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Background: Pancreatic cancer (PC) is one of the most lethal malignancies and

carries a dismal mortality and morbidity. Four types of RNA modification

(namely m6A, m1A, APA and A-to-I) could be catalyzed by distinct enzymatic

compounds (“writers”), mediating numerous epigenetic events in

carcinogenesis and immunomodulation. We aim to investigate the interplay

mechanism of these writers in immunogenomic features and molecular

biological characteristics in PC.

Methods: We first accessed the specific expression pattern and transcriptional

variation of 26 RNA modification writers in The Cancer Genome Atlas (TCGA)

dataset. Unsupervised consensus clustering was performed to divide patients

into two RNA modification clusters. Then, based on the differentially expressed

genes (DEGs) among two clusters, RNA modification score (WM_Score) model

was established to determine RNA modification-based subtypes and was

validated in International Cancer Genome Consortium (ICGC) dataset. What’s

more, we manifested the unique status of WM_Score in transcriptional and

post-transcriptional regulation, molecular biological characteristics, targeted

therapies and immunogenomic patterns.

Results: We documented the tight-knit correlations between transcriptional

expression and variation of RNAmodification writers. We classified patients into

two distinct RNA modification patterns (WM_Score_high and _low), The

WM_Score_high subgroup was correlated with worse prognosis, Th2/Th17
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cell polarization and oncogenic pathways (e.g. EMT, TGF-b, and mTORC1

signaling pathways), whereas the WM_Score_low subgroup associated with

favorable survival rate and Th1 cell trend. WM_Score model also proved robust

predictive power in interpreting transcriptional and post-transcriptional events.

Additionally, the potential targeted compounds with related pathways for the

WM_Score model were further identified.

Conclusions:Our research unfolds a novel horizon on the interplay network of

four RNA modifications in PC. This WM_Score model demonstrated powerful

predictive capacity in epigenetic, immunological and biological landscape,

providing a theoretical basis for future clinical judgments of PC.
KEYWORDS

RNA modification writers, tumor microenvironment, pancreatic cancer, molecular
classification, immunotherapy
1 Introduction

Pancreatic cancer (PC) is one of the most devastating

cancers, with 5-year survival rates of<5% among solid cancers

(1). Existing evidence reported that the progression of PC results

from multiple activated pathways and crosstalk events in

epigenetic levels (2). Epigenetics deals with changes in gene

expression resulting directly from mutations of DNA sequences,

leading to the formation of inherited traits both intra-

generationally and inter-generationally (3). It was also found

that RNA modification as a reversible epigenetic mechanism,

plays a pivotal role in almost all vital bioprocesses, including

tumorigenesis (4).

RNA modification, a molecular process, can make changes

to specific nucleotide sequences such as A, C, G, and U residues

(5). With the rapid evolution of transcriptome-wide profiling,

more than 170 different types of RNA modifications were found

including N6-methyladenosine (m6A), 5-methylcytosine (m5C),

pseudouridine (Y), and N1-methyladenosine (m1A) (6–9).

Since the complexity of the epitranscriptome landscape, plenty

of studies suggested that there might be some kinds of

underlying interactions among those modifications. For

example, m6A modification deficiency was confirmed to

generate the inflated level of A-to-I editing via positive

regulation of ADAR with m6A-depleted transcripts (10), while

m1A and m5C may also play a relevant part in regulating A-to-I

editing (11). Hence, we concentrated on four common adenine-

related RNA modifications (including m6A, m1A, APA and A-

to-I) to explore the interplay of their promoters termed

as “writers”.
02
m6A refers to the methylation at position N6 of adenosine,

which is the most prevalent modification throughout the

mammalian RNA transcriptome, regulating the different stages

of RNA metabolism including RNA-protein interaction and

RNA stability (12). This modification was catalyzed by

multicomponent methyltransferases such as METTL3,

METTL14, METTL16, WTAP, VIRMA and RBM15 (13).

Extensive studies have acknowledged the vital functions of the

m6A in numerous physiological processes, especially in cancer

progression (14, 15). m1A is developed by adding a methyl

group to the nitrogen-1 position of adenosine. Under

physiological circumstances, m1A carries a positive charge

which influences RNA-protein interaction and RNA structure

(9). m1A writers act as methyltransferase complexes contain

TRMT6/61A, TRMT61B, and TRMT10C (16). It has been

reported that m1A modification comprehensively engaged in

the initiation and development of many diseases (17, 18). APA,

namely alternative polyadenylation, is an RNA-processing

mechanism that generates distinct 3’ ends in transcripts made

by RNA polymerase II, thus significantly broadening the

diversity of mRNAs and proteins (19). Several 3’-end-

processing factors (e.g., CPSF, CSTF and CFIm complex) were

proved to regulate the ploy (A) selection and alteration (20).

Deficiency in 3’UTR may contribute to the onset of various

cancers which in turn accelerate the development of target

therapy, for instance, the shortening of the KHDRBS1 mRNA

3’UTR can mediate the upregulation of KHDRBS1 and promote

the progression of gastric cancer (21). A-to-I is one of the RNA-

editing mechanisms which is mediated by ADAR family

members (ADAR, ADARB1 and ADARB2) (22). These
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modifications can be directly recognized as adenosine-to-

guanosine mismatches in transcriptome (23), then make a

positive or negative contribution to tumor progression by

modifying oncogenes (24). For further understanding the

meaning of epigenetic modifications, the exploration of

interplay in these four types of RNA modifications is an

urgent need.

It is worth noting that research on the role of the above

common types of RNA epigenetic modification is still

incomplete, let alone the crosstalk between these diverse types.

In 2020, Swati V and colleagues (25) have reported the

widespread, recurrent and functionally relevant 3’ UTR APA

events in PC patients by profiling data and have experimentally

validated the effects of several APA events, including CSNK1A1,

FLNA and PAF1 on miRNA regulation, protein expression as

well as tumor growth. Similarly, phenomenological research on

m1A and A-to-I was also archived in PC. ALKBH3 as a m1A

demethylase and ADAR1 as an A-to-I editor were found highly

expressed in PC compared with normal pancreas (26). However,

there is a lack of further studies to explore the mechanism and

tumor-promoting functionality of these anomalies in the

regulation of specific oncogenes/antioncogenes. Moreover,

these published studies have indicated a distinct RNA

modification pattern in PC compared with other malignancies.

