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Predictive biomarkers of colon
cancer immunotherapy:
Present and future

Wanting Hou, Cheng Yi and Hong Zhu*

Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University,
Sichuan, China
Immunotherapy has revolutionized colon cancer treatment. Immune

checkpoint inhibitors (ICIs) have shown clinical benefits for colon cancer

patients, especially those with high microsatellite instability (MSI-H). In 2020,

the US Food and Drug Administration (FDA)-approved ICI pembrolizumab as

the first-line treatment for metastatic MSI-H colon cancer patients.

Additionally, neoadjuvant immunotherapy has presented efficacy in treating

early-stage colon cancer patients. Although MSI has been thought of as an

effective predictive biomarker for colon cancer immunotherapy, only a small

proportion of colon cancer patients were MSI-H, and certain colon cancer

patients with MSI-H presented intrinsic or acquired resistance to

immunotherapy. Thus, further search for predictive biomarkers to stratify

patients is meaningful in colon cancer immunotherapy. Except for MSI, other

biomarkers, such as PD-L1 expression level, tumor mutation burden (TMB),

tumor-infiltrating lymphocytes (TILs), certain gut microbiota, ctDNA, and

circulating immune cells were also proposed to be correlated with patient

survival and ICI efficacy in some colon cancer clinical studies. Moreover,

developing new diagnostic techniques helps identify accurate predictive

biomarkers for colon cancer immunotherapy. In this review, we outline the

reported predictive biomarkers in colon cancer immunotherapy and further

discuss the prospects of technological changes for biomarker development in

colon cancer immunotherapy.
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Introduction

Colon cancer is currently one of the malignant tumors with a high incidence and

death rate worldwide (1). Traditionally, the main therapeutic strategies in colon cancer

include surgery, chemotherapy, and targeted therapy. Among these therapy methods,

surgery is applicable to early-stage patients with lesions confined to the colon, while
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approximately 20% of colon cancer patients have distant

metastases at the time of diagnosis and miss the opportunity

for surgery (2). Chemotherapy is the main treatment option for

metastatic colon cancer patients. In addition, depending on the

RAS gene mutational status and tumor location, corresponding

targeted agents, such as bevacizumab or cetuximab, were

combined to enhance the anti-tumor effect of chemotherapy

agents. Even so, the patients’ prognosis is still dismal (3).

Recently, immunotherapy has revolutionized colon cancer

treatment. In the clinical study, pembrolizumab, an anti-

programmed cell death 1 (PD-1) agent, resulted in significant

improvements in progression-free survival (16.5 vs. 8.2 months)

and fewer adverse events than chemotherapy as a first-line

treatment in patients with microsatellite instability-high (MSI-

H) or mismatch repair-deficient (dMMR) metastatic colorectal

cancer (mCRC) (4). This promising result led to the US Food

and Drug Administration’s (FDA) approval of pembrolizumab

as the first-line treatment for MSI-H mCRC patients. Moreover,

double ICI combination, anti-cytotoxic T lymphocyte-associated

antigen 4 (CTLA-4) agent, and anti-PD-1 agent combination

therapy presented promising anti-tumor efficacy in MSI-H/

dMMR mCRC (5, 6). Furthermore, neoadjuvant immunotherapy

also presented promising efficacy in treating early-stage MSI-H/

dMMR colon cancer patients (7).

Currently, MSI-H/dMMR is the only well-recognized

biomarker that can be used to guide the immunotherapy of

colon cancer. However, the mechanism of why MSI-H/dMMR

can be used as a biomarker for colon cancer immunotherapy is

still not clarified (8). The possible mechanism was thought to be

that MSI-H/dMMR may be correlated with a higher mutational

load, which leads to neoantigen formation and activation of the

body’s immunity (9, 10). The efficiency of MSI as the biomarker

for cancer immunotherapy is relatively low. The reported

objective response rate (ORR) in MSI-H/dMMR colon cancer

patients varies between 30%-70% (4, 5, 11–14). Additionally,

colon cancer patients with MSI-H/dMMR are not in a high

proportion of the total number of colon cancer patients. Only

approximately 20% of colon cancer patients are MSI-H (8);

whereas, in stage IV colon cancer patients, MSI-H is less than 5%

(15). In addition, a small percentage of patients with

microsatellite stable (MSS) or proficient MMR (pMMR) can

benefit from immunotherapy, while a significant proportion of

MSI-H/dMMR patients demonstrate intrinsic or acquired

resistance to immunotherapy (16–19). These results suggest

that more precise biomarkers are needed to stratify colon

cancer patients that could benefit from immunotherapy.

Other potential predictive biomarkers which are proposed in

colon cancer immunotherapy include PD-L1 expression level,

tumor mutation burden (TMB), tumor-infiltrating lymphocytes

(TILs), gut microbiota, ctDNA, and circulating immune cells

(20–24). In addition, relevant indicators that reflect the tumor

microenvironment (TME) have also been proposed for use as

biomarkers for immunotherapy in colon cancer (25).
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Immunoscore and consensus molecular subtypes (CMS) based

on immune cells and molecular typing have implications for

clinical management and are predictive of prognosis and

treatment response in patients with colon cancer (26, 27). New

techniques, such as multiplex immunohistochemistry (mIHC)

and single-cell RNA sequencing, could provide a more

comprehensive evaluation of the TME and genetic

heterogeneity in colon cancer. This will help find precise

biomarkers for screening and efficacy assessment of colon

cancer immunotherapy beneficiary populations (28, 29). In

this review, we comprehensively summarize the reported

biomarkers of colon cancer immunotherapy and further

discuss the prospects of technological changes for biomarker

development in colon cancer immunotherapy.
MSI and dMMR as the
predictive biomarker for colon
cancer immunotherapy

Microsatellites (MS) are short tandem repeats (STRs) in the

human genome that are composed of several short and repetitive

DNA sequences. Microsatellite instability (MSI) refers to the

failure of the DNAmismatch repair mechanism during the DNA

replication process, which results in length changes in MS (8).

MSI was first identified in hereditary nonpolyposis colorectal

cancer syndrome, known as Lynch syndrome (30).

Subsequently, multiple types of malignant tumor patients were

found to present with MSI (31–35). MSI is an indicator of tumor

prognosis and treatment response (36). According to the status

of MMR, tumors can be classified as dMMR and pMMR. IHC is

the main method to test the MMR status. Tumors with loss of

expression of MMR genes, including MutS homolog 2 (MSH2),

MutL homolog 1 (MLH1), MutS homolog 6 (MSH6), or

postmeiotic segregation increased by 2 (PMS2), were defined

as dMMR; otherwise, they were defined as pMMR. In addition,

according to the mutation frequency of MS, tumors can be

termed MSI-H, low-frequency MSI (MSI-L), and MSS.

Polymerase chain reaction (PCR) is the main method used to

assess the frequency of MSI mutations. Due to the respective

limitations of these two methods, a combination test of both

IHC and PCR is usually required to evaluate the status of MS

(37). In general, MSI-H is equivalent to dMMR.

Approximately 20% of colon cancer patients are MSI-H/

dMMR (8). Except for approximately 3% of MSI-H/dMMR

colon cancer patients who were hereditary with Lynch

syndrome, most MSI-H/dMMR colon cancer patients are

sporadic. The mechanisms of MSI in hereditary and sporadic

MSI-H/dMMR patients are different (8). MSI-H/dMMR colon

cancer patients all present unique clinicopathological features

that correlate with patient prognosis and treatment response.

