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Basophils control T cell priming
through soluble mediators
rather than antigen presentation

Christian Möbs, Martin Salheiser, Fabian Bleise, Marie Witt
and Johannes U. Mayer*

Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
Basophils play an important role in the development of type 2 immunity and

have been linked to protective immunity against parasites but also

inflammatory responses in allergic diseases. While typically classified as

degranulating effector cells, different modes of cellular activation have been

identified, which together with the observation that different populations of

basophils exist in the context of disease suggest a multifunctional role. In this

review we aim to highlight the role of basophils play in antigen presentation of

type 2 immunity and focus on the contribution basophils play in the context of

antigen presentation and T cell priming. We will discuss evidence suggesting

that basophils perform a direct role in antigen presentation and relate it to

findings that indicate cellular cooperation with professional antigen-presenting

cells, such as dendritic cells. We will also highlight tissue-specific differences in

basophil phenotypes that might lead to distinct roles in cellular cooperation

and how these distinct interactions might influence immunological and clinical

outcomes of disease. This review thus aims to consolidate the seemingly

conflicting literature on the involvement of basophils in antigen presentation

and tries to find a resolution to the discussion whether basophils influence

antigen presentation through direct or indirect mechanisms.
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Introduction

Basophils were discovered by Paul Ehrlich in 1879 during staining experiments with

peripheral blood and represent the least common granulocyte population in mammals,

accounting for 0.5-1% of circulating leukocytes. They differentiate from hematopoietic

progenitor cells (Lin-CD34+FcϵRIhighc-kit-) in the bone marrow under the control of the

transcription factors C/EBPa andGATA-2 and leave the bonemarrow as mature circulating

basophils (1). Basophils were traditionally considered to be circulating counterparts of

tissue-resident mast cells based on their expression of the high-affinity IgE receptor (FcϵRI),
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mechanisms of degranulation and histamine release upon

activation. Facilitated by the discovery of distinct developmental

pathways that are controlled by the key transcription factor C/

EBPa (2), the distinct expression of c-kit/CD117 on human and

murine mast cells but not basophils (3), and the development of

basophil-specific transgenic knockout strains (4), a specialized role

for basophils in various diseases and protective immunity have

become better understood. Basophils have been shown to play an

important role in allergic diseases, autoimmunity, parasitic

infections and tissue homeostasis through the production of key

cytokines and their interaction with immune and non-immune

cells both in pro-inflammatory and anti-inflammatory contexts

(5). Basophils are best studied in the context of allergy, where they

have been implicated in several disease mechanisms, such as

delayed IgE-mediated chronic allergic inflammation (6, 7),

eosinophil entry (8), itch (9), and alternative macrophage

activation (10), but also wound healing (11) and microbial

dysregulation (12). Basophil activation is also used in the clinical

diagnosis of allergic diseases and in monitoring the therapeutic

response to immunomodulatory treatments (13). Basophils can be

activated via various IgE-dependent and -independent pathways

leading to the release of effector molecules like histamine,

amphiregulin, eicosanoids (e.g. LTC4), granzyme B and a variety
Frontiers in Immunology 02
of different cytokines (e.g. IL-3, IL-4, IL-5, IL-6, IL-13, IL-25, IL-31)

(14) (Figure 1).

The ‘classical’ activation of human and murine basophils in

the context of allergy is caused by the crosslinking of FcϵRI via
IgE and leads to rapid degranulation and the release of

preformed histamines and proteases, followed by a secondary

de novo synthesis of lipid mediators and cytokines and their

secretion (15). Alternative activation is readily achieved in vitro

and independent of IgE crosslinking and mediated by innate

stimuli including epithelial derived inflammatory cytokines,

growth factors, eicosanoids, metabolites and TLR ligands (16).