Taking m6A, the most intensively studied type in RNA

epigenetics as an example. Several studies have suggested m6A

“writer” METTL14, instead of METTL3 which acts as central

methylase most of the time, is the key regulator leading to the

elevated m6A levels in PC samples. Wang M et al (27) published

a m6A-dependent METTL14/PERP/TP53 axis promoting the

growth and metastasis of PC. Chen S et al (28) reported that

CLK1-SRSF5 axis regulated METTL14 exon10 skipping

enhanced the transcriptomic m6A modification level and

promoted PC metastasis. The above studies show that the role

of RNA epigenetic modification in PC still deserves

further exploration.

Given the immunological “cold” characteristics of PC,

immunotherapy is facing tremendous challenges and

imperatively needs to strive for a breakthrough (29). To

facilitating the sensitivity of immunotherapy, investigating the

tumor immune microenvironment (TIME) and recognizing the

potential resistant mechanism for individual patients should be

emphasized (30). In recent years, RNA modifications and their

writers were deemed as a novel regulator of the tumor immune

system. For example, METTL3- or METTL4-deficient tumors

enhanced the infiltration of CD8+T cells and increased the

potency of anti-PD1 therapy in colorectal cancer (31).

METTL14 was also determined as a target for enhancing

immunotherapy in rectal cancer (32). In addition, the

shortening 3’UTR served as a significant part in the

immunotherapy and targeted therapy of clear cell renal

carcinoma (33). However, several studies reveal the distinct
Frontiers in Immunology 03
TIME pattern in PC via combing these four types of RNA

modification together. Hence, perceiving the regulatory

mechanism of mixed RNA modification writers in TIME cells

infiltration help unlock broad prospects for the development

of immunotherapy.

In our study, transcriptional variation of PC patients from

The Cancer Genome Atlas (TCGA) and International Cancer

Genome Consortium (ICGC) was included to access the specific

RNA modification patterns. This pattern is either correlated

with infiltration of immune cells, or enriched in epithelial-

mesenchymal transition (EMT), TGF-b and multiple

carcinogenic signaling pathways. Then, we established the

writers of the RNA modification score (WM_Score) model

based on the differentially expressed genes (DEGs) to evaluate

the predictive capacity in the distinct pattern. At last, we

manifested the unique status of WM_Score in transcriptional

and post-transcriptional regulation, molecular biological

characteristics, targeted therapies and immunogenomic

patterns. The flowchart of this study was shown in Figure S1.
2 Materials and methods

2.1 Datasets obtaining and processing

The workflow of this study was shown in Figure S1. Public

transcriptional profiling datasets from patients’, including

TCGA_PAAD dataset, GSE62452 GSE57495 and GSE28735

dataset from GEO, ICGC_AU_PAAD dataset were included.

For TCGA_PAAD dataset, somatic mutation, copy number

variation, RNA expression in FPKM format data, as well as

complete clinical information was obtained from UCSC Xena

(https://xenabrowser.net/datapages/). RNA-seq data in FPKM

format was then transformed into TPM by R. GEO datasets were

downloaded from https://www.ncbi.nlm.nih.gov/geo/ in raw

data format and further disposed using R package affy; R

package sva were then utilized to combine different sourced

GEO datasets. ICGC_AU_PAAD dataset were downloaded

from https://dcc.icgc.org/, somatic mutation data, FPKM

RNA-seq data and clinical information were included in our

study. All the above data was analyzed in R (version 4.1.1) and

Bioconductor packages for data cleaning and gene signature

annotation. The detailed information for these datasets were

listed in Supplementary Table 1.
2.2 Mutation and copy number variation
(CNV) analysis

For somatic mutational analysis, SNP6 array data was first

obtained from TCGA and ICGC datasets. Then, non-silent

mutation types were excluded and the remained data was
frontiersin.org
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imported into R package GenVisR for visualization. For CNV

analysis, GenePattern platform (https://www.genepattern.org/)

was utilized according to its GISTIC2.0 module. The parameter

settings were as followed: confidence level 0.99, q-value

threshold 0.25, join segment size 4, gene gistic YES, remove X

NO, cap value 1.5, max sample segs 2000, gene collapse

method exteme.
2.3 Unsupervised consensus clustering

After expression matrix was standardized using sweep()

function in R, package ConsensusClusterPlus was applied for

gene expression clustering. The parameters in this study were set

as: maxK=4, reps=100, pItem=0.8, pFeature=1, title=title,

clusterAlg=“pam”, distance=“spearman”. Consensus CDF

value and delta area of CDF curve were used as evaluation

criteria for every single clustering.
2.4 Construction of WM_score model

2.4.1 Identification of Writer_clusters-related
differentially expressed genes (DEGs)

Based on the two Writer_clusters identified by consensus

clustering, we performed differential expression (DE) analysis

using R package LIMMA. In brief, we first excluded genes in the

dataset that were expressed as 0 in more than 20% of the

samples; then functions in LIMMA package including

makeContrasts(), lmFit() and eBayes() were applied in turn to

build the linear model and extrack results of DE analysis. The

standards defined as DEGs were adjusted P value< 0.05 and

absolute value of log2FoldChange ≥1.