For example, colon cancer patients with MSI-H/dMMR were
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reported to have a better prognosis than those with MSI-L/

pMMR (38, 39). Colon cancer patients with MSI-H/dMMR did

not benefit from fluorouracil-based therapy (40). In particular,

there is now considerable clinical evidence that MSI-H/dMMR

colon cancer patients present a high ORR to ICIs. The

relationship between MSI and colon cancer immunotherapy

response was initially found in a phase I clinical trial. In this

study, the safety and tolerability of the anti-PD-1 antibody BMS-

936558 were evaluated in treatment-refractory solid tumor

patients. A post-operative recurrent colon cancer patient who

reported a durable complete response after therapy was MSI-H

(41). Then, the KEYNOTE-016 trial was conducted to identify

the role of MMR status as a biomarker for predicting the clinical

benefit of ICI treatment. In this study, progressive metastatic

carcinoma patients with or without dMMR were treated with the

PD-1 antibody pembrolizumab. In the cohort of patients with

dMMR colorectal adenocarcinomas, the reported ORR was 40%

versus 0% in the cohort of pMMR patients (11). A similar result

was observed in another clinical study, KEYNOTE164. In this

study, the antitumor activity of pembrolizumab was tested in

previously treated and metastatic MSI-H/dMMR colorectal

cancer (CRC) patients. The reported ORR was 33% (14). In

addition, in CheckMate 142, another PD-1 agent called

nivolumab also induced durable responses and disease control

in pretreated dMMR/MSI-H metastatic CRC patients. At a

median follow-up of 12.0 months, 31.1% of patients achieved

an investigator-assessed objective response (13). Based on these

results, the FDA approved ICIs (pembrolizumab and

nivolumab) for the treatment of MSI-H/dMMR metastatic

CRC patients in 2017. Then, in KEYNOTE-177, the efficacy of

pembrolizumab was compared with chemotherapy as first-line

therapy for MSI-H/dMMR advanced or metastatic CRC. After a

median follow-up of 32.4 months, pembrolizumab therapy

demonstrated superiority over chemotherapy in terms of

median progression-free survival (16.5 months vs. 8.2

months). ORR was observed in 43.8% of the patients in the

pembrolizumab group versus 33.1% in the chemotherapy group

(4). This result prompted the FDA to approve pembrolizumab as

the first-line treatment for metastatic CRC patients with MSI-H.

In addition, in the GERCOR NIPICOL phase II study, an

impressive DCR was observed in MSI/dMMR mCRC patients

treated with anti-PD-1 inhibitor nivolumab combined with anti-

CTLA-4 inhibitor ipilimumab (6). Recently, the preliminary

results of nivolumab plus low-dose ipilimumab as the first-line

therapy cohort from the CheckMate 142 study were reported.

This double ICI combination demonstrated a durable clinical

benefit as a first-line treatment for MSI-H/dMMR mCRC. The

ORR is 69% in the combination group (5).

However, although MSI-H/dMMR has a promising prospect

as the biomarker for colon cancer immunotherapy, the reported

ORRs in MSI-H mCRC patients vary from 30%-70% (5, 6, 11–

14); this implies that a certain number of MSI-H mCRC patients

also do not benefit from immunotherapy. In contrast, a small
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subset of MSS colon cancer patients responded to

immunotherapy (42). The diagnostic mistake caused by the

test method is one of the reasons for this phenomenon (18).

The current methods could be used for detecting MSI, including

IHC, PCR, and next-generation sequencing (NGS). By using

IHC to detect the expression of four MMR genes (MLH1, MSH2,

MSH6, and PMS2) in the tumor cell nucleus, the presence of one

or more negative proteins was defined as dMMR; otherwise, they

were defined as pMMR. The advantage of IHC lies in that it is

easy to perform and allows direct identification of the MMR

gene status. The disadvantages of IHC are its subjectivity and

lack of a uniform standard (43). PCR was based on comparing

DNA extracted from tumor tissue and normal tissue to detect

MSI status. In 1997, the National Cancer Institute (NCI) first

formalized the guidelines for PCR testing of MSI, which

contained 2 single nucleotide repeat sites (BAT-25 and BAT-

26) and 3 dinucleotide repeat sites (D2S123, D5S346, and

D17S250) (44). Subsequent studies identified the limitations of

this criterion and improved the criteria for PCR detection of

MSI. Currently, the five poly-A panel (BAT-25, BAT-26, NR-21,

NR-24, and NR-27) is the usually recommended panel for MSI-

PCR tests. MSI at more than two loci out of five is defined as

MSI-high (MSI-H); MSI at one of five loci is defined as MSI-low

(MSI-L); and no instability at any of the loci is defined as MSS

(45). PCR is the currently accepted gold standard for the

detection of MSI, with high accuracy and standardization. The

disadvantage of PCR for MSI detection is that it cannot directly

determine abnormal proteins. In addition, considering the

difference in MSI incidences among different ethnicities,

although there are standardized recommendations, the

selection of the appropriate panel for different populations is

also essential for the detection of MSI PCR tests (46). NGS is the

third alternative method for MSI measurement, which

determines MSI by directly measuring the length of altered

MS. The NGS method does not require normal tissue as a

control, requires lower sample quality, and is more compatible

than PCR. NGS can simultaneously provide information on MSI

loci, MMR gene status, and information on other gene statuses.

In addition, NGS can detect MSI status by peripheral blood

samples, unlike traditional PCR methods. However, what limit

the clinical promotions and uses of NGS are the high cost,

complexity of the data analysis process, and lack of uniform

evaluation criteria (47).

Furthermore, reasonable direct evidence for MSI-H/dMMR

as a biomarker for immunotherapy is still lacking. Existing

studies suggest that the main reason for the response of MSI-

H patients to immunotherapy is that MSI may cause the

production of new antigens, leading to the recruitment of

immune cells and the release of proinflammatory factors. A

higher TMB and infiltration of TILs were found in patients with

MSI-H/dMMR (48). However, TMB and MSI do not always

match perfectly (49). Immunosuppressive cells, such as myeloid-

derived suppressor cells (MDSCs) and T-regulatory cells (Tregs),
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were also found in MSI-H/dMMR patients, which means that a

more comprehensive biomarker portfolio is needed for

immunotherapy efficacy prediction (50).
TMB as the predictive biomarker for
colon cancer immunotherapy

TMB is another potential effective biomarker in the field of

tumor immunotherapy. TMB is usually defined as the total number

of somatic mutations detected per million bases (muts/Mb). It was

thought that a high TMB (TMB-H) status was related to more

tumor neoantigens, and more tumor neoantigens presented on the

surface of tumor cells may be recognized by immune cells and

activate the body immune system to kill the tumor (51). In

KEYNOTE-158, pembrolizumab was tested in several types of

advanced solid tumor patients but did not include colon cancer

patients. The results show that patients with TMB-H status

(TMB≥10 muts/Mb) presented higher objective responses to

pembrolizumab. The ORRs were reported to be 29% in the

TMB-H group versus 6% in the non-TMB-H group (52). Based

on this result, in June 2020, the FDA approved the use of

pembrolizumab for unresectable or metastatic solid tumor

patients with TMB-H status. With a cutoff value of 10 muts/Mb,

higher response rates to immunotherapy were confirmed in

melanoma and non-small cell lung cancer (NSCLC) patients with

TMB-H (53, 54).

In colon cancer, TMB was found to be potentially correlated

with patient survival. It was reported that colon cancer patients

with high TMB (TMB≥8 muts/Mb) presented longer OS than

those with low TMB (55). Additionally, TMB was reported as an

additional predictive biomarker for MSI in metastatic CRC.

Among MSI-H mCRC patients, patients with TMB-H (the

TMB cutoff point was defined between 37 and 41 mutations/

Mb) have shown a better prognosis than those with TMB-L after

receiving immunotherapy (18). However, the independent

application of TMB for the prediction of immunotherapy

response in colon cancer is still controversial. In the

KEYNOTE 177 trial, the limits of TMB as a predictor of the

response of CRC to anti-PD1 immunotherapy were observed

(56). However, in the Canadian cancer trials group CO.26 study,

elevated plasma TMB levels (≥28 muts/Mb) showed a

predictable response to anti-PD-L1 agent durvalumab and

anti-CTLA4 agent tremelimumab combination therapy in MSS

colon cancer patients (57).

