation. Finally,

the potentially druggable genes in the Drug-Gene Interaction

Database (DGIdb) included ARSD, ASPN, MUC16, MUC4,

and TTN.
Discussion

The development of high-throughput sequencing

technology has brought medical research into the era of big

data, while bioinformatics and artificial intelligence in medicine

has enabled researchers to better analyze large amounts of

sequencing data (31, 32). The combination of advanced

machine-learning algorithms and medical research has led to

tremendous advances in the pathogenesis, diagnosis, prognosis
A

B

FIGURE 5

The diagnostic accuracy of the 3 potential biomarkers was assessed using ROC curve analysis. (A) Diagnostic ability of potential biomarkers in
the training datasets. The AUC represents the diagnostic ability in Treat and Con groups. (B) Diagnostic accuracy of potential biomarkers in the
validation datasets. The AUC represents the diagnostic accuracy in Treat and Con groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1030976
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2022.1030976
and treatment of various diseases (33). In this study, we

innovatively merged TAA and AAA data and identified three

potential biomarkers by two machine-learning algorithms

(“LASSO” and “SVM-RFE”). Subsequently, we validated the

discrimination power and diagnostic accuracy of the potential

biomarkers in a validation dataset using ROC curve analysis.

CX3CR1 and HBB were finally identified as accurate and reliable

biomarkers of AA. These biomarkers provide novel insights into

the molecular mechanisms underlying the development and

progression of TAA and AAA. However, in this study we only

compared biomarkers in the AA and non-AA groups. In the

future, more researchers and scientists may be able to compare

different sexes, different sizes of mean maximum aorta diameter

and different age groupings, and thus the results obtained will

further deepen the understanding of the disease at

different levels.

The pathology of AA is thought to involve localized chronic

inflammatory response with persistent angiogenesis and

imbalance in extracellular matrix protein hydrolysis, leading to

progressive weakening and dilatation of the aortic wall (34, 35).

During chronic vascular inflammation, chemokines play a

crucial role by mediating the activation of inflammatory and

immune cells and their aggregation to the vessel wall (36, 37).

Current evidence suggests that CX3CL1 (also known as
Frontiers in Immunology 10
fractalkine), a specific member of the chemokine family, can

act as an adhesion molecule through a membrane-bound form

and as a chemoattractant in vascular inflammatory processes

through a soluble form (38, 39). Interestingly, it has been shown

that CX3CR1 is a receptor for CX3CL1 and is expressed on the

surface of a variety of innate and adaptive immune cells, such as

T lymphocytes, monocytes, natural killer cells, mast cells,

platelets, and vascular smooth muscle cells (40–43). Moreover,

CX3CL1 on cell surfaces can play an important role in

inflammatory vascular diseases by promoting migration,

adhesion and proliferation of these immune cells expressing

CX3CR1 receptors (44, 45). For example, CX3CR1-expressing

NK cells and cytotoxic T lymphocyte cells contain perforin and

granzyme B, and CX3CL1-expressing vascular endothelial cells

can effectively activate these immune cells, leading to the release

of perforin and granzyme B and ultimately inducing vascular

injury (46, 47). In addition, both CX3CL1 and its receptor

CX3CR1 are expressed in vascular smooth muscle cells and

can further attract macrophages to aggregate blood vessels,

thereby inducing matrix metalloproteinase (MMP)-mediated

extracellular matrix protein hydrolysis as well as promoting

smooth muscle cell migration to endothelial cells, ultimately

mediating vascular injury (48–50). Notably, the involvement of

macrophages, smooth muscle cells, and MMP in the
A

B D

C

FIGURE 6

Immune infiltration analysis and the correlations between the infiltrating immune cell types. (A) The proportion of 22 infiltrating immune cell
types in Treat and Con groups. (B) The distribution of the 28 infiltrating immune cell types in Treat and Con groups. (C) The correlations
heatmap between the infiltrating immune cell types. (D) Violin plot demonstrating the differences between the 28 immune cell types in the
Treat and Con groups.
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FIGURE 7

Correlation analysis between biomarkers (CX3CR1 and HBB) and infiltrating immune cell types. (A) The relationship between 28 infiltrating
immune cell types and two biomarkers; the redder the color, the more significant the difference. “***”, “**”, “*” represent P< (0.001, 0.01, 0.05).
(B–H) Correlation between CX3CR1 expression and infiltrating immune cell types. (I–K) Correlation between HBB expression and infiltrating
immune cell types. (L) Correlation between CX3CR1 and HBB and infiltrating immune cell types. The larger the dot, the stronger the correlation
(cor). Numbers with P-value < 0.05 are marked red.
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pathological alteration of AA and AA progression has been

extensively studied (51–53). It was shown that by inhibiting

CX3CR1-mediated signaling in smooth muscle cells, the

formation of the neointima after arterial injury could be

effectively reduced (54). Therefore, CX3CL1 and its receptor

CX3CR1 cells are present in AA disease, and their interaction

contributes to the recruitment and activation of multiple

immune inflammatory cells in AA tissue, ultimately promoting
Frontiers in Immunology 12
AA progression (55). In our study, CX3CR1 expression was

significantly higher in AA tissues than in non-AA tissues,

suggesting it could be used as a biomarker for AA. Based on a

review of the literature and our previous studies, we have every

reason to believe that CX3CL1 and its receptor CX3CR1 are

potential pharmacological targets for AA treatment.