2.4.2 Model construction by
LASSO-cox method

The above DEGs were first introduced into a uni-variate cox

regression along with survival information of samples by R

package ezcox to first identified writer_clusters-related,

differentially expressed prognostic genes, which were defined

as candidates for WM_score model. To further narrow down the

number of genes included in the final model, LASSO-cox

algorithm was then applied. We first randomly divided

TCGA_PAAD cohort into train set and internal test set using

R package caret. Then, glmnet package was applied for model

construction. The finally included genes and their corresponding

LASSO-cox coefficients were extracted to calculate WM_score

for each sample following the following formula:

Risk   Score =  o
n

i=1
Coefi*xi

where Coefi meant the LASSO-cox coefficients for each gene, xi

was the TPM value of each gene.
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2.4.3 Validation of WM_score model
To further detect the efficacy of WM_score in predicting

prognosis of PDAC patients, we performed internal and external

va l ida t ion in both TCGA_PAAD, GSE57495 and

ICGC_AU_PAAD datasets. Time-dependent ROC curve and

Area Under the Curve (AUC) implemented by R package

survivalROC and plotROC was applied to evaluate the

predicting ability of WM_score model.
2.5 Gene set variation analysis (GSVA)
and GSVA based EMT-score

To explore diverse enrichment status in gene function for

different clusters and/or subgroups, GSVA was applied by R

package GSVA and GSEAbase. Two gene sets were conducted

for functional annotation from MsigDB (http://www.gsea-

msigdb.org/gsea/msigdb/), which were c2.cp.kegg.v7.4.symbols

and h.all.v7.4.symbols, respectively. LIMMA package was then

utilized to distinguish the enrichment differences between

different subgroups.
2.6 Correlation between WM_score and
multiple molecular subtypes of PDAC

Based on the literature published by Moffitt, Collisson and

Bailey et al (34–36), gene sets for each molecular subtype were

first extracted, resulting in 50, 62 and 1939 genes included for

Moffitt, Collisson and Bailey subtyping, respectively; while genes

for Bailey subtyping were further divided into 240 ADEX, 1,061

squamous, 268 progenitor and 370 immunogenic genes. Then,

consistent with the consensus clustering method mentioned

above, we manually performed clustering in TCGA_PAAD

dataset and assigned subtypes by overlapping the consensus

clustering results and expression patterns of the subtyping

genes included.
2.7 Analysis between WM_Score-high
and -low groups for transcriptional and
post-transcriptional events

2.7.1 Correlation between WM_score and
miRNA targeting

The expression matrix of microRNAs (miRNAs) from

TCGA_PAAD dataset was downloaded from UCSC xena as

mentioned above. DE analysis for miRNAs was also performed

by Limma-Voom method and potential targeting relationship

between DE miRNAs and WM_score DEGs was predicted by

Diana tools (http://diana.imis.athena-innovation.gr/

DianaTools/index.php). Finally, Sankey diagram was applied

to depict this targeting relationship by R package ggalluvial.
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2.7.2 Association between WM_score
and APA events

APA events for TCGA_PAAD cohort were accessed from

The Cancer 3′ UTR Atlas (TC3A, http://tc3a.org) and original

data were downloaded from (https://www.synapse.org/#!

Synapse:syn24982198/files/) (37). Percentage of Distal polyA

site Usage Index (PDUI) was evaluated by DaPars2 algorithm

to identify the alternative proximal polyA site. Thus, PDUI

values were regarded as quantitative indicators to identify

3’UTR lengthening (positive index) or shortening (negative

index). DE analysis for PDUI was also performed based on

Limma package. FDR<0.05 and PDUI difference > 0.1 were

considered as statistically significant.

2.7.3 Association between WM_score and
m6A/m1A modification

To identify the m6A or m1A dependent regulation between

WM_score related DEGs and all of the m6A/m1A regulators,

RMBase online tool was applied and the original data from this

database was downloaded from (https://rna.sysu.edu.cn/rmbase/

download.php). The regulatory relationships included in this

database as high/extremely high reliable were summarized in

this study.
2.8 Compound resistance and
sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, http://www.

cancerrxgene.org/downloads) database, which contained drug

sensitivity data (IC50) of 1,000 cell lines, were accessed to get

drug sensitivity and resistance information for pancreatic cancer

cell lines. Spearman correlation analysis was performed to

calculate the correlation between drug sensitivity and

WM_Score, the absolute value of correlation coefficient > 0.2

and FDR< 0.1 were regarded as significant.
2.9 Analysis for immune cell infiltration
and immune signatures

To assess the overall immune infiltration and stromal purity of

tumor samples, we first applied ESTIMATE algorithm in R

followed standard analysis process. For tumor immune cell

infiltration analysis, we adopted two algorithms: CIBERSORT and

ssGSEA. We downloaded archives that contained defining gene

signatures for every immune cell type from the original

manuscripts. For T cell differential evaluation, we applied GSVA

algorithm to evaluate based on the MsigDB and Pathcards (https://

pa thcards .genecards .o rg / ) gene se t s , wh ich were

BIOCARTA_IL12_PATHWAY and BIOCARTA_IL4_

PATHWAY from MsigDB for Th1/Th2 development and Th17
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Differentiation pathway from Pathcards. We also referred to the

literature published by Eric R L et al. (38) to determine the

characteristic markers of various types of immune cells including

Treg cells.
2.10 Statistical analysis

All statistical analysis were performed in R (version 4.1.1).

The comparison of count data was tested by Fisher’s test and

Chi-square test. For the measurement data that conformed to

the normal distribution, Student-t test was applied; besides,

Wilcox test was applied for non-normal distribution data

between independent subgroups. Spearman analysis was

applied to estimate the correlations between two variables that

are note linearly related. K-M test was utilized to validate the

fraction of PC patients living for a certain survival time and log-

rank test was conducted to compare the significance of

difference. R package survival and survival miner were used

for depicting Kaplan-Meier survival curve. A two-tailed p-value

of less than 0.05 was deemed to be statistically significant unless

specifically stated.
3 Results

3.1 Transcriptional variation of four types
of RNA modification writers in PC

In total, we screened 26 RNA modification writers (7 m6A

writers, 4 m1A writers, 12 APA writers and 3 A-I writers) from

the published literature that were currently involved in this study

(Table S2). To explore potential transcriptional variation in four

types of RNA modification writers in PC, we evaluated the

frequency of non-synonymous somatic mutations in 26 writers.