One of the greatest obstacles causing this controversy is the

difficulty in defining the TMB cutoff value. Nonetheless, the cutoff

of 10 muts/Mb presented a relatively good sensitivity in the

prediction of immunotherapy in NSCLC and melanoma, but this

cutoff value cannot be generalized for different tumor types (58).

Currently, there is no uniform TMB cutoff value for colon cancer. In

a recently reported study, TMB≥16 mut/Mb was proposed as the
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optimal threshold for ICI atezolizumab monotherapy in advanced

solid tumor types. In patients with TMB ≥16 mut/Mb, durable

clinical activity was observed, and particularly high response rates

(70%) were reported in CRC patients, including both MSI-H and

MSI-L (59). Nonetheless, this finding still awaits further validation

by prospective studies. In addition, TMB is proposed as a predictive

biomarker for immunotherapy because it may represent a useful

estimation of tumor neoantigens. However, not all neoantigens

presented on the cell surface are immunogenic. Only mutations

resulting in higher ‘quality’ antigens can induce an antitumor

immune response (60, 61). This may explain why TMB cannot

be used as an independent marker of the effectiveness of tumor

immunotherapy. Furthermore, the testing method hinders the

clinical application of TMB. TMB was initially performed using

whole-exome sequencing (WES), and this technology is complex

and costly. Currently, NGS has been used in the clinic as a substitute

for WES; however, there are different algorithms for WES-based

and NGS-panel-based methods. In addition, the advantage of TMB

as the biomarker for immunotherapy is that TMB can be not only

obtained from tumor tissue but also detected by peripheral blood.

Therefore, in some studies, tissue TMB was substituted with plasma

TMB when unavailable. But there are differences in the criteria for

assessing TMB in blood samples versus tissue samples, which cause

inconsistencies among different studies and interfere with TMB

standardization (62).

In summary, although several pieces of evidence indicate

that TMB cannot be used as an independent predictive

biomarker in colon cancer immunotherapy, it is still valuable

in immunotherapy efficacy prediction, especially when sufficient

evidence is obtained for a valid TMB cutoff value in colon

cancer. TMB can be used as an important complementary

biomarker, such as when combined with MSI, and for

identifying other significant gene mutations; it was found, that

some MSS colon cancer patients with high TMB had polymerase

epsilon (POLE) mutation, and they responded well to

immunotherapy (63).
The value of molecular subtype and
consensus molecular subtype as
predictive biomarkers in colon
cancer immunotherapy

Colon cancer is a heterogeneous disease. Colon cancer

patients usually present different molecular subtypes. Some

molecular subtypes, such as RAS and BRAF mutations, have

already been used to guide the treatment and prognostic

assessment of colon cancer (64). Among these molecular

subtypes, the encoded DNA POLE and delta 1 (POLD1)

mutation has attracted much attention due to its potential

association with immunotherapy response. POLE/POLD1 play

an important role in proofreading and ensuring the fidelity of
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DNA replication. The somatic or germline mutations in POLE

and POLD1 lead to defects in DNA repair and, consequently, to

tumorigenesis (65). In colon cancer, about 7.4% of patients

harbor POLE or POLD1 mutations, and most of this

population was MSS or MSI-L (66). In 2019, Wang and his

colleagues, through analyzing medical data of 47,721 patients

with various cancer types with POLE/POLD1 mutations,

proposed that POLE/POLD1 mutations are promising

potential predictive biomarkers for positive ICI outcomes (66).

However, in a previous clinical study, which enrolled three CRC

patients with POLE mutations, three of the patients did not show

an achieved response to anti-PD-L1 inhibitor avelumab (67). In

a recent study, where anti-PD-L1 inhibitor durvalumab

monotherapy was used to treat previously treated MSI-H/

dMMR or POLE-mutated mCRC patients, the results showed

that POLE mutation mCRC patients had a clinical response to

durvalumab, only those with exonuclease domain mutation (68).

Furthermore, there is a limited role of other molecular mutations

as biomarkers in predicting the response of colon cancer to

immunotherapy; this includes KRAS mutation, a common

molecular subtype in colon cancer. Although KRAS mutation

is proposed to modulate tumor immunity (69), its biomarker

value in colon cancer immunotherapy was found to be weak.

According to Lal et al., KRAS mutation is proposed to be

associated with suppressed cytotoxic immunity in CRC, and

the extent of the effect is modulated by consensus molecular

subtype (CMS) (70).

The CRC Subtyping Consortium, based on the gene

expression of the tumor, proposed four CMSs for CRC using

transcriptomics in 2015. The CMS classification included CMS1,

CMS2, CMS3, and CMS4. CMS1 is categorized as MSI immune

and presents with strong immune activation; CMS2 is

categorized as canonical and is characterized by chromosomal

instability as well as WNT and MYC signaling activation; CMS3

is categorized as metabolic and is associated with metabolic

dysregulation; CMS4 is categorized as mesenchymal and is

associated with prominent transforming growth factor b
(TGF-b) activation, stromal invasion, and angiogenesis (71).

CMS classification can be used in guiding colon cancer

treatment strategies and predicting patient prognosis (72–74).

The correlat ion between CMS and tumor immune

characteristics has been proposed in several studies (27, 75). In

2016, Becht E et al. integrated the CMS classification with the

TME of CRC. Their results show that the good prognosis of

CMS1 is related to the overexpression of cytotoxic lymphocytes.

In contrast, the poor prognosis of CMS4 is related to a high

density of fibroblasts, which produce chemokines and cytokines,

resulting in inflammatory and immunosuppressive TMEs. The

CMS2 and CMS3 groups presented an intermediate prognosis,

exhibiting low immune and inflammatory signatures (75). In a

recent study, Hu et al, based on data frommultiple databases and
Frontiers in Immunology 05
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of colon cancer CMS and their immunotherapy responses. Their

results indicate that CMS1 patients present a higher positive

response to immunotherapy among the four CMS subtypes due

to immune infiltration and activation. TILs were significantly

higher in the CMS1 subtype than in the other three subtypes. In

contrast , CMS4 patients may not respond well to

immunotherapy, due to the high Treg and NK-cell infiltration

found in the CMS4 subtype (27). Meanwhile, in Chida K and his

colleagues’ study, transcriptomic profiling for MSI-H/dMMR

gastrointestinal tumors was performed to determine the

predictors of response to PD-1 blockade. The results show

among 13 CRC patients, the reported ORR for CMS1 was

100%, for CMS4 was 16.7%, but for CMS2 and CMS3 all were

0%. This study indicates that CMS classification may serve as a

predictive biomarker for colon cancer immunotherapy (76).

However, existing CMS classification still has certain limits.

CMS classification relies on transcriptome analysis of the entire

tumor, which has inherent limitations such as stromal

confounding and the presence of varied cell-type mixtures.

Moreover, the differences in cancer cells and other stromal cells

(e.g., immune cells, fibroblasts, and vascular cells) are masked

and indistinguishable (77, 78). There is transcriptomic

intratumor heterogeneity in CMS classification, which may

impact its accuracy (79). To solve this, Joanito et al, using

single-cell and bulk transcriptome sequencing, identified two

epithelial tumor cells and refined the CMS classification of

colon cancer. The refined CMS classification includes intrinsic

epithelial subtype, MSI status, and fibrosis. By this

classification, a specific subtype of MSS was identified. They

proved that despite a lower TMB, iCMS3_MSS tumors are

more similar to MSI-H colon cancers, and this refined

classification may provide new clues for screening the

population benefiting from immunotherapy in colon cancer

(80). Recently, Khaliq et al. also refined CRC classification and

clinical stratification through a single-cell atlas; they proved

that distinct cancer-associated fibroblasts (CAFs) and tumor-

associated macrophages (TAMs) are sufficient to explain

CMS predictive ability and, based on these cellular

phenotypes, could stratify CRC patient prognosis with

greater precision (81).