Basophils can promote allergic immune responses by

producing substantial amounts of pro-allergic IL-4 and IL-13

upon allergen stimulation (17, 18), thus representing an

important accessory cell type to promote Th2-like responses

(19, 20). Basophils can also contribute to a Th2 bias in pro-

inflammatory environments, as basophil recruitment into

tumor-draining lymph nodes was found to correlate with Th2

inflammation and reduced survival in pancreatic cancer patients

(21). Basophils can however also contribute to pro-inflammatory

immune responses through the production of IL-6, influencing

Th17 immunity. In murine models of pro-inflammatory lung

inflammation basophils and their production of IL-6
FIGURE 1

Basophil activation and effector signals involved in direct or indirect allergen presentation. In this schematic only surface and secreted
molecules discussed within this review are shown. Basophil differentiation and development is controlled by TSLP and IL-3, which leads to the
differential expression of cytokine and chemokine receptors, such as CRTH2, IL-33R, IL-18R, different TLRs, CCR2, CCR3 or CXCR4. Basophils
can be activated by crosslinking of FcϵRI-bound IgE or by different soluble mediators, such as PGD2 or IL-33. Basophils are recruited into
peripheral tissues via CCL2, eotaxins or CXCL12, while CCL7 signaling or CCR7 and CD62L expression facilitate lymph node entry. While in
specific contexts basophils can express MHC-I and MHC-II, they are best known for the secretion of soluble mediators. IL-4 can influence the
differentiation of inflammatory dendritic cells (DC) and Th2 cells or activate innate lymphoid cell type 2 (ILC2), while IL-13 and TSLP secretion
activates DC and induces OX40L upregulation, indirectly influencing the priming of Th2 cells. This figure was created using biorender.
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contributed to the differentiation of Th17 cells (22), while in

models of kidney fibrosis CXCR2+ basophils, recruited into the

inflamed kidney, were an important source of IL-6 and

controlled the number of Th17 cells (23). In human patients,

basophils have also been identified in Th17-associated disorders,

such as kidney fibrosis (23), IBD (24) and cystic fibrosis (25),

indicating that basophils influence both Th2 and Th17

immunity through the release of key cytokines.

Beyond their role as cytokine-producing cells, basophils have

also been suggested to influence the priming of adaptive immune

responses by acting as unconventional antigen-presenting cells.

In this review we will therefore discuss if basophils can influence

antigen-presentation through direct and indirect mechanisms

and correlate experimental evidence obtained in murine studies

with clinical observations.
Subsets of basophils

Four populations of circulating basophils can be identified in

the blood of healthy individuals based on their surface marker

expression of CD16, CD244 and FceRI (26). FceRI-expressing

basophils are highly responsive to IgE and IL-3 stimulation,

while FceRIlow basophils respond poorly to those stimuli in vitro

(26). Resting and activated human basophils also express distinct

chemokine receptors, potentially supporting their migration

towards sites of inflammation or the draining lymph nodes

(dLN) (27). In the context of local inflammation, murine models

have shown that eotaxin-CCR3, CCR2-CCL2 and CXCR4-

CXCL12 interactions are the most common (28) (Figure 1).

Chemokine receptor upregulation can be induced by different

molecular mechanisms. CXCR4 upregulation is regulated by

thymic stromal lymphopoietin (TSLP) and IL-3, cytokines

essential for the development and activation of basophils (29,

30), and leads to basophil migration towards a CXCL12 gradient

in inflamed skin (31). In Lyn-/- lupus prone mice CXCR4 surface

expression is however controlled by PGD2 signaling and leads to

the accumulation of basophils in secondary lymphoid organs

impacting the severity of disease (32) (Figure 1).