As is shown in Figure 1A, 71 of 821(8.65%) samples gained

mutations of RNA modification writers. Among them, the

mutation frequency of PCF11 leads first and is followed by

CPSF1, ADARB2, WTAP and RBM15. Although the

comparison between overall survival among different mutation

statuses of these writers was non-significant, PC patients with

mutations had a shorter survival rate than those without

mutations (Figure S2E), implying that transcriptional

alteration may play a vital role in the progression of PC. We

also assessed the somatic CNV of these writers. Intriguingly,

ADAR, CPSF1, TRMT61B, CPSF4 and CSTF1 possessed an

extensive prevalence of CNV gain, while WTAP, ADARB1,

RBM15, RBM15B and CF1 had less CNV gain (Figure 1B).

To further perceive the relationship between the expression

of these 26 RNA modification writers and the transcriptional

variation status, we compared the mRNA expression of these

writers between paired normal and PC tissues, and the most of

writers were highly expressed in PC tissues (Figures 1C–F,
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Figures S2A–D). Those writers with CNV gain were significantly

highly expressed in PC tissues and vice versa (e.g., ADAR,

CPSF4). This suggests that CNV may be a crucial factor in the

transcriptional process of these writers. Notwithstanding, several

writers had widespread expression but with CNV loss. So, to

examine the divergence between CNV and mRNA expression in

PC, we concentrated on the subgroups of CNV status (CNV
Frontiers in Immunology 06
gain, CNV loss and CNV stable) among distinct writers which

owned CNV loss in more than 20% of the samples.

Undoubtedly, PC patients with CNV gain had higher mRNA

expression than those with CNV loss in CPSF2, ADAR and

TRMT61A (Figures S2F–H). All these analyses determined the

robust bonds between the transcriptional scenery and mRNA

expression in 26 RNA modification writers.
A B

D E

F

C

FIGURE 1

Transcriptional variation of four types of RNA modification writers in PC. (A) Mutation statuses of 26 RNA modification writers. (B) Somatic CNV
of 26 RNA modification writers. Expression of m6A writers (C), A-to-I writers (D), m1A writers (E) and APA writers (F) between normal and PC
tissues. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, p > 0.05).
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3.2 TIME and cancer hallmarks
correlated with patterns of RNA
modification writers

To probe into interrelations among these RNA modification

writers, Pearson correlation coefficients were calculated among them,

and we found that majority of the correlations were positive except

for TRMT61A (Figure S3A). Also, Univariate Cox analysis showed

that 10 of 26 writers (CSTF2, CPSF4, METTL3, NUDT21, ADARB2,

PABPN1, CPSF1, VIRMA, METTL14 and CFI) were independent

prognostic factors in PC patients (Figure S3B). Therefore, these

detections led us to confirm that some crosstalk relationship

probably exists in specific clusters of RNA modification.

Then, according to the screening standard mentioned above,

unsupervised consensus clustering was performed to categorize PC

patients into Writer_cluster_1 and Writer_cluster_2 based on the

expression matrix of 22 selected RNA modification writers

(Figures 2A–E; Table S3). It should be noticed that

Writer_cluster_1 was charactered by the elevated expression of

APA writers (CPSF1, CPSF4, PABPN1) and the over expression of

m6A writers (METLL14, ZC3H13, VIRMA) always happened in

Writer_cluster_2; besides, METTL3 was up regulated in

Writer_cluster_1, confirmed the unique m6A regulating pattern

in PC (Figure 2E). GSVA analysis was then applied to examine the

molecular and biological functions of two distinct clusters of RNA

modification. Writer_cluster_1 was notably enriched in DNA

repair, base excision repair and RNA polymerization, while

Writer_cluster_2 was markedly enriched in the period of

tumorigenesis and immunoreactions, such as EMT, JAK/STAT

signaling pathway and chemokine signaling pathway (Figure 2F).

By the way, the prognostic endpoint was also appraised based on

OS, DFI, PFI and DSS (Figures 2G–J). We found that the

Writer_cluster_2 pattern of RNA modification exhibited a

preferable survival rate than the Writer_cluster_1 pattern.

TIME of different RNAmodification patterns was still considered

in our study. CIBERSORT algorithm was performed to measure the

component discrepancy between two distinct patterns of RNA

modification (39). In the bulk, the expression profile of 26 RNA

modification writers was highly correlated with tumor immune

infiltration (Figure S3C). For instance, CF1, ZC3H13 and ADARB1

were prominently negatively correlated with NK cells resting. The

abundances of 22 types of immune cells among two patterns were

also quantified (Figure 2K). We noticed that the Writer_clsuter_1

pattern of RNA modification possessed higher infiltration of

immunosuppressive cells (e.g., T cells regulatory), which was

consistent with the poor prognostic outcome in Figures 2G–J.
3.3 Construction and validation of RNA
modification writers signature

In order to further investigate the biological mechanism of

two distinct RNA modification patterns, differential analysis was
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conducted to determine 215 DEGs related to different RNA

modification statuses (Table S4). GO pathway analysis showed

these DEGs enriched in several molecular functions including

immunoglobulin receptor binding, signaling receptor and

growth factor binding (Figure S4A), KEGG pathway analysis

exhibited focal adhesion, TGF-b signaling pathway and ECM-

receptor interaction were enriched (Figure S4B). For verifying

the heterogeneity in regulation, we applied unsupervised

consensus clustering based on these DEGs and stratified PC

patients into DEG_cluster_A and DEG_cluster_B (Figures S4C–

F). Consistent with the clustering of RNA modification writers,

most of the patients clustered in Writer_cluster_1 corresponded

to DEG_cluster_A, and Writer_cluster_2 to DEG_cluster_B

(Figure S4G and Table S3, Fisher’s test p = 0.044).

Patients in the TCGA cohort were randomly assigned to

training and testing set at a ratio of 7:3. Based on DEGs,

univariate Cox regression was performed to decrease

redundancy and 38 prognosis-related DEGs remained. Next,

we used the LASSO-Cox algorithm to distinguish two RNA

modification patterns in the TCGA training set (Figures 3A,

S4H–I). At last, a 10-DEGs (including CXCL9, GREM1, INHBA,

SEMA3C, C1S, PGGHG, PABPC1L, BRICD5, PCSK1N and

C4orf48) based model named WM_Score model was

e s t ab l i shed , and PC pa t i en t s we r e d i v ided in to

WM_Score_high (WM_high) and WM_Score_low (WM_low)

groups based on the median WM_Score. The forecasting

capability of the WM_Score model for overall survival was

evaluated by ROC curves, the AUC reached 0.722 at 1 year,

0.743 at 2 years, 0.756 at 3 years in the TCGA training set, and

robustly validated in TCGA testing set (Figures 3B, C).

Coincidentally, these three clusters (Writer_cluster_1/2,

DEG_cluster_A/B and WM_Score_high/low) indicated a high

coherence through different calculative strategies (Figure 3D).

As is shown in Figure S4J, 61.96% patients in Writer_cluster_1

overlap with patients in WM_Score_low group, 63.1% patients

in Writer_cluster_2 overlap with patients in WM_Score_high

group. 57.61% patients in DEG_cluster_A overlap with patients

in WM_Score_low group, 59.52% patients in DEG_cluster_B

overlap with patients in WM_Score_high group (Figure S4K).

What’s more, we found that Writer_cluster_2 had higher

WM_Score than Writer_cluster_1. By the same token,

WM_Sco r e o f DEG_c lu s t e r_B wer e h i ghe r than

DEG_cluster_A (Figures 3E, F).

Subsequently, the prognostic and clinicopathological

features in WM_Score_high and WM_Score_low groups were

compared. Patients with low WM_Score exhibited a preferable

survival rate than those in the WM_Score_high group

(Figures 3G–J).

In order to clarify the interdependency of WM_Score, we

further conducted multivariate Cox analysis. The result

manifested that the WM_Score significantly corresponded

with prognosis, while the age, gender, stage, grade and tumor

size proved to be nonsensical (Figure 3K). To further verify the
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FIGURE 2

Distinct RNA modification patterns and correlated biological characteristics. Consensus heatmap (A), CDF plot (B), Item-Consensus plot (C) and
area under CDF (D) of unsupervised consensus clustering in 26 RNA modification writers, the optimal k is 2. (E) Heatmap shows the expression
of writers in distinct RNA modification patterns. (F) Heatmap of GSVA analysis shows specific enriched pathways in distinct RNA modification
patterns. Comparison of OS (G), DFI (H), PFI (I) and DSS (J) between Writers_cluster_1 and Writers_cluster_2 pattern. (K) The differences in
abundances of 22 types of immune cells between Writers_cluster_1 and Writers_cluster_2 pattern. (*p < 0.05; **p < 0.01).
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reliability and practicability of the WM_Score model, ICGC and

GEO external validation set was selected and AUC reached 0.72

(ICGC)/0.73 (GEO) at 1 year, 0.736 (ICGC)/0.751 (GEO) at 2

years, 0.727 (ICGC)/0.77 (GEO) at 3 years (Figures 3L, M and

Table S5).
3.4 The interaction between WM_Score
model and molecular biological features

To explore the functional role of distinct WM_Score

subgroups mentioned above, GSVA analysis was applied. We

found that theWM_Score_high group enriched in EMT, TGF-b,
and mTORC1 signaling pathways (Figure 4A). For examining

the correlation with EMT pathway, we computed the EMT score

based on the expression of epithelial and mesenchymal marker

genes. The stronger the tendency to mesenchymal, the higher the

WM_Score, which may explain the poorer survival rate of the

WM_Score_high group (Figure 4B and Table S3).

From published data, PC can be divided into three

transcriptome classifications of molecular subtypes (MS)

including Moffitt classification, Collisson classification and

Bailey classification (40). Moffitt classification contains

Classical and Basal-like subtypes, the latter subtype was

confirmed to be linked to worse overall survival in PC (34).

Collisson classification encompasses Classical with adhesion and
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epithelization, Exocrine-like with mesenchymal transition and

quasi-mesenchymal (QM-PDA) with tumor cell derived

digestive enzyme (35). Bailey classification includes aberrantly

differentiated endocrine exocrine (ADEX) with KRAS activation

and endocrine differentiation, Immunogenic with acquired

immune suppression, Pancreatic progenitor with early

pancreatic development and Squamous with hypermethylation

of pancreatic endodermal cell-fate determining genes and have

the worst prognosis (36). Based on the hallmark gene signatures

in these three classifications of MS from the literature (34–36,

40), unsupervised consensus clustering was performed to classify

PC patients into distinct MS (Figures S5A–F and Table S3). To

assess the relationships between MS and WM_Score, we

analyzed the WM_Score of MS in the TCGA dataset. Among

overall nine MS, Basal-like, QM-PDA and Squamous subtypes

acquired comparatively high WM_Score which may be

associated with their unfavorable prognosis (Figures 4C–E).

We also implemented overlap analysis of these three

classifications which were visualized by the histogram of

distribution. In consistent, patients with a high degree of

malignant MS (e.g. Basal-like and Squamous subtype) tended

to be determined as WM_Score_high group and vice versa

(Figures 4F–H). Furthermore, we found that WM_Score was

higher in advanced PC than those in early grades and stages

(Figures 4I, J), implying that this WM_Score model may be more

sensitive to preclinical diagnostic. However, there were no
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FIGURE 3

Construction and validation of RNA modification writers signature. (A) LASSO-Cox analysis was performed to constructed 10-DEGs based
WM_Score model. AUC of WM_Score model in TCGA training (B) and testing (C) sets. (D) Heatmap visualizing the expression of 10 DEGs
compared among Writer_cluster_1/2, DEG_cluster_A/B and WM_Score_high/low. Comparison of WM_Score between Writer_cluster_1 and _2
(E), DEG_cluster_A and _B (F). Comparison of OS (G), DFI (H), PFI (I) and DSS (J) between WM_Score_high and WM_Score_low group.
(K) Multivariate Cox analysis shows WM_Score is significantly corresponded with prognosis, while the age, gender, stage, grade and tumor size
proved to be nonsensical. AUC of WM_Score at 1, 2, 3 year in ICGC (L) and GEO (M) external validation set. (**p < 0.01; ***p < 0.001).
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FIGURE 4

Biological characteristics of WM_Score model in PC. (A) GSVA analysis between WM_Score_high and _low group. (B) Differences in the
WM_Score between mesenchymal trend and epithelial trend. WM_Score differences among Moffitt classification (C), Collisson classification (D)
and Bailey classification (E) based on patients in TCGA cohorts. (F–H) Overlap analysis of these three classifications and WM_Score based on the
histogram of frequency distribution. Differences of WM_Score in specific grade (I) and stage (J) of patients in TCGA dataset. (*p < 0.05; **p <
0.01; ***p < 0.001; NS, p > 0.05).
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significant WM_Score differences among old, gender and tumor

size (Figures S5G–I).
3.5 Transcriptional and post-
transcriptional regluation associated
with WM_Score

RNA modifications have been historically identified as a

transcriptional and post-transcriptional regulator, whereas the

WM_Score model was conducted based on RNA modification

writers. So, we concentrated on the transcriptional and post-

transcriptional events (e.g. APA, m6A and m1A) related

to WM_Score.

It is well-established that APA promotes transcriptional

alteration by providing mRNA with 3’UTRs where binding

sites for miRNAs targeted (41), we proposed that two RNA

modification statuses may have specific miRNA features based

on the regulation of distinct writers. First of all, we performed

differential analysis between WM_Score_high and _low

group,42 miRNAs were screened out and pathway analysis of

their target genes was operated (Table S6). Then, 8 miRNAs, 14

mRNAs and 9 enriched pathways were determined (Figure 5A;

Table S7). For further identify the mechanism of RNA

modification writers, we assessed the APA events of each

gene in TCGA dataset to explore the post-transcriptional

attributes. We identified the genes between two RNA

modifications with distinct PDUI and found that most of

genes with negative PDUI (shortening 3’UTR) enriched in

the WM_Score_high group (Figure 5B and Supplementary

Table 8). Via univariate Cox analysis, we selected 5

prognosis-related top genes (COL1A2, DKK1, AREG and

CEACAM5) for verification. COL1A2 was with significantly

lengthening 3’UTR in the WM_Score_high group, while

DKK1, AREG and CEACAM5 were with markedly

shortening 3’UTR. For those genes with lengthening 3’UTR,

patients in the lengthening group had a worse survival rate

than those in the shortening group, the same phenomenon was

seen for genes with shortening 3’UTR (Figures 5C–F). As a side

note, we can hypothesize that in the WM_Score_high group,

the 3’UTR may work together with the miRNA-targeting

system to facilitate the progression of PC.

To examine whether WM_Score was associated with m6A

and m1A, we explored the corresponding relationships

between DEGs and m6A or m1A regulators via the RMVar

database. Among m6A and m1A regulators, readers binding

with DEGs were the most, suggesting that WM_Score is

definitely an integrated predictive model based on RNA

modification writers (Figures 5G, H and Table S9-10).
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3.6 Identification of potential
compounds targeting the
WM_Score model

Aiming at recognizing the impacts of WM_Score on drug

sensitivity, Spearman correlation analysis was performed to

compute the relationship index between WM_Score and the

response to drugs based on the GDSC dataset. We found 38

potential compounds were markedly related to WM_Score

(Figure S6A and Table S11). Among them, most of the

compounds showed drug resistance on WM_Score, suggesting

that patients with higher WM_Score probably lead to higher

resistance to these targeted therapies, including Gemcitabine and

Cisplatin, except for IGF1R_3801. Furthermore, we explored the

targeted pathway of these compounds. The results showed that

compounds targeted the WM_Score_low patients may regulate

the MAPK, DNA replication and Genome integrity to strengthen

the sensitivity of themselves (Figure 5I). In summary, the

WM_Score proved to be an innovative therapeutic target for PC.
3.7 The WM_Score predicts distinct TIME
and immunogenomic patterns

For examing the distinct TIME of the WM_Score model,

CIBERSORT and ESTIMATE algorithms were applied based on

the expression profile of patients in the TCGA dataset (Figure

S6B–E and Table S12). No major differences were observed

according to the abundances of 22 types of immune cells (42)

between WM_Score_high and WM_Score_low group, but the

WM_score was positively related to ESTIMATEScore,

ImmnueScore and StromaScore, implying that the infiltration

of immune cells in WM_Score model was highly abundant

(Figure S6C-E).

To further validate the immune cell infiltration between

different WM_Score subgroups, ssGSEA was performed based

on 28 stromal and immune cell types according to the gene

signature “LM22”, and multiple T cells infiltrations were found

among two distinct WM_Score subgroups (e.g., Regulatory T

cell, Th1 cell, Th2 cell and Th17 cell, Figure 6A and Table S13).

Considered PC is an immunologically cold tumor, exploration

of immunogenomic patterns of PC was urgent to be emphasized

based on WM_Score. Four types of T cells (Th1 cell, Th2 cell,

Th17 cell and Treg cell) were involved in the following

stratification analysis. Extensive evidence has documented that

shifting Th1/Th2 balance toward to Th2 polarization may

contribute to the tumor immune escape, while IL-12 can

suppress Th2 differentiation and promote Th1 production and

the case in IL-4 is the opposite (38, 43, 44). So, we extracted

BIOCARTA_IL12_PATHAY and BIOCARTA_IL4_PATHWAY
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from the MSigDB database as background gene sets, ssGSEA

scores based on these two gene sets were calculated separately.

Then, the median value of the subtraction of these two ssGSEA

scores was determined as a cutoff point to distinguish patients

from Th1_trend and Th2_trend (Table S14). As is shown in

Figure 6B, patients in Th2_trend have higher WM_Score than

those in Th1_trend. On the other part, the Th17 cell

differentiation gene set from the PathCards database was

selected to access the differences between WM_Score subgroups,

and patients were divided into Th17_diff_up and Th17_diff_down

groups based on the median value of ssGSEA score computed via

this gene set (Table S14). We found that patients in the
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Th17_diff_up group tend to gain higher WM_Score

(Figure 6C). To further confirm the mechanism of the T cell

infiltration inWM_Score, we screened several cytokinemarkers of

those four types of T cells from published literature and compared

their expression patterns between distinct WM_Score subgroups

(38). As an overall perspective, WM_Score_high group gathered

the more abundant infiltration of these T cells, including 3

cytokines (STAT1, IFNG and IRF1) in Th1 signaling

(Figure 6D), 3 cytokines (IL13RA1, GATA3 and AREG) in Th2

signaling (Figure 6E), 3 cytokines (IL21R, IL23A and IL22RA1) in

Th17 signaling (Figure 6F) and 2 cytokines (TGFBR1 and AHR)

in Treg signaling (Figure 6G). At last, we evaluated the expression
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FIGURE 5

Transcriptional and post-transcriptional characteristics related to WM_Score. (A) Sankey diagram based on 8 miRNAs, 14 mRNAs and 9 enriched
pathways. (B) The differences in the PDUI of each gene between WM_Score_high and WM_Score_low groups. Kaplan-Meler plot shows overall
survival between 3’UTR lengthening and 3’UTR shortening of COL1A2 (C), DKK1 (D), AREG (E) and CEACAM5 (F). Relationships between DEGs and
m6A (G) or m1A (H) regulators via the RMVar database. (I) Signaling pathways targeted by drugs which are resistant or sensitivity to WM_Score.
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FIGURE 6

The relationship between WM_Score and immunogenomic patterns. (A) The immune cell infiltration between different WM_Score groups based
on 28 stromal and immune cell types. Differences of WM_Score in Th1/Th2 trend (B) and Th17_diff_down/Th17_diff_up trend (C). Expressional
differences of distinct cytokines between WM_Score_high and _low group in Th1 (D), Th2 (E), Th17 (F), Treg (G) signaling pathways. (*p < 0.05;
**p < 0.01; ***p < 0.001; ****p > 0.0001).
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of common immune checkpoint markers to predict the response

to immunotherapy (Figure S6F). The expression of PD-L1 was

higher in the WM_Score_high group, indicating that patients in

WM_Score high group may be more sensitive to immunotherapy.
4 Discussion

Owing to the emerging advancement of methods in whole-

transcriptome sequencing and high-performance mass

spectrometry, qualitative and quantitative detection in

characterization of the RNA modification enzymes (e.g. writers

and erasers) have achieved a breakthrough. As a crucial subunit

facilitating catalysis and conjugation of RNA, writers plays an

essential regulatory role in carcinogenesis, immune response and

alternative splicing (45). Despite lots of efforts have been exerted

to explore the systematic mechanism of writers in single RNA

modification, the underlying interaction of multiple RNA

modification writers in PC have not been clarified. Thus, our

study focused on four types of RNA modification writers (m6A,

m1A, APA and A-to-I) for further analyses. We first evaluated

the transcriptional variation and mutational statuses of these

RNA modification writers in PC. Then, based on the expression

profile of these 26 writers and machine learning algorithm, two

distinct RNA modification patterns were determined. To make

the results more practical, we performed LASSO-Cox analysis to

construct a score-based model, WM_Score model, and

appraised the predictive capacity of RNA modification writers

in different subgroups.

Via LASSO-Cox algorithm, WM_Score model was

established based on 10 DEGs (CXCL9, GREM1, INHBA,

SEMA3C, C1S, PGGHG, PABPC1L, BRICD5, PCSK1N and

C4orf48). Linkage evidences suggested that most of these

DEGs correlated with immunity and tumorigenesis. As a

member of chemokine family, CXCL9 promotes the

progression of PC via STAT3-dependent cytotoxic T

lymphocyte suppression (46). GREM1 as functionally

opposing BMP signaling pathway gene, was confirmed to

promote the advancement and progression of colorectal cancer

(47). In PC, INHBA/TGF-b regulatory network enhanced the

stem cell-like properties and stromal microenvironment, leading

to resistance to chemotherapy (48). SEMA3C regulated the

autophagy process and tumor immune microenvironment,

which in turn promoted pancreatic cancer cell growth (49).

Silencing of C1S also resulted in decreased proliferation and

viability of cancer cells and strengthened aggregation of T cells

(50). Based on the median value of WM_Score, PC patients was

divided into WM_Score_high and WM_Score_low group. We

found that WM_Score_high group displayed the worse

prognosis, and significantly enriched in EMT, TGF-b and

mTORC1 pathways. It is generally known that EMT is

essential for the initiation of metastasis in cancer progression

(51), and TGF-b was one of the most well-known promoters of
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EMT-inducing transcription factors and a major contributor to

immunosuppression (52). What’s more, mTOR was considered

as a mediator in TGF-b pathway that intensified stemness and

drug resistance in cancer (53). We can hypothesize that mTOR

pathway activation induces TGF-b, in turn, enhanced the EMT

signaling pathway in WM_Score_high group. This chain

reaction may explain the poor survival rate of this group and

validate the efficacy of our WM_Score model. More recently,

Guo Y, et al (54) also discovered a six-gene prognostic signature

(METTL16, WTAP, IGF2BP2, IGF2BP3, YTHDC2 and

YTHDF2) in PC. No overlap was identified between the 10-

gene WM_Score model we constructed and those previously

defined. Besides, the methodology of signature construction we

adopt is a more comprehensive way which included four types of

RNA modifications. Taken together, our WM_Score model was

identified to be superior or comparable to the previous

defined signatures.

Known as “immune desert”, with limited T cell infiltration,

the polarized PC immunity approached with a barrage of

challenges (55). Together, TIME, cancer-associated fibroblasts

(CAFs) and extracellular matrix proteins constitute the pro-

tumor environment (56). Thus, we examined the TIME and

immunogenomic patterns among distinct WM_Score

subgroups, and WM_Score_high group was correlated with

higher infiltration of immunosuppressive cells, including Th2

cell and Th17 cell, which was contributive to the systemic

immune dysfunction. Considered the heterogeneous

population of T cells in PC, we focused on three T helper cells

(Th1, Th2 and Th17 cell) for subgroup analyses. Naive CD4+T

cells can differentiate into two subsets: Th1 cells, which tend to

enhance the proinflammatory responses and activate

autoimmune responses; Th2 cells, which induce humoral

immune responses by secreting IL-4, -5, -6, -9, -10 and -13

(56). In coculture studies, PC secreted IL-10 and TGF-b
suppressed the development of Th1 responses, whereas

promoted the shift from Th1 to Th2 trend that is correlated to

worse survival (57). In addition to Th1 and Th2 cells, Th17 cells,

characterized by secretion of IL-17, played a distinguished role

in PC (58, 59). Although the function of Th17 remained

controversial, emerging evidences have illustrated that Th17

seems to be a tumor promotor in the progression of PC (60).

In consistent, patients in Th2_trend and Th17_diff_up

subgroups achieved conspicuously higher WM_Score,

bolstering the consequences of aforementioned works. On the

other part, production of multiple cytokines by PC cells also

resulted in the general immunosuppressive microenvironment

of PC by swapping the balance from a Th1 to a Th2 status (61).

Taken this phenomenon into consideration, we conducted an in-

depth analysis of the relationship between four types of T cells

(Th1, Th2, Th17 and Treg cells) signaling pathway and their

distinct chemokines. The result elucidated that, in

WM_Score_high group, high expression of chemokine STAT1,

IFNG, IRF1, IL13RA1, GATA3 and AREG and low expression of
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chemokine IL12A and IL2 may act together to break the balance

between Th1 and Th2 cells. By the same token, the increased

expression of chemokine IL21R, IL23A, IL22RA1, TGFBR1 and

AHR might coordinately regulate the recruitment of Th17 and

Treg cells in WM_Score_high group. Given the complicated and

heterogeneous regulatory mechanism in TIME mentioned

above, this study provided a basis for future studies on RNA

modification target therapy.

Additionally, as one type of RNA modifications, APA could

regulate transcript stability by altering the miRNA-mediated

activities at a post-transcriptional level. And the length of

3’UTR was utilized to measure the APA events, shortening

3’UTR generally related to oncogene activation and tumor

metastasis (41). Based on this, we accessed the characteristics

in miRNA-mediated RNA modification in the WM_Score

model. In WM_Score_high group, the EMT, PI3K-Akt and

protein digesting pathways targeted by DE miRNAs were

enriched, and the length of 3’UTR was shorter than those in

WM_Score_low group. We can present the hypotheses that for

patients with higher WM_Score, the shortening 3’UTR of

regulatory genes prevented the targeted accidents of miRNA,

resulting in the normal transcription of these genes and leading

to the development of PC. Finally, we explored the potential

therapeutic targets of RNA modification writers in PC. The

result shown that WM_score was mainly correlated with

resistance to compounds targeted MAPK, DNA replication

and Genome integrity pathways, and sensitivity to compounds

targeted IGF1R signaling pathway. In other words,

WM_Score_high group will benefit from the therapy which

targeted IGF1R pathway, and several studies have already

showed the target therapies against stromal insulin/IGF-1

pathway can have negative effects on PC progression (62). By

the way, prediction of response to immunotherapy was

considered in this study. All the above proved that

WM_Score model based on distinct RNA modification

pattern, was not only an efficient predictor to interpreter the

transcriptional and post-transcriptional events, but also a

classifier to access the clinical outcome of targeted therapy

and immunotherapy, shedding new light on the adjuvant

treatment for PC.

Nevertheless, this study still has several limitations. First,

the interplay mechanism among four types of RNA

modifications should be further validated in vivo and vitro.

Second, as a consequence of limited patents receiving

immunotherapy and the complexity and difficulty in

assembling specimens, the association between WM_Score

and immunotherapy response should be identified based on

immunotherapy cohorts. Third, it should be noted that similar

methodologies have been used in another study for colorectal

cancer (CRC) (63). However, distinctions in results between

the two studies and novelty of this study should be highlighted.

1) we discovered that the expression of APA writers CPSF1,

CPSF4 and PABPN1 were enriched in Writer_Cluster1 with
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better prognosis whereas m6A writers METTL14, WTAP and

ZC3H13 did the exact opposite, indicating that APA and m6A

might be the decisive types of RNA modification in PC

pathogenesis. 2) given the different cancer types and

biological behavior between PC and CRC, our WM_score

model that matched well with existing molecular subtypes of

PC could provide a new sequencing-based tool for precise

diagnosis/therapy and prognosis prediction as well as some

novel molecular targets for future mechanism research of PC.

3) considering that the immunotherapy of CRC has been

progressing much better than that in PC, our results

indicating the interaction between RNA epigenetics and Th

cells differentiation/polarization might exert unique effects on

the mechanism research of PC immunity in the future. Fourth,

this study did not fully integrate results of targeted drug

screening with nanotechnology, which showed significant

potential to improve treatment for PC patients (64). A

combination of multi-omics research and nanotechnology

held considerable promise in PC research in recent years. For

instance, Kong C et al (65) developed an ultra-pH-sensitive

micelle (UPSM) system targeting lysosomal catabolism

activation of PC cells to achieve rapid drug release, they

proved the therapeutic efficiency of this system through both

transcriptional and amino acid profiling. Zhou S et al (66)

screened miRNA biomarkers by exosome sequencing and

designed a virus-mimicking fusogenic vesicle system to

achieve accurate detection of these markers, improving

diagnostic accuracy and therapeutic efficiency in PC patients.

In the future, our research will strive to integrate our

innovative WM_score model with the study of nanoparticle

drug delivery, to improve the treatment of PC patients with

poorer prognosis.
5 Conclusion

In conclusion, our integrated multi-omics analyses based on

four types of RNA modification writers unveiled a convoluted

regulatory network in immune infiltration and prognostic

statuses of PC. We developed WM_Score model that served as

a predictor of writers in transcriptional and post-transcriptional

regulation, targeted therapies and immunotherapy. This study

provided insights into the underlying interplay mechanism of

RNA modifications, unfurling the novel therapeutic strategies

for PC patients.
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