The HBB gene encodes a protein called beta-globin, a

subunit of hemoglobin located within red blood cells.
TABLE 3 The serum inflammatory and lipid levels in patients with AD.

Serum markers Participants n=78M[IQR] Conditions Number n=78 (%)

WBC (109/L) 11.0 [9.10;13.4] >=10.0 *109/L 49 (63%)

<10.0 *109/L 29 (37%)

NEUT (%) 78.1 [71.8;84.0] >=70% 62 (79%)

<70% 16 (21%)

LDL-C (mmol/L) 2.13 [1.54;2.69] >=3.36mmol/L 5 (6%)

<3.36 mmol/L 73 (94%)

HDL-C (mmol/L) 1.32 [1.10;1.55] >=2.19 mmol/L 7 (9%)

<2.19 mmol/L 71 (91%)

TC (mmol/L) 4.47 [3.96;5.06] >=6.2 mmol/L 5 (6%)

<6.2 mmol/L 73 (94%)

TG (mmol/L) 1.005 [0.78;1.54] >=1.81 mmol/L 14 (18%)

<1.81 mmol/L 64 (82%)
The serum inflammatory indicators include: white blood cell count (WBC) and neutrophil ratio (NEUT%); the reference values are: WBC (4.0~10) *109/L and NEUT% (50%~70%),
respectively. The lipid panel includes: Low-density lipoprotein cholesterol (LDL-C), High-density lipoprotein cholesterol (HDL-C), Total cholesterol (TC), and Triglycerides (TG); the
reference values are: LDL -C (0~3.36mmol/L), HDL-C (0.9~2.19 mmol/L), TC (3.1~6.2 mmol/L), and TG (0.30~1.81 mmol/L).M(Median), IQR (InterQuartile Range).
A B

D E F

C

FIGURE 8

The serum markers analysis in patients with AD. (A–F) The serum levels of WBC, NEUT%, LDL-C, HDL-C, TC and TG are shown separately using
box plots.
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Hemoglobin can usually move through the bloodstream and

carries oxygen to tissues throughout the body. It has been shown

that hypoxic environments may promote hemoglobin-oxygen

binding and angiogenesis in Tibetan pigs through

transcriptional upregulation of HBB expression to adapt to the

plateau environment (56). In AAA, HBB is considered a

potential biomarker in plasma samples from AAA patients

(57). Our study substantiated that HBB gene expression is

higher in AA than in non-AA tissues and may serve as a
Frontiers in Immunology 13
biomarker for AA. However, it is worth noting that detailed

and in-depth studies of the HBB gene in AA tissues are still

lacking, and it is well-established that HBB gene mutations are

associated with several severe hemoglobinopathies, such as sickle

cell anemia and b-thalassemia (58). We believe that the role of

the HBB gene in AA warrants further attention, which may

facilitate understanding of the molecular mechanisms

underlying AA progression and the development of potential

drug targets.
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FIGURE 9

Whole Exome Sequencing analysis. (A) The circos plot of SNV-INDEL, the two outer tracks show the position of SNV and INDEL on the
chromosome, and the two inner tracks show the distribution density. (B) The overall characteristics of the filtered mutation data. (C) The word
cloud of the top 100 genes, the larger the font, the higher the variation frequency. (D) The oncoplot belongs to the top mutated 30 genes in
each sample, different colors represent different variant classifications. (E) The overall distribution of the six different Ti/Tv in six samples. (F) The
mutations of biomarkers (CX3CR1 and HBB) in six samples. (G) Relevance Heatmap of the top 13 mutated genes. (H) The bar chart of potentially
druggable variants genes.
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In the present study, the microarray expression data of TAA