In conclusion, existing molecular subtypes and CMS may not

be suitable for stratifying colon cancer patients for immunotherapy.

The molecular subtypes and CMS help define the molecular and

immunological characteristics of colon cancer, which contribute to

the precise therapy of colon cancer. As research progresses, the

understanding of the molecules subtype of colon cancer patients

continues to improve and a more precise molecular subtype of

colon cancer may be recognized, and a more precise CMS

classification may be refined, which will further contribute to

colon cancer immunotherapy.
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TILs, immunescore, and PD-L1
expression as predictive biomarkers
for colon cancer immunotherapy

TME plays an essential role in tumorigenesis, development,

and immune escape (82). Including immune cells, other

components of the TME can influence the immune state and

response to immunotherapy in tumors (83). TILs are core

components of immune cells involved in tumor immunity.

TIL is a global term for a variety of lymphocytes in the TME,

including T cells, B cells, and NK cells. Several studies have

proven that TILs play prominent roles in malignant tumor

development and progression and have been proposed as

predictive biomarkers for patient prognosis (84–86). The

relationship between TILs and colon cancer patient prognosis

was first reported in 1998. In this study, CD8+ T cells infiltrated

within cancer cell nests were observed to be a prognostic factor

in human CRC (87). A series of studies then reported the role of

TILs in the prognosis of patients with colon cancer (88–91).

In several clinical trials of colon cancer immunotherapy, TILs

showed potential in being used as predictive biomarkers for

immune response. In an analysis study of the KEYNOTE 177

trial, colon cancer patients’ response to immunotherapy was found

to be not associated with TMB, but rather with TILs.

Immunotherapy-responsive CRC patients were found rich in CD-

8+PD-1+ T cells (56). In Loupakis F et al’ study, they proposed that

there was a significant positive correlation between high TMB and

the number of TILs in the ICI-responsive MSI-H mCRC patients

(92). In the pilot clinical trial of perioperative durvalumab

combined with tremelimumab for treating resectable CRC liver

metastases, the treatment induced activation of CD8+ and CD4+ T

cells, and an increase in B-cell density was correlated with patients’

prolonged relapse-free survival (93). In the study of neoadjuvant

immunotherapy for early-stage colon cancer patients, CD8+PD-1+

T cell infiltration was a predictive biomarker of response in pMMR

patients (7). For MSS mCRC patients, higher CD8+ TIL density at

baseline was associated with a greater likelihood of benefit from

immunotherapy treatment and activated TILs are considered as the

biomarker of effective immune induction (94). And according to

Kuang C et al’s study, immune modulation may result from

treatment with azacitidine, chemotherapy refractory mCRC

patients with higher CD8+TIL density at baseline are more likely

to benefit from the combination therapy of pembrolizumab and

azacitidine combination (95). In addition to CD8+T cells, the role of

CD3+T cells as the predictive biomarker in colon cancer

immunotherapy has also been reported in some studies (96, 97).

In Turksma et al’s study, they found that high numbers of pre-

existing stromal CD3+ T cells are own positive predictive value in

adjuvant immunotherapy treatment for MSS colon cancer patients

(96). In Chakrabarti S. et al’s study, higher CD3+ and CD8+ T-cell

densities were associated with higher ORR in dMMR mCRC

patients treated with pembrolizumab (97).
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CD3+ T cells and CD8+ T cells are two important types of TILs

that represent the total T cells and cytotoxic T cell subsets,

respectively. In 2018, the Society for Immunotherapy of Cancer

proposed using Immunoscore (IS) to estimate the risk of recurrence

in colon cancer patients, and their findings proved the powerful role

of IS in CRC recurrence risk assessment (98). IS is based on the

quantification of CD3+ T cells and CD8+ T cells at the tumor

center and at the invasive margin using IHC. A scoring system

ranging from IS0 (I0) to IS4 (I4) and high IS was associated with

prolonged survival in CRC (99). In Mlecnik et al’s study, IS is

proposed to play a bigger role in predicting CRC patient survival

than MSI (100). However, IS as the predictive biomarker for colon

cancer immunotherapy has certain limitations. First, IS assays are

mainly performed by IHC, which is a semiquantitative test, and the

results are susceptible to subjectivity. Second, the IS test requires

simultaneous assessment of lymphocytes in the center and margin

of the tumor, which is difficult to achieve in metastatic tumors. In

addition, intratumoral heterogeneity can also affect the accuracy of

IS. For example, heterogeneity of T cells was observed in the

primary tumor and hepatic metastases of CRC patients (97).

Finally, current studies have shown that the effectiveness of tumor

immunotherapy is influenced by the immune landscape rather than

by a single immune cell (63, 101–103). Except for CD8+T cells,

other immune cells, such as Treg cells, NK cells, DC cells, and B

cells, are also closely related to the immune response of tumors

(104, 105). Recently, a special lymph node structure, tertiary

lymphoid structure (TLS), was also proposed as a biomarker in

cancer prognosis and response to immunotherapy (106). The effect

of TLS on the prognosis of colon cancer has now been

demonstrated in several studies (107–110). But the role of TLS in

colon cancer immunotherapy still needs to be verified. In addition,

the phenotypic profiles and subsets of TILs were also found to affect

the patient’s response to ICI and have the potential to be biomarkers

of immunotherapy (96, 111–113). For example, a CD39 subgroup

of CD8+ T cells was reported in colorectal and lung tumors, the

absence of CD39 in CD8+ TILs causes them to act as bystanders

that lack an immune response (112). A similar phenomenon has

also been observed in B cells; it was found that B cells with CD86

expression were enriched in tumors with increased numbers of

TLSs, induced specific T-cell responses, and enhanced the

antitumor effect of ICI (114). Epigenetic alterations of TILs, such

as DNAmethylation, are also involved in the colon cancer immune

response. According to Zou et al’s study, the DNA methylation-

based signature of CD8+ TILs was related to the immune response

and prognosis of CRC patients (22). Thus, further screening TIL

subgroups and studying the immune landscape of colon cancer are

key to improving the accuracy of screening for beneficial

ICI populations.

PD-L1 is another important indicator for TME. Tumor cells

induce tumor immune escape by upregulating PD-L1

expression, which binds to PD-1 on the surface of T cells,

causing T-cell deactivation. ICIs can reactivate the body’s

antitumor immunity by blocking the binding of PD-1 and PD-
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L1 (115). Thus, in theory, the higher level of PD-L1 expression in

tumor tissues, the better the response to ICI treatment. PD-L1

expression is postulated as a predictive biomarker of

immunotherapy response in some solid tumors, such as

NSCLC, melanoma, and renal cell cancer (116–118). Positive

PD-L1 expression (with a cut-off value of 10%) is reported in

more than half of colon cancer patients (119, 120). Although a

high PD-L1 expression is associated with a better prognosis in

colon cancer patients (20, 121–123). The current clinical data

suggest that PD-L1 expression alone cannot be used to precisely

predict immunotherapy response in colon cancer (Table 1).

Several factors limit PD-L1 expression as a biomarker for

colon cancer immunotherapy response: First, there is

intratumoral heterogeneity of PD-L1 expression (135), which

makes assessing tumor PD-L1 expression level. Second, PD-L1

expression is dynamic, and treatment modalities can affect the

expression level of PD-L1. PD-L1 expression varies widely

between tumor types and presents a significant intrapatient

heterogeneity with a frequent discordance between primary

tumors and metastases. Third, the test method also affects the

assessment of PD-L1 expression. IHC is now widely used in

clinical practice to detect PD-L1 expression in tumor tissues.