Importantly, murine basophils can be differentiated into

distinct basophils subsets by in vitro stimulation with certain

cytokines, indicating that the cytokine milieu can influence

basophil maturation and effector function of basophils

differently. TSLP-cultured basophils showed higher expression of

IL-3R, IL-33R and IL-18Ra and less degranulation, while

producing higher levels of IL-4, IL-6, CCL3 and CCL12 in the

context of IL-3, IL-18 and IL-33 activation (33) (Figure 1). IL-3-

cultured basophils showed higher expression of CD11b and

CD62L, higher production of chemokines and produced more

TNFa, suggesting a pro-inflammatory differentiation (33). A

similar heterogeneity was observed in human basophils, which

developed in a TSLP-elevated environment during food allergy-

associated eosinophilic esophagitis (EoE) (30). While expression
Frontiers in Immunology 03
levels of HLA-DR, CD28, CD40, CD86, CD69 and CD203c were

similar to those observed in healthy donors, basophils from EoE

patients expressed significantly higher levels of the IL-33R,

indicating that different basophil populations are associated with

an altered susceptibility to allergic inflammation (33). In patients

withmild tomoderate asthma, basophils were strongly activated by

TSLP leading to secondary production of IL-3, suggesting that in

certain contexts TSLP and IL-3 can also act in concert (34).

Phenotypically different subgroups of basophils have also

been observed in patients with chronic urticaria when analyzing

both the frequency of peripheral basophils and their reactivity to

certain stimuli. Here, stimulation of peripheral blood basophils

with anti-FcϵRI revealed distinct reactivity patterns. While one

group of patients exhibited a concentration-dependent

activation of basophils (responders), FcϵRI stimulation failed

to activate basophils in the non-responder group (35, 36). This

incapability to induce IgE-mediated reactions despite sufficient

FcϵRI might be due to a lack of expressing the tyrosine kinase

Syk and/or an overexpression of the Src-homology 2-

containing-5’-inositol phosphatases (SHIP)-1 and SHIP-2,

pathways which control FceRI signaling (35, 37). Among the

nonreactive patients, a subgroup with pronounced basopenia

(basophils accounting for less than 0.1% of peripheral blood

cells) could been identified (38). The basophils of this clinically

most severely affected cohort were characterized by a

significantly augmented background activation, reduced

receptor-bound IgE and a decrease in surface expression of

FcϵRI (39). Basopenia was associated with more severe disease,

whereas the basophil responder phenotype was associated with

longer disease duration.

Decreased frequencies of circulating basophils are

furthermore observed in other disorders, such as allergic

contact dermatitis, bullous pemphigoid, systemic lupus

erythematosus or atopic dermatitis (AD) (40–42), and are

likely caused by their migration into the affected tissues or

secondary lymphoid organs (32). This is supported by

evidence that transient basopenia reflects basophil migration

to the skin during skin irritation (43) or the bronchoalveolar

lavage fluid upon aeroallergen challenge (44) and might be

controlled by similar or distinct chemotactic pathways

compared to anaphylaxis (45).

Within tissues, basophils not only drive classical symptoms

of allergic inflammation via histamine and leukotriene release,

but also impact a number of immunological mechanisms via

cytokine production, making them a highly immunologically

relevant cell type (46) (Figure 1).
Direct mechanisms of basophil-
enhanced antigen presentation

Whether basophils have antigen-presenting capacity is still

debated and has been reviewed before (47, 48). Mice deficient in
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interferon-regulatory factor 2, a transcription factor believed to

suppress basophil differentiation, show a marked increase in

basophil numbers and develop spontaneous Th2 responses (49).

Another molecule, Lyn kinase controls basophil GATA3

expression and Lin-/- mice exhibit basophilia and a basophil-

dependent Th2 bias (50), indicating an important role for

basophils in driving type 2 immunity. In Lin-/- mice but also

in the context of parasite infection and certain allergy models,

murine basophils have been reported to express MHC-II (20,

51–53), suggesting their involvement in antigen-presentation.

While MHC-II expression of murine basophils could also be

observed in certain hapten-induced models of type 2 immunity

(53, 54), basophils examined in models of airway and skin

allergy did not express MHC molecules (55, 56). Similar

observations were made in