and AAA were merged to obtain common DEGs. We further

performed GO, KEGG, DO and GSEA analyses to understand

the common biological functions, signaling pathways and

disease mechanisms involved in AAA and TAA. GO analysis

exhibited significant enrichment in BP, including leukocyte cell-

cell adhesion, leukocyte migration, regulation of angiogenesis,

regulation of vasculature development and regulation of

immune effector process, which is consistent with findings of

previous study that chronic inflammation and regulation

of angiogenesis play a crucial role in the pathology of AA (34,

35). KEGG analysis showed significant enrichment in

Leishmaniasis, Tuberculosis, Th17 cell differentiation,

Leukocyte transendothelial migration and cell adhesion

molecules. We further performed GSEA analysis to identify

the signaling pathways involved in AA and non-AA and

found that complement and coagulation cascades, cytokine-

cytokine receptor interaction, hematopoietic cell lineage,

Leishmania infection, and systemic lupus erythematosus were

significantly enriched in AA. The above analyses suggested that

inflammatory factor chemotaxis, complement and coagulation

cascades, and cell adhesion were commonly involved signaling

pathways in AA. An increasing body of evidence suggests that

AA is a chronic inflammatory disease involving extensive

inflammatory cell infiltration into the arterial wall from the

luminal lining to the periaortic epithelium (59, 60), and

infiltration of inflammatory factors is closely associated with

cytokine chemotaxis and cell adhesion (61, 62). In addition, in

our study, complement and coagulation cascades were

significantly enriched in AA. The complement system is

widely acknowledged to be part of innate immunity. In AA,

activation of the innate immune response by auto or foreign

antigens further activates the complement system and induces a

series of inflammatory cascades in the body, thus promoting

disease progression in AA (63, 64). For instance, serum C5a

complement levels were significantly elevated in AA patients and

correlated with AA diameter (65). In addition, the complement

system can be involved in AAA progression by participating in

vascular remodeling (66). In the coagulation cascade, fibrinogen

and platelet activation play an essential role in the formation of

AA (67–69). Anticoagulants, such as low molecular heparin and

rivaroxaban, have also been shown to inhibit the progression of

AA (70). In summary, these results provide a deeper

understanding of the mechanisms of AA progression and

provide a basis and direction for further studies in the future.

The broad activation of the immune system in AA has been

demonstrated (71, 72), but the mechanisms of co-immune

infiltration in TAA and AAA remain largely unclear. Previous

researchers have used algorithms such as “CIBERSORT” or

“ssGSEA” when assessing the level of immune cell types

infiltration in tissues. Such results may not be comprehensive

and insightful. However, in our study, these two algorithms,

“CIBERSORT” and “ssGSEA” were applied to assess the level of
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immune infiltration in AA compared to non-AA and

biomarkers associated with immune infiltrating cell types. Our

results suggest that the innate and adaptive immune systems are

heavily activated in AA compared to non-AA, consistent with

the literature (73). However, no significant difference in

neutrophils, effector memory CD8+ T cells and immature

dendritic cells were found between the two groups.

Furthermore, resting mast cells positively correlated with

resting memory CD4 T cells, while regulatory T cells

negatively correlated with resting memory CD4 T cells and

resting mast cells. Regulatory T cells (Tregs) are a specific T

cell subtype, CD4+Foxp3+, that play an important role in

regulating inflammatory responses and maintaining immune

homeostasis. Studies have shown that Tregs are involved in

protecting against AA through multiple mechanisms (74, 75).

Mast cells are another inflammatory cell type found in aortic

lesions. The mast cell protease, active chymase, is involved in the

activation of MMP, which has been detected in patients positive

for this enzyme in AA (76). Besides, mast cells can release pro-

inflammatory chemokines involved in the progression of AA

(77). Finally, we assessed the correlations between the

biomarkers CX3CR1 and HBB and infiltrating immune cells.

Indeed, a deeper understanding of this correlation is essential to

break the vicious cycle caused by immune-inflammatory

activation in AA and identify new therapeutic targets. In our

study, CX3CR1 was highly correlated with macrophage, mast

cell, MDSC, dendritic cell, monocytes, Tregs, CD56 bright

natural killer cell, central memory CD4 T cell, activated CD8

T cell, gamma delta T cell, T follicular helper cells, and type 1 T

helper cell. Moreover, it has a positive correlation with resting

mast cells, resting memory CD4 T cells, monocytes, M2

macrophages and gamma delta T cells and a negative

correlation with CD8 T cells and Tregs. Besides, HBB was

highly correlated with eosinophils, mast cells, neutrophils,

dendritic cells, monocytes, Tregs, natural killer cells, MDSC,

activated CD4 T cells, activated CD8 T cells, effector memory

CD4 T cells and T helper cells. It has a positive correlation with

activated dendritic cells and eosinophils and a negative

correlation with M1 macrophages. Combining the results of

both immune infiltration analyses, we found that neither

CX3CR1 nor HBB was involved in B cell-induced humoral

immunity. Furthermore, a higher correlation was found

between CX3CR1 and macrophages and HBB and eosinophils.