However, this method is difficult to quantify, the consistency of

detecting PD-L1 expression levels between different platforms is

poor, and there is still lack of a standardized testing criteria

(136). Lastly, tumor cells and immune cells can both express PD-

L1. Thus, the predictive effects of PD-L1 expression by tumor

cells and PD-L1 expression by lymphocytes on immunotherapy

need to be clarified separately. This is illustrated when PD-L1-

expressing tumor cells were reported to be a marker of poor

prognosis; in contrast, PD-L1-expressing TILs were a marker of

good prognosis (137).

Nonetheless, PD-L1 expression still has value in

immunotherapy for colon cancer patients. The PD-L1 expression

level is an important indicator of the immune status of cancer

patients (138–140), and the immune status indicates the tumor

response to immunotherapy. PD-L1 combined with other immune

indicators demonstrated a promising predictive role in colon cancer

immunotherapy. Such as, Llosa et al. proposed the incorporation of

histopathologic characteristics (percentage of extracellular mucin)

and PD-L1 expression at the invasive front to generate a composite

score (CPM score). The CPM score has the potential of

discriminating mCRC patients who exhibited clinical benefits

from pembrolizumab (124). Additionally, using multiplex

immunohistochemistry (mIHC), multiple immune indicators

combined with PD-L1 expression can be analyzed simultaneously

as well as report TME in various solid tumors, including colon

cancer (28, 141, 142).

Therefore, TME immune landscape is significantly related to

tumor immunotherapy response. It is not sufficient to evaluate

tumor response to immunotherapy by a single index only, such as

PD-L1 expression or the number of TILs. A more comprehensively
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quantified TME immune landscape is necessary for the prediction

of colon cancer immunotherapy response.
Other gene signatures of the TME as
predictive biomarkers for colon
cancer immunotherapy

With the development of gene sequencing technology,

several TME-related gene signatures have been proposed as

predictive biomarkers for colon cancer immunotherapy.

Previously, Ravensbergen et al, using bioinformatics

approaches, proved that combined assessment of the tumor-

stroma ratio and TILs could be used as a response prediction

biomarker of ICI therapy in colon cancer (143). This result

reveals the role of the tumor stoma in the response to tumor

immunotherapy in patients with colon cancer. CAFs are the

main cell type within the tumor stroma, and they are also

thought to be an available indicator for assessing the response

to immunotherapy. CAFs can interact with tumor cells and TILs

via the secretion of various cytokines and chemokines, shaping

an immunosuppressive TME and helping tumor cell immune

evasion. In addition, CAFs play a significant role in constituting

the inflammatory TME of colon cancer (144). Some studies have

proven that CAF-derived gene signatures can determine

prognosis in colon cancer patients (29, 145, 146). In the area

of immunotherapy, it was proven that CAFs promote the

upregulation of PD-L1 expression in CRC (147). CAFs have

an impact on the prognosis of CRC patients by inhibiting the

immune response; thus, patients with higher CAF levels were

more prone to be unresponsive to immunotherapy (29, 148).

Additionally, among the CMSs, CMS4 is typically characterized

by infiltration of adjacent tumor tissues by CAFs and

transforming growth factor b (TGF-b) signaling activation,

and this subtype presented insensitivity to immunotherapy.

Recently, the refinement of CMS through single-cell

characterization based on specific CAF subtypes presented the

potential role of identifying immunotherapy responses in CRC

patients (81). Thus, further study of CAF gene signatures may

contribute to the precise stratification of immunotherapy

efficacy for colon cancer.

TME metabolic characteristics also influence patients’ response

to immunotherapy. Hypoxia is one of the metabolic characteristics

of the tumor TME. Hypoxia can play an essential role not only in

tumor proliferation, apoptosis, angiogenesis, invasion, and

metastasis but also in immune evasion. Hypoxia and the related

acidic TME greatly impair the functions of TILs, while alleviating

hypoxia could improve the efficacy of ICIs (149). Transcriptomic

profiling of MSI-H/dMMR gastrointestinal tumors showed that

hypoxia-related signaling pathways were upregulated in ICI

nonresponders (76). Recently, several studies proposed that
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TABLE 1 Summary of biomarkers for colon cancer immunotherapy in reported clinical trials.

Biomarker Tumor type Patients’

number

Immunotherapy

agent

Association with clinical outcome Tissue type

for bio-

marker

assessment

NCT Ref

MSI MSI-H-dMMR

mCRC

307 pembrolizumab(anti-

PD-1)

dMMR/MSI-H was positive with patients’ clinical outcome tumor

tissue

NCT02563002

(KEYNOTE-

177)

(4)

MSI MSI-H/dMMR

mCRC

57 nivolumab(anti-PD-1)

+ipilimumab(anti-

CTLA-4)

dMMR/MSI-H was positive with patients’ clinical outcome tumor

tissue

NCT03350126 (6)

MSI advanced

dMMR solid

tumors

86 pembrolizumab(anti-

PD-1)

dMMR/MSI-H was positive with patients’ clinical outcome tumor

tissue and

blood

NCT01876511

(KEYNOTE-

016)

(11)

MSI MSI-H/dMMR

mCRC

124 pembrolizumab(anti-

PD-1)

dMMR/MSI-H was positive with patients’ clinical outcome tumor

tissue

NCT02460198

(Keynote164)

(14)

MSI dMMR/MSI-H

CRC

119 nivolumab(anti-PD-1)

+low-dose ipilimumab

(anti-CTLA-4)

dMMR/MSI-H was positive with patients’ clinical outcome tumor

tissue

NCT02060188

(CheckMate

142)

(5)

TMB MSI-H mCRC 22 PD-1/PD-L1

inhibitors

The optimal predictive cut-point for TMB was estimated

between 37 and 41 mutations/Mb.

tumor

tissue

NA (18)

TMB/TIL CRC 29 pembrolizumab(anti-

PD-1)/nivolumab

(anti-PD-1)

Patients’ response to immunotherapy not associated with

TMB, but with TILs.

tumor

tissue

NCT02563002

(Keynote177)

(56)

bTMB advanced CRC 179 durvalumab(anti-PD-

L1)+tremelimumab

(anti-CTLA-4)

Patients who were MSS with plasma TMB of 28 variants per

megabase or more had the greatest OS benefit.

blood NCT02870920 (57)

MSI/POLE

mutation

MSI-H/POLE

mutation mCRC

33 avelumab(anti-PD-L1) Avelumab displayed antitumor activity with manageable

toxicity in patients with previously treated mCRC harboring

dMMR/MSI-H. Further clinical studies with larger sample

sizes are necessary to evaluate the activity of ICIs and its

association with sites in POLE-mutated CRC.

tumor

tissue

NCT0315-

0706

(67)

MSI-H/

dMMR or

POLE

EDM

previously

treated MSI-H/

dMMR or

POLE-mutated

metastatic or

unresectable

CRC

33 durvalumab(anti-PD-

L1)

Durvalumab showed promising clinical activity with

encouraging response rates and satisfactory survival outcomes

in mCRC patients with MSI-H/dMMR or POLE exonuclease

domain mutation (EDM). In patients with POLE-mutated

mCRC, clinical response to durvalumab may be restricted to

those with EDM.

tumor

tissue

NCT03435107 (68)

CMS MSI-H/dMMR

gastrointestinal

tumors

CRC

(n=13)

anti-PD-1 inhibitor The ORR was 100%,0%,0%,and 16.7% for CMS1, CMS2,

CMS3, and CMS4, respectively. Several transcriptomic

features,including CMS classification and related genes, were

associated with response to PD-1 blockade in MSI-H/dMMR

gastrointestinal tumors.

tumor

tissue

NA (76)

TIL early-stage colon

cancer

40 nivolumab(anti-PD-1)

+ipilimumab(anti-

CTLA-4)

CD8+PD-1+ T cell infiltration was predictive of response in

pMMR tumors.

tumor

tissue

NCT03026140 (7)

TIL and

TMB

MSI-H mCRC 85 ICI A significant correlation between higher TMB and increased

number of TILs was shown. A significantly higher activity and

better PFS and OS with ICI in MSI-H mCRC were reported in

cases with high number of TILs.

tumor

tissue

NA (92)

TIL resectable

pMMR mCRC

24 perioperative

durvalumab(anti-

PDL1)+tremelimumab

(anti-CTLA-4)

An increase in B-cell transcriptome signature and B cell

density was present in post-treatment samples from patients

with prolonged RFS.

tumor

tissue

NCT02754856 (93)

TIL MSS mCRC 29 durvalumab(anti-PD-

L1) + trametinib

(MEKi)

The response rate in the first stage of the study did not meet

efficacy criteria to proceed to the second stage. TIL was related

with clinical outcome.

tumor

tissue

NCT03428126 (94)

(Continued)
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TABLE 1 Continued

Biomarker Tumor type Patients’

number

Immunotherapy

agent

Association with clinical outcome Tissue type

for bio-

marker

assessment

NCT Ref

TIL chemotherapy

refractory

mCRC

30 pembrolizumab(anti-

PD-1)+azacitidine

(DNA

methyltransferase

inhibitor)

Higher CD8+ TIL density at baseline was associated with

greater likelihood of benefit from treatment.

tumor

tissue

NCT02260440 (95)

TIL MSS colon

cancer

106 adjuvant active

specific

immunotherapy(ASI)

High numbers of pre-existing stromal CD3 positive T cells are

of positive predictive value in adjuvant ASI treatment.

tumor

tissue

NA (96)

CPM score

(composite

PD-L1 and

mucin)

advanced mCRC 26 pembrolizumab(anti-

PD-1)

The CPM score discriminated patients who exhibited clinical

benefit from those patients with progressive disease.

tumor

tissue

NCT01876511 (124)

gut

microbiome

advanced-stage

GI cancer

CRC

(n=19)

anti–PD-1/PD-L1

immunotherapy

An elevation of the Prevotella/Bacteroides ratio in patients,

with a preferred response to anti–PD-1/PD-L1 treatment.

fecal

sample

NA (125)

gut

microbiome

mCRC(97.4%

MSS)

33 regorafenib

+toripalimab(anti-PD-

1)

Gut microbiome analysis of the baseline fecal samples shows

significantly increased relative abundance and positive

detection rate of Fusobacterium in non-responders than

responders.

fecal

sample

NA (126)

gut

microbiome

RAS wild‐type

mCRC

14 cetuximab + avelumab

(anti-PD-L1)

Agathobacter M104/1 and Blautia SR1/5 expression were

associated with PFS.

fecal

sample

NCT04561336 (127)

ctDNA Refractory MSS

mCRC

18 regorafenib

+nivolumab/

pembrolizumab

ctDNA may represent a powerful tool for predicting early

therapeutic efficacy of immunotherapy in the MSS CRC

population.

blood NA (128)

ctDNA/

NLR

RAS wild type

mCRC

77 cetuximab+avelumab

(anti-PD-L1)

Plasma ctDNA analysis before treatment may allow selection

of patients who could benefit. Baseline NLR <3 significantly

correlated with improved survival and may represent a

potential predictive biomarker of cetuximab plus avelumab

rechallenge activity in ctDNA RAS/BRAF WT patients.

blood NCT04561336 (129)

circulating

immune

cells

refractory

pMMR mCRC

24 durvalumab(anti-PD-

L1)+tremelimumab

(anti-CTLA4)

+concurrent

radiotherapy

Increased circulating CD8+ T lymphocyte activation,

differentiation, and proliferation in patients with objective

response

blood NCT03122509 (130)

circulating

immune

cells

MSS mCRC 10 mFOLFOX6

+bevacizumab+CEA-

targeted vaccine +

avelumab(anti-PD-L1)

(SOC+IO)

SOC+IO generated multifunctional MUC1- and brachyury-

specific CD4+/CD8+ T cells despite concurrent chemotherapy.

blood NCT03050814 (131)

circulating

immune

cells

dMMR/MSI-H

CRC

41 anti-PD-1 inhibitor

(nivolumab,

pembrolizumab,

triprizumab,

toripalimab, and

camrelizumab)

The ratio of CD4+/CD8+ and the frequency of CD4+ Tcell

might be crucial independent biomarkers within dMMR

mCRC to better identify patients for anti-PD-1

immunotherapy.

blood NA (132)

circulating

immune

cells

mCRC 24 pembrolizumab(anti-

PD-1)+modified

FOLFOX6

Baseline levels and changes in circulating MDSC and Treg

subsets are not associated with RECIST response or mPFS.

tumor

tissue and

blood

NCT02375672 (133)

NLR unresectable

CEA+ liver

mCRC

6 CART NLR variations and associated cytokine changes may be useful

surrogates of response to CAR-T.

blood NCT01373047 (134)
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hypoxia-related genes can be classified as predicting immune cell

infiltration and prognosis of colon cancer patients (25, 28, 150).

These genes provide potential therapeutic targets for

immunotherapy as well as prognostic biomarkers for colon

cancer patients. In addition to hypoxia, ferroptosis-related gene

signatures are another study hot spot in the TME-related prognostic

assessment of immunotherapy for colon cancer. Several studies

support that ferroptosis plays a vital role in tumor immunotherapy

and TME regulation, and ferroptosis-related gene signatures were

proposed as potential targets for tumor immunotherapy and patient

prognosis (151–153). In recent studies, several ferroptosis-related

gene signatures were proposed for the prediction of prognosis and

immunotherapy response in colon cancer patients (154–156). These

findings further confirm the relevance of ferroptosis to the immune

microenvironment and prognosis of colon cancer. Therefore,

further understanding of the metabolic characteristics of the TME

and the search for metabolism-related gene signatures are valuable

for the identification of new biomarkers of colon

cancer immunotherapy.

Furthermore, the inflammatory microenvironment of colon

cancer induces immune-related genetic alterations, and

inflammatory-related genes affect the response of patients to

immunotherapy. Wang et al. explored the relationship between

inflammation-related genes and the immune TME in CRC.

Eight prognostic genes (CX3CL1, CCL22, SERPINE1, LTB4R,

XCL1, GAL, TIMP1, ADIPOQ, and CRH) were identified and

used to construct a risk-scoring model. The results of this study

show that the inflammatory response has a direct impact on

CRC patient prognosis and immune infiltration. Thus, further

classifying inflammatory response-related genes may help find

predictive biomarkers for immunotherapy in colon cancer (157).

Through analysis by transgenomic techniques, some TME-

related gene signatures were proposed for use as biomarkers for

colon cancer immunotherapy. However, most of these studies

were derived from bioinformatic analyses of databases; further

validation of these genes in large prospective clinical studies

is necessary.
The potential role of certain gut
microbiota as the predictive
biomarker for colon
cancer immunotherapy

The gut microbiota is another hot topic in the current field of

immunotherapy. Several studies have proposed that gut

microbiota are involved in tumor formation and progression

and correlate with patient therapy response in solid cancers

(158–164). It has been established that tumor patients have

distinct microbiota compared with healthy subjects (165, 166).

In addition, compared to patients that did not respond to

immunotherapy, a unique intestinal microbiome was found in
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cancer patients that did respond to immunotherapy (167).

Increasing evidence indicates that transplanting the gut

microbiome of immunotherapy responders can activate

immune cells and make immunotherapy nonresponders

respond to immunotherapy (168–171). Therefore, the gut

microbiome could be a promising therapeutic target as well as

a predictive biomarker in cancer immunotherapy.

Colon cancer presents with an altered state of gut microbiota,

which is known as dysbiosis (165). The gut microbiome plays a

significant role in the formation of the inflammatory

microenvironment during the development of colon cancer. Gut

microbes can interact with TILs and influence the tumor immune

microenvironment and host sensitivity in favor of immunotherapy

in colon cancer (172–174). Recently, certain gut microbes have been

proposed as promising predictive biomarkers of colon cancer

immunotherapy (23). In 2020, Peng and his colleagues recruited

advanced-stage GI cancer patients receiving anti-PD-1/PD-L1

treatment and collected their fecal samples. By comparing the gut

microbes of patients before and after treatment, they found an

elevation of the Prevotella/Bacteroides ratio in patients with a

preferred response to immunotherapy (175). In another phase Ib/

II clinical trial of regorafenib plus toripalimab treatment for mCRC,

gut microbiome analysis presented a significantly increased relative

abundance and positive detection rate of Fusobacterium in

nonresponders compared to responders (125). In a recent clinical

study, Agathobacter and Blautia species were proposed as potential

biomarkers of outcome in mCRC and NSCLC patients treated with

cetuximab and avelumab (126). However, the evidence related to

the role of gut microbiome as a prognostic marker of colon cancer

immunotherapy is still lacking, and further investigations are still

required to consider the gut microbiome as a predictive biomarker

for the immunotherapy response in colon cancer.

The testing method of gut microbiome detection also needs

to be optimized and unified. Current methods for testing the gut

microbiome are mainly stool-based genetic tests. The two

commonly used methods are PCR-based 16S amplicon

sequencing and macrogenome sequencing. PCR-based

sequencing of 16S amplicons is relatively less costly, however

this method is limited to the genus level and can easily miss

microbiomes with low expression levels. In contrast,

macrogenomic sequencing has several potential advantages

over 16S amplicon sequencing. Macrogenomic sequencing can

extend gut microbiome taxonomic resolution to the species level

and can also provide information on metabolic pathways of the

microbiome. However, the cost of macrogenomic sequencing is

relatively high, and the interpretation of analysis results is

complex (127). Measurement differences may exist between

the two methods due to differences in stool sample collection,

storage, and handling, as well as nucleic acid extraction protocols

and data analysis methods. Therefore, to make better use of gut

microbiota as the predictive biomarker for immunotherapy of

colon cancer, it is also necessary to further optimize the testing

methods and standardize the testing criteria.
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Peripheral blood biomarkers in
colon cancer immunotherapy
CtDNA is the most used peripheral blood biomarker.

Previously, ctDNA already presented high sensitivity in colon

cancer early diagnosis, recurrence detection, and treatment

outcome prediction (176, 177). CtDNA is derived from apoptotic

and necrotic tumor cells that release their fragmented DNA into

circulation. Information on genetic variation could be detected

through ctDNA test (178). In 2017, Cabel et al. proposed a proof-

of-concept study, they enrolled patients with NSCLC, uveal

melanoma, or MSI CRC who were treated by nivolumab or

pembrolizumab monotherapy, their results demonstrated that

quantitative ctDNA monitoring can be used as a valuable tool to

assess tumor patients’ response to anti-PD-1 agents (179). Several

studies also focused on the predictive value of ctDNA in colon

cancer immunotherapy. Wang et al. proposed ctDNA can be used

as a powerful tool for predicting MSS CRC patients’ response to

regorafenib and nivolumab combination therapy (180). Gong et al.

through four cases illustrated that ctDNA can be used as a dynamic

predictive biomarker for colon cancer immunotherapy (128). In the

CAVE trial, cetuximab and avelumab combination therapy were

tested in RAS wild-type mCRC. In this study, patients’ KRAS,

NRAS, BRAF, and EGFR-S492R mutation was analyzed through

ctDNA, and the result show patients with RAS/BRAF WT ctDNA

presented with better mOS and mPFS compared to patients with

mutated ctDNA. These findings presented the potential role of

ctDNA for colon cancer immunotherapy (181). However, the

reports of ctDNA in the immunotherapy of colon cancer are still

limited and ctDNA’s predictive role in immunotherapy needs to be

verified by larger clinical studies. In addition, the following

questions also need to be paid attention to in the further study of

ctDNA (129, 182). First, the concentration of ctDNA in blood is

relatively low. Thus, the sensitivity of the detectionmethod is strictly

required. Second, ctDNA is vulnerable to a variety of factors, such as

trauma, which is a crucial factor affecting the determination of

ctDNA. Therefore, strict avoidance of interfering factors is

important for accurate measurement of ctDNA. Third, ctDNA is

dynamically changing, thus the ctDNA results from different studies

sampled at different points in time are difficult to unify and

quantify, and there is yet to be a uniform detection standard for

ctDNA. Furthermore, the testing method for blood ctDNA still

needs to be optimized. Digital PCR (dPCR), amplification refractory

mutation system (ARMS), and NGS are currently the main

available methods for the detection of ctDNA. Each method has

its strengths and limitations. dPCR with a low cost and relatively

high sensitivity is the most used method for ctDNA detection. But

the limitations of the dPCR are low throughput and the inability to

detect unknown mutations. ARMS is moderate in cost, simple to

operate, and can sequentially detect multiple mutations in a single

gene, but it is not as sensitive as dPCR. The advantages of the NGS
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method lie mainly in the high throughput and sequencing of

unknown mutations, but its economic cost is relatively high.

Moreover, some study proposed the optimization of ctDNA

detection (183). With the optimization of detection methods and

the uniformization of standards, the value of ctDNA in

immunotherapy of colon cancer will be better demonstrated.

In addition to ctDNA, various immune cells can also be tested

in the peripheral blood, including T cells, B cells, NK cells, and

myeloid cells (184). These circulating immune cells are proposed as

predictive biomarkers for therapeutic response and clinical benefit

of ICIs in solid cancer patients (185, 186). However, based on the

existing study, the role of circulating immune cells in colon cancer

immunotherapy is controversial. In a phase II study of durvalumab

and tremelimumab with concurrent radiotherapy for pMMR

mCRC patients, an increase in circulating CD8+T lymphocyte

activation was observed in patients with an objective response.

However, this combination of radiotherapy plus ICI did not meet

the study endpoint criteria (187). In another study of mFOLFOX6

combined bevacizumab alone or with AdCEA vaccine combined

avelumab immunotherapy for untreated mCRC, combination

therapy generated brachyury-specific CD4+/CD8+T cells but did

not improve patients’ PFS (130). In Cheng et al’s study, the

peripheral blood of dMMR mCRC patients receiving anti-PD-1

immunotherapy was analyzed, the results show that the ratio of

CD4+/CD8+ in peripheral blood and the frequency of CD4+ T cells

are promising predictive biomarkers for dMMR mCRC patients

responding to immunotherapy (131). According to Herting CJ et

al’s study, the baseline levels and changes in circulating

immunosuppressive myeloid and T cell subsets were not

associated with advanced CRC patients ’ response to

pembrolizumab combined modified FOLFOX6 therapy (132).

Moreover, according to Clouthier et al’s study, they found that

the immune biomarkers were significantly varied between the blood

and tissue (131). The reasons for this phenomenon are mainly

related to the small sample size included in the existing studies and,

similar to the reports of ctDNA, the different sampling times and

analysis methods can also have an impact on the results. Test

methods for the detection of various immune cell subsets including

multi-color fluorescence flow cytometry, mass cytometry, and NGS,

are still developing, and evaluation criteria need to be normalized

(133). In addition, a larger population-based cohort study is

necessary to further test the value of circulating tumor cells in

immunotherapy of colon cancer.

Inflammation also plays an essential role in colon cancer

tumorigenesis and influences patients’ immunotherapy response

(188). Lymphocytes and neutrophils are two common indicators of

the inflammatory state of the body in the peripheral blood (189).

Some studies reported the predictive role of neutrophil-lymphocyte

ratio (NLR) in colon cancer immunotherapy (134, 190, 191). In

Saied et al’s study, they proposed that NLR changes correlated with

CEA+ liver metastases CRC patients’ early responses to chimeric

antigen receptor-modified T-cell (CAR-T) hepatic artery infusions
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(HAI) variations. Increased NLR levels were proven to be associated

with poor responses following CAR-T HAI (190). The final results

of the CAVE trial show that a baseline NLR <3 significantly

correlated with improved survival of ctDNA RAS/BRAF WT

patients after cetuximab plus avelumab therapy (191).

Furthermore, through a retrospective study, Corti et al. proposed

a blood-based biomarker, Pan-Immune-Inflammation Value which

integrates neutrophil, platelet, monocyte, and lymphocyte counts, as

a strong predictor of outcomes in MSI-H mCRC patients receiving

ICIs (192). However, based on the limited number of studies

conducted so far, the role of peripheral inflammatory cell-related

involvement (e.g., NLR) in the immunotherapy of colon cancer

remains to be further demonstrated.

In summary, tissue-based predictive biomarkers are more

accurate and closely related to TME. However, there are still

some challenges in some clinical situations. Tissue biopsies are

invasive, and may be difficult to obtain in advanced andmetastatic

patients. In addition, intratumoral heterogeneity is prevalent

among tumor tissues. Multipoint sampling is necessary to

obtain more accurate results, but it is difficult to achieve in

clinical settings, as it requires invasive procedures for the patient

(193). Under such conditions, liquid biopsies through peripheral

blood provide a method with minimally invasive, reproducible

sampling and dynamically observe changes in indicators. The

variety of information that can be acquired through liquid biopsy

includes inflammatory cells, ctDNA, circulating immune cells,

cytokines, and so on. Several peripheral blood biomarkers are now

being proposed as predictive biomarkers for colon cancer

immunotherapy response in existing clinical studies (Table 1).

The development of high-throughput sequencing technology
Frontiers in Immunology 12
provides a deeper and broader view of peripheral blood

biomarkers. However, since various multiplexed assays are

employed for peripheral blood analyses, these assay protocols

and their reporting methods need to be standardized, and

additional studies will also be needed on the sampling time

points, sensitivity, and specificity of each assay for clinical

applicability. In further clinical studies, peripheral blood

biomarkers will be developed as dynamic indicators for colon

cancer immunotherapy.
Conclusions and perspectives

In recent years, ICI-based immunotherapy has brought

revolutionary breakthroughs in the treatment of colon cancer.

While immunotherapeutic agents continue to be researched and

developed, it is also worth focusing on precisely screening beneficial

patients through predictive biomarkers. Currently, MSI is the only

approved biomarker for screening colon cancer immunotherapy-

benefiting patients. However, the results of existing clinical studies

indicated the low efficacy ofMSI as a predictive biomarker for colon

cancer immunotherapy. Several new predictive biomarkers have

been proposed in colon cancer immunotherapy. Developments

have also been made in the detection method of predictive

biomarkers for immunotherapy of colon cancer. In this review,

we summarized the currently reported predictive biomarkers in

existing studies of colon cancer immunotherapy.

We concluded that immunotherapeutic biomarkers reported in

the clinical studies for colon cancer can be divided into four main

categories (Figure 1), the first category of biomarkers related to
FIGURE 1

Predictive biomarkers of colon cancer immunotherapy MSI, microsatellite instability; TMB, total mutation burden; POLE:/POLD1, DNA polymerase
ϵ (POLE) and d (POLD1); TILs, tumor-infiltrating lymphocytes; PD-L1, programmed cell death-ligand 1; TLS, tertiary lymphoid structure; CAF, cancer-
associated fibroblast; ctDNA, circulating tumor DNA; bTMB, blood total mutation burden; NLR, neutrophil-lymphocyte ratio.
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genetic alterations, such as MSI, TMB, and POLE/POLD1; the

second category of biomolecular markers related to TME, mainly

included TILs, PD-L1 expression, TLS, and CAF related genes; the

third category is certain specific gut microbiome; the fourth

category is peripheral blood biomarkers, such as ctDNA, bTMB,

circulating immune cells, and inflammatory cell related indicators.

Based on currently reported clinical studies (Table 1), only MSI’s

predictive role in colon cancer immunotherapy has been

demonstrated in a larger cohort. The other immunotherapeutic

biomarkers have only been reported in some small cohorts of colon

cancer and are pending justification in larger cohorts. Some

predictive biomarkers for colon cancer immunotherapy come

from database analysis or retrospective studies, also waiting to be

demonstrated by large cohort clinical studies. In addition, despite

the attention given to the TME and gut microbiota in colon cancer

immunotherapy, reliable biomarkers for colon cancer

immunotherapy beneficial population selection are still lacking.

Peripheral blood markers have been favored by many studies in

recent years due to their non-invasive and multi-sampling

advantages. However, a unified evaluation criterion is yet to be

established. Furthermore, the testing methods of each biomarker

are all waiting to be optimized to obtain more accurate testing

results, and a unified judgment standard must be developed.

In summary, there is no optimal predictive biomarker for

immunotherapy of colon cancer till now, and each biomarker

has its limitations. Although the combined application of multi-

methods for recognizing multi-indicators could improve the

accuracy of biomarkers for colon cancer immunotherapy, large

numbers of clinical trials are needed to verify that. With the

optimization and improvement of the technology, more accurate

biomarkers for predicting immunotherapy of colon cancer will

help to stratify patients, which will also greatly improve the

prognosis and the overall survival rate of patients
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65. Mur P, Garcıá-Mulero S, Del Valle J, Magraner-Pardo L, Vidal A, Pineda M,
et al. Role of POLE and POLD1 in familial cancer. Genet Med (2020) 22(12):2089–
100. doi: 10.1038/s41436-020-0922-2

66. Wang F, Zhao Q, Wang YN, Jin Y, He MM, Liu ZX, et al. Evaluation of
POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across
multiple cancer types. JAMA Oncol (2019) 5(10):1504–6. doi: 10.1001/
jamaoncol.2019.2963

67. Kim JH, Kim SY, Baek JY, Cha YJ, Ahn JB, Kim HS, et al. A phase II study of
avelumab monotherapy in patients with mismatch repair-Deficient/Microsatellite
instability-high or POLE-mutated metastatic or unresectable colorectal cancer.
Cancer Res Treat (2020) 52(4):1135–44. doi: 10.4143/crt.2020.218

68. Oh CR, Kim JE, Hong YS, Kim SY, Ahn JB, Baek JY, et al. Phase II study of
durvalumab monotherapy in patients with previously treated microsatellite
instability-high/mismatch repair-deficient or POLE-mutated metastatic or
unresectable colorectal cancer. Int J Cancer. (2022) 150(12):2038–45.
doi: 10.1002/ijc.33966

69. Hamarsheh S, Groß O, Brummer T, Zeiser R. Immune modulatory effects of
oncogenic KRAS in cancer. Nat Commun (2020) 11(1):5439. doi: 10.1038/s41467-
020-19288-6

70. Lal N, White BS, Goussous G, Pickles O, Mason MJ, Beggs AD, et al. And
consensus molecular subtypes 2 and 3 are independently associated with reduced
immune infiltration and reactivity in colorectal cancer. Clin Cancer Res (2018) 24
(1):224–33. doi: 10.1158/1078-0432.CCR-17-1090

71. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C,
et al. The consensus molecular subtypes of colorectal cancer. Nat Med (2015) 21
(11):1350–6. doi: 10.1038/nm.3967
Frontiers in Immunology 15
72. Ten Hoorn S, de Back TR, Sommeijer DW, Vermeulen L. Clinical value of
consensus molecular subtypes in colorectal cancer: A systematic review and meta-
analysis. J Natl Cancer Institute. (2022) 114(4):503–16. doi: 10.1093/jnci/djab106

73. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J.
Consensus molecular subtypes and the evolution of precision medicine in
colorectal cancer. Nat Rev Cancer. (2017) 17(2):79–92. doi: 10.1038/nrc.2016.126

74. Rodriguez-Salas N, Dominguez G, Barderas R, Mendiola M, Garcıá-Albéniz
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