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The emergence of new SARS-CoV-2 variants, such as the more transmissible

Delta and Omicron variants, has raised concerns on efficacy of the COVID-19

vaccines. Here, we examined the waning of antibody responses against

different variants following primary and booster vaccination. We found that

antibody responses against variants were low following primary vaccination.

The antibody response against Omicron was almost non-existent. Efficient
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boosting of antibody response against all variants, including Omicron, was

observed following a third dose. The antibody response against the variants

tested was significantly higher at one month following booster vaccination,

compared with two months following primary vaccination, for all individuals,

including the low antibody responders identified at two months following

primary vaccination. The antibody response, for all variants tested, was

significantly higher at four months post booster than at five months post

primary vaccination, and the proportion of low responders remained low (6-

11%). However, there was significant waning of antibody response in more than

95% of individuals at four months, compared to one month following booster.

We also observed a robust memory B cell response following booster, which

remained higher at four months post booster than prior to booster. However,

the memory B cell responses were on the decline for 50% of individuals at four

months following booster. Similarly, while the T cell response is sustained, at

cohort level, at four months post booster, a substantial proportion of

individuals (18.8 – 53.8%) exhibited T cell response at four months post

booster that has waned to levels below their corresponding levels before

booster. The findings show an efficient induction of immune response

against SARS-CoV-2 variants following booster vaccination. However, the

induced immunity by the third BNT162b2 vaccine dose was transient. The

findings suggest that elderly individuals may require a fourth dose to provide

protection against SARS-CoV-2.
KEYWORDS
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Introduction

The Pfizer/BioNTech BNT162b2 mRNA vaccine, one of the

most administered worldwide, is a two-dose regimen

administered 21 days apart as the primary vaccination series.

It has demonstrated 65% and 90% vaccine efficacy against

infection and severe disease respectively (1). However, along

with many others (2–4), we have reported waning of antibody

response at six months post BNT162b2 primary vaccination (5).

This is of concern as many new SARS-CoV-2 variants, such as

the Delta and Omicron variants, have emerged with multiple

mutations that may increase disease severity, transmissibility,

and immune evasion. A third BNT162b2 dose boosted antibody

responses and demonstrated 95% vaccine efficacy against severe

disease (6). Real-world immunogenicity data describing the

antibody kinetics following booster vaccination are not yet

available, especially in the elderly who are a high disease risk

group. Here, we evaluated the immune response in elderly at two

and five months following primary vaccination, and one and

four months following a third dose.
02
Methods

Ethics statement and study population

The study design and protocol for the COVID-19

PROTECT study group were assessed by National Healthcare

Group (NHG) Domain Specific Review Board (DSRB) and

approved under study number 2012/00917. Written informed

consent was obtained in accordance with the Declaration of

Helsinki for Human Research.

A cohort of 36 individuals (Supplementary Table 1), aged

61-81 (median age = 71), were recruited. Two doses of Pfizer/

BioNTech BNT162b2 mRNA primary vaccination were

administered 21 days apart. Blood samples were collected at

two months following primary vaccination (T1), five months

following primary vaccination (T2), and one month (T3) and

four months (T4) following a third dose (administered 189-

270 days post first-dose). All individuals in the study are

negative for antibodies against the nucleocapsid protein of

SARS-CoV-2.
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Spike protein flow cytometry-based
assay (SFB assay) for antibody detection

The SFB assay was performed as previously described (7, 8).

The pTT5LnX-CoV-SP (expressing SARS-CoV-2 Spike protein,

Genbank: YP_009724390.1) was used as a template plasmid to

generate Spike gene of Alpha (B.1.1.7), Beta (B.1.351), Gamma

(P.1), Kappa (B.1.617.1), Delta (B.1.617.2), Delta Plus (B.1.617.2,

AY.2), and Omicron (B.1.1.529) using QuickChange Lightning

Multi Site-Directed Mutagenesis Kit (Agilent). Cells, expressing

the spike protein of either WT or variant, were seeded at 1.5 x

105 cells/well in 96 well V-bottom plates. Cells were incubated

with human serum (diluted 1:100 in 10% FBS) followed by a

secondary incubation with a double stain, comprising Alexa

Fluor 647-conjugated anti-human IgG (1:500 dilution) and

propidium iodide (PI; 1:2500 dilution). Cells were acquired

using a BD Biosciences LSR4 laser and analyzed using FlowJo

(Tree Star). Gating strategy is described in Supplementary

Figure 1. The assay was performed as two independent

experiments, each with technical duplicates. Expression of the

different spike proteins on the cell surface was confirmed by

ACE-2-HuFc binding (Supplementary Figure 2). Low

responders were arbitrarily defined as individuals with

antibody response below 25th percentile of the cohort response

(n=36) at two months following primary vaccination (T1).
Memory B cell ELISPOT

SARS-CoV-2 RBD-specific memory B cell numbers were

counted using ELISpot. MultiScreenHTS IP Filter Plate, 0·45 µm

plates (Merck Millipore) were coated overnight at 4°C with

purified anti-human-IgG (MT91/145, Mabtech) or purified anti-

human-IgA prepared at 15 mg/mL in PBS. Plates were washed

and blocked for 30 min at room temperature with RPMI + 10%

FBS. 1 x 106 PBMCs were resuspended in 1 mL RPMI + 10% FBS

+ 1 mg/mL R848 + 10 ng/mL IL-2, and incubated at 37°C, 5%

CO2 for 5 days to differentiate memory B cells into antibody-

secreting cells. After incubation, cells were counted, and 100,000

or 400,000 live cells were taken for ELISpot plating to determine

RBD-specific memory B cell numbers. Total IgG secreting cells

were determined by plating 1500 or 3000 live cells. Cells were

incubated for 18-22 h at 37°C, 5% CO2 in the ELISpot plate

before detection. A combination of RBD-WASP/anti-WASP-

ALP or anti-IgG-biotinylated/streptavidin-ALP (Mabtech) were

used to detect RBD-specific or total IgG secreting

cells respectively.
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IFN-g/IL-2/IL-4/IL-5/IL-13 FluoroSpot
assays

PBMCs were incubated overnight in RPMI-1640 + 10%

Human AB Serum + 1% Penicillin Streptomycin + 1% 200g/

mL D-glucose. FluoroSpot assays were used to measure CD8,

CD4 Th1 and Th2 responses. PBMCs were stimulated in

duplicates with WT SARS-CoV-2 spike peptide pool (5) (JPT

Peptide Technologies) with 0.1mg/mL co-stimulator anti-CD28

(mAb CD28A). The peptide pool for CD8 FluoroSpot assay

consists of 9-mers (n=211) while the peptide pool for CD4

FluoroSpot assay consists of 15-mers (n=315). CD8 and CD4

Th1 and CD4 Th2 responses were measured using Human IFN-

g/IL-2 FluoroSpot PLUS kits and custom Human IL-4/IL-5/IL-

13 FluoroSpot FLEX kits respectively, following manufacturer’s

instructions (MabTech).

In brief, for IFN-g/IL-2 FluoroSpot assays, PVDF plates pre-

coated with IFN-g mAb (1-D1K) and IL-2 mAb (MT2A91/

2C95) were washed with sterile phosphate buffered saline (PBS)

and blocked with R10 medium. Following overnight incubation

with the cells, plates were washed with PBS and incubated with

detection antibodies anti-IFN-g mAb (7-B6-1-BAM) and anti-

IL2 mAb (MT8G10, biotinylated) diluted in PBS with 0.1% BSA.

Plates were then washed with PBS and incubated with

fluorophore conjugates for IFN-g (anti-BAM-490) and IL-2

(SA-550) in PBS with 0.1% BSA. Plates were washed and

incubated with ready-to-use fluorescent enhancer II.

For IL-4/IL-5/IL-13 FluoroSpot assays, the PVDF plates

were activated with 15µL 35% EtOH per well. Plates were

washed with cell culture water and incubated with IL-4 mAb

(IL4-I), IL-5 mAb (TRFK5) and IL-13 mAb (MT1318) in PBS.

After overnight incubation, plates were washed with sterile PBS

and blocked with R10 medium. Following overnight incubation

with the cells, plates were washed with PBS and incubated with

detection antibodies anti-IL4 mAb (IL4-II), anti-IL5 mAb

(5A10) and anti-IL13 mAb (25K2) diluted in PBS with 0.1%

BSA. Plates were then washed with PBS and incubated with

fluorophore conjugates for IL-4 (SA-550), IL-5 (anti-WASP-

640) and IL-13 (anti-BAM-490) in PBS with 0.1% BSA. Plates

were washed and incubated with ready-to-use fluorescent

enhancer II for 15 minutes at RT.

For all FluoroSpot assays, plates were then emptied and

dried overnight before analysis with Mabtech IRIS FluoroSpot

and ELISpot reader using FITC filter for IFN-g and IL-13, Cy3

filter for IL-2 and IL-4, Cy5 filter for IL-5. Spots were calculated

based on the average of two wells using the MabTech IRIS

Immunospot reader Apex software.
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Statistical analysis

Statistical analysis was performed using GraphPad Prism 7.

To compare between multiple groups, Kruskal-Wallis tests and

post hoc tests using Dunn’s multiple comparison tests were used.

To compare between timepoints, Friedman tests and post hoc

tests using Dunn’s multiple comparison tests were used. p < 0.05

was considered statistically significant. To analyze the antibody

response and cellular response against WT Spike at T3 (upper

panel) and T4 (lower panel) for correlation with age, spearman

correlation was used.
Results

In this study, we followed a group of elderly individuals

(median age = 71), n=36, who received two doses of Pfizer/

BioNTech BNT162b2 mRNA primary vaccination administered

21 days apart, and a third dose administered 189-270 days post

first-dose. The cohort is part of a bigger cohort of 312 individuals

(5) who received the primary vaccination consisting of two doses

of Pfizer/BioNTech BNT162b2 mRNA doses in January – May

2021, administered 21 days apart. The individuals were grouped

by age: (1) young, aged < 60 years old, and (2) elderly, aged ≥ 60

years old. In August 2021, in view of the emerging variants,

Singapore has taken up a staggered approach to give priority to

elderly individuals and has recommended for the elderly to

receive a booster dose five months following their primary

vaccination. Younger individuals, aged > 30 years old, were

offered a booster dose in October 2021. In line with this

approach and timeline, a group of 36 elderly individuals were

randomly selected in August/September 2021 and offered a third

dose five month following their primary vaccination. Analysis of

samples were expanded to focus on variant-specific responses at

two months following primary vaccination (T1), five months

following primary vaccination (T2), and one month (T3)

following the third dose, and more importantly, to investigate

the longevity of the response at four months (T4) following the

third dose.

At two months following primary vaccination (T1), there

was an efficient induction of antibody response against WT

Spike (Figure 1). However, there remained a substantial

proportion of low responders, arbitrarily defined as individuals

with antibody response below 25th percentile of the cohort

response at T1. We previously found that the IgG response

against the WT and variant Spike strongly correlated with the

capability to inhibit pseudovirus and live virus neutralization

expressing the corresponding Spike (9, 10). Here, we extended

the antibody analysis to examine variant-specific responses. The

IgG antibody response against variant Spike was lower than

against WT Spike at all time-points examined (Supplementary

Figure 3). The lower variant Spike binding efficacy, compared to

WT, by the plasma samples is unlikely due to lower Spike
Frontiers in Immunology 04
expression as we have found higher ACE-2 binding efficacy

with the variants, compared to WT (Supplementary Figure 2).

More notably, antibody response against Omicron was the

lowest – it was negligible, even at just two months following

primary vaccination. We did not observe a significant decrease

in specific antibody response against WT full-length Spike at five

months (T2) (compared to two months, T1) post primary

vaccination. However, the antibody response against Spike

decreased for all variants examined, including Alpha, Beta,

Gamma, Kappa, Delta, Delta Plus, and Omicron (Figure 1A)

at T2. The proportion of low responders increased substantially,

especially for antibody response against the variants (from 25%

to 71-81%). Following the booster vaccination (third dose, T3),

the IgG antibody response against WT and the variants

examined was efficiently boosted, including all low responders.

At four months post booster dose (T4), there was significant

waning of antibody response (Figure 1A) against WT Spike in

35/36 (97.2%) of the individuals and against all variant Spike

tested in 34/36 (94.4%) of the individuals, compared with the

corresponding responses at one month post booster (T3).

Despite the antibody waning, antibody responses at four

months post booster dose were higher than that at five months

post primary vaccination (Figure 1A). In fact, all individuals had

a higher anti-S response at T4 than at T2, and this was consistent

across responses against WT and the variants examined. The

proportion of antibody low responders (those below 25th

percentile of the cohort response at T1) remained low (6-

11%). The reduction in antibody response against variant

Spike at T4 (compared with T3) was compared with the

reduction in WT Spike-specific and expressed as a ratio (WT/

variant; Figure 1B). A ratio >1 indicates that the waning of

antibody response against WT Spike is more than waning of

antibody response against variant Spike. We found no significant

difference in the waning of variant Spike-specific antibody

response, suggesting that antibody response against variant

Spike wanes in a similar manner at four months post booster

vaccination, for the variants examined.

We also analyzed the memory B and T cell response for a

subset of randomly selected age-matched elderly individuals due

to cell availability. The memory B cell response was efficiently

induced in all tested individuals (10/10) at one month post

booster vaccination and was not significantly lower at four

months post booster vaccination (Figure 2). However, we

observed a decrease in memory B cell response in 5/10

individuals (50%). In agreement with the antibody data, the

memory B cell response at four months post booster vaccination

remained higher than that observed before the booster (five

months post primary vaccination). We showed that the T cell

response, as assessed by ELISPOT, remained robust, with no

significant difference in T cell response at five months post

primary vaccination (Figure 2), compared with two months post

primary vaccination. There was a significant increase in CD4

Th1 T cell response at one month following the booster dose
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(Figure 2). A total of 2/16 (12.5%) and 1/16 (6.25%) individuals

did not develop a CD8 and CD4 Th1 T cell response following

booster. While there was no significant difference in the T cell

response at four months following the booster (compared to one

month following booster) at the cohort level, we observed

waning T cell response at four months following the booster

(compared to one month following booster) in 8/16 (50%), 7/16

(43.8%) and 11/13 (84.6%) individuals for CD8, CD4 Th1 and

CD4 Th2 T cell responses respectively. Importantly, 4/16 (25%),

3/16 (18.8%) and 7/13 (53.8%) had a lower CD8, CD4 Th1 and

CD4 Th2 T cell response at four months following the booster

(compared to five month post primary vaccination, before

booster) respectively.
Discussion

This study demonstrates the importance of the third dose for

elderly individuals. While studies (2, 3, 5, 11, 12) have reported a
Frontiers in Immunology 05
negative correlation between age and antibody levels and also

antibody waning months following vaccination, most are

population-based. In this study focused on the elderly, we

found that the antibody response against the variants, and

more strikingly, against Omicron was low and almost non-

existent following primary vaccination series, and a third dose

was essential for induction of Omicron antibody response. In

fact, the antibody response against the variants tested was

significantly higher at one month following booster

vaccination, compared with two months following primary

vaccination. All, including the low responders, have a robust

antibody response following the booster vaccination. Despite

waning, the antibody response, for all variants tested, was still

significantly higher at four months post booster than that at five

months post primary vaccination. Most have robust antibody

response, with the proportion of low responders remaining low

(6-11%). We also observed a robust memory B cell response

following booster vaccination, which remained higher than that

observed prior to booster vaccination (at five months post
A

B

FIGURE 1

Induction and waning of antibody response against WT and variant Spike following booster vaccination. Plasma samples were screened for
binding against full-length (A) wildtype (WT) and variant Spike (Alpha, Beta, Gamma, Kappa, Delta, Delta Plus and Omicron) in elderly individuals
at two months (T1) and five months (T2) following primary vaccination, and one month (T3) and four months (T4) following a third dose
(administered 189-270 days post first-dose). N=36. Pie chart shows the proportion of individuals with antibody responses above 25th percentile
of cohort response at two months following primary vaccination, T1 (in pink) and individuals with antibody responses below 25th percentile of
cohort response at T1 (in blue; defined as low responders); Number in pie chart indicates the proportion of low responders (blue in pie chart).
(B) The reduction in antibody response against variant Spike at T4 (compared with T3) was compared with the reduction in WT Spike-specific
and expressed as a ratio (WT/variant). A ratio >1 indicates that the waning of antibody response against WT Spike is more than waning of
antibody response against variant Spike. N=36. To compare between multiple groups, Kruskal-Wallis tests and post hoc tests using Dunn’s
multiple comparison tests were used. *, P-value <0.05; **. P-value <0.01; ***, P-value <0.001; ****, P-value <0.0001; ns, not significant.
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primary vaccination). In addition to antibody, T cells are also

important in the control of SARS-CoV-2 infections (13–15),

where high levels of effector molecules by CD8 T cells in acute

COVID-19 are associated with mild disease. We found robust T

cell response at four months post booster vaccination at a cohort

level. The efficacy of the fourth dose against infections has been

modest in cohort study examining younger (16), and older age

groups (17). Our findings suggest that the modest benefit of the

fourth dose in the elderly may, in part, be due to a robust

antibody response against the variants, even at four months

following the third dose. Although waning of immune responses

was observed, the decrease in antibody response at five months

post booster vaccination (compared with one month post

booster vaccination) did not correlate with a decrease in

memory B cell response nor with a decrease in memory T cell

response (Supplementary Figure 4). This suggests that, while the

antibody responses may have waned for some of the individuals,

the sustained memory response can still be triggered to induce

protection. However, it is important to highlight that the

memory B cell responses were on the decline for 50% of the

individuals. Similarly, there were individuals who did not mount

an increase in cellular response after the third dose, and a

substantial proportion of individuals exhibited a waning T cell

response at four months post booster, with responses below their

corresponding levels before booster (five month post primary
Frontiers in Immunology 06
vaccination). While age has a negative impact on responses

induced by primary vaccination (5, 18–20), we did not find a

correlation between the immune response induced by the

booster vaccination and age within this cohort of elderly

individuals (Supplementary Figure 5). This may be due to the

smaller age range of 61-81 in these individuals. Markedly lower

responses have been reported in individuals aged over 80 years

old following primary BNT162b2 vaccination (19). Nevertheless,

the findings suggest that elderly individuals display waning

immune responses following the transient increase after

booster vaccination and may require a fourth dose.

Heterologous boosting has been shown to provide better

antibody response (21–23) and the better immune response

may also include memory B and T cell responses. Whether

another mRNA vaccine, such as Moderna’s mRNA-1273, or a

vaccine based on a different platform such as a protein-based

NVX-CoV2373 (Novavax) can offer better protection against

COVID-19 as a heterologous booster remains to be determined.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
FIGURE 2

Induction and waning of memory B and T cell response against Spike following booster vaccination. RBD-specific memory B (N=10), Spike-
protein-specific CD8 (N=16), CD4 Th1 (N=16) or CD4 Th2 (N=13) responses. For memory B cell response, frequency of IgG RBD-specific
memory B cells among total IgG antibody secreting cells (ASCs) is presented. For CD8, CD4 Th1, and CD4 Th2 responses, data presented are
spot forming units (SFU) per million PBMC from paired samples at four time-points. Each data point represents the normalized mean spot count
from duplicate wells, after subtraction of medium-only control. To compare between timepoints, Friedman tests and post hoc tests using
Dunn’s multiple comparison tests were used. *, P-value <0.05; **. P-value <0.01; ***, P-value <0.001.
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SUPPLEMENTARY FIGURE 1

Spike binding to ACE-2. Binding was examined by SFB assay, where serially

diluted ACE-2-HuFc was added to the cells, in place of plasma antibody.

Bound ACE-2-HuFc were then detected by Alexa Fluor 647-conjugated
anti-human IgG (1:500 dilution) and propidium iodide (PI; 1:2500 dilution).

SUPPLEMENTARY FIGURE 2

Variant Spike expression on cell surface. Expression was examined by SFB
binding assay, where serially diluted ACE-2-HuFc was added to the cells,

in place of plasma antibody. Bound ACE-2-HuFc were then detected by

Alexa Fluor 647-conjugated anti-human IgG (1:500 dilution) and
propidium iodide (PI; 1:2500 dilution). Cells were gated as described in

Supplementary Figure 1.
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SUPPLEMENTARY FIGURE 3

Antibody response against WT and variant Spike at the four time-points
examined. Plasma samples (N=36) were screened for binding against full-

length wildtype (WT) and variant Spike in elderly at two months (T1) and
five months (T2) following primary vaccination, and one month (T3) and

four months (T4) following a third dose (administered 189-270 days post
first-dose).

SUPPLEMENTARY FIGURE 4

Correlation analysis between humoral and cellular responses. Difference

in WT spike antibody response, T4 -T3, were analyzed for correlation with
either difference in RBD-specific memory B cell response or Spike-
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specific CD8, CD4 Th1 or CD4 Th2 T cell responses. Spearman
correlation analysis was used.

SUPPLEMENTARY FIGURE 5

Correlation analysis between immune response and age. Antibody
response and cellular response against WT Spike at T3 (upper panel)

and T4 (lower panel) were analyzed for correlation with age. Spearman
correlation analysis was used.

SUPPLEMENTARY TABLE 1

Demographic information of study cohort.
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