In summary, we used two immune infiltration analysis

algorithms to adequately assess the level of immune cell types

infiltration in AA and to determine the relationship between

infiltrating immune cell types and biomarkers. This study

provides novel insights into immune mechanisms and

designing new immunotherapeutic targets.

Aortic dissection (AD) is usually caused by diseases that can

lead to medial degeneration and increased stress on the aortic

wall, such as AA and hypertension. AD is also a serious

complication of AA. In this process, chronic inflammation,
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immune activation and stable degradation of extracellular

matrix proteins are the key pathological changes that lead to

dramatic changes in the aortic wall structure and ultimately to

aneurysm formation and AD (1). Therefore, 78 patients with AD

were selected for further evaluation of their clinical

characteristics, serum inflammation and lipid levels. According

to our results, the incidence was higher in men than in women,

with a concentration of age of onset in the 50-60 years. Those

with a previous history of hypertension had a high incidence and

were more likely to be Stanford type B patients with AD. These

findings are consistent with the epidemiological studies of aortic

disease guidelines and suggest that hypertension is an important

causative factor in AD (29, 78). Furthermore, in our study,

serum levels of the four lipids were more often in the normal

range in patients with AD, indicating that although statins are

beneficial for other cardiovascular diseases, they may be less

beneficial for patients with AD, especially since the 2018 AAA

guidelines clearly stated that they do not reduce the risk of AAA

diameter growth (3). In addition, we further assessed the level of

inflammation in AA progression to AD at the clinical serum

level compared to the previous analysis of immune infiltration at

the AA tissue level. We found significantly elevated

inflammatory markers (WBC and NEUT%) in patients with

AD, which is consistent with previous studies indicating the

critical involvement of inflammation in the progression of AD

(1). In summary, inflammation and immunity play an important

role in aortic disease and are key in studying drugs for treating

aortic disease. However, some limitations of this retrospective

study should be considered, for instance, the sample size,

emphasizing the need for validation in prospective and larger

sample studies. In addition, only the inflammatory markers and

lipid levels at the time of hospitalization were counted in

this study.

It has been established that genetic variants predispose

individuals to these thoracic and abdominal aortic diseases:

aortic aneurysms (AAA and TAA), aortic dissections (AD),

and aortic ruptures (7, 79). Whole-exome sequencing was used

to characterize gene mutations in aortic disease and assess

whether the screened biomarkers (CX3CR1 and HBB) were

mutated. The sequencing of 6 patients with AD showed that

the Ti/Tv ratio was close to 2, indicating no large bias in the

variant calling process. In addition, the mutated genes screened

by the mutation frequency database ESP6500, ExAC and 1000

Genomes were meaningful and valuable. Among the top

mutated genes, ARSD exhibited the highest number of

mutations. Moreover, 100% mutation frequency of ATN1,

HRCT1, KRT4, LNP1, MUC4, RP1L1 and TRBV7-6 was

observed in 6 samples and 83% for TTN and KDM6B, while

the biomarkers CX3CR1 and HBB were not mutated in the six

sequenced samples. Although we identified highly mutated

genes in the six samples, few studies have reported mutations

in these genes in aortic disease. Moreover, the correlation
Frontiers in Immunology
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analysis of 13 mutated genes in 6 samples showed no correlation.

Finally, we used DGIdb to make predictions of potentially

druggable genes (80), and the results showed that the top 5

genes (ARSD, ASPN, MUC16, MUC4, TTN) were highly

associated with druggable properties. The development of

drugs for aortic diseases from a genetic variant perspective is

very promising and may lead to breakthroughs in treating aortic

diseases. However, this limitation is similar to our retrospective

clinical study in which the sample size of this sequencing was too

small, and a prospective study with a larger sample is required to

validate our conclusions. In addition, the characteristics of the

population, environmental factors and differences in genetic

susceptibility may impact the conclusions.
Conclusion

Overall, we innovatively merged the TAA and AAA data sets

to identify two biomarkers (CX3CR1 and HBB) based on two

machine-learning algorithms and ROC curves. Furthermore, we

conducted different bioinformatics analyses, including GO,

KEGG, DO, GSEA and two immuno-infiltration analysis

algorithms (“CIBERSORT” and “ssGSEA”). This study

demonstrated the common molecular mechanisms and

immune infiltration patterns associated with TAA and AAA,

the correlations between the biomarkers and infiltrating immune

cells, and provided insights into the underlying development of

potential immunotherapeutic drugs. Finally, a retrospective

clinical study revealed the presence of a hyper-inflammatory

environment in aortic disease. The WES study identified

mutated genes, biomarkers, and druggable variants genes. Due

to the study limitations, further validation in prospective and

larger sample studies is warranted for a deeper understanding of

the pathological process, immune infiltration mechanisms,

targeted drug development and variant genes in aortic disease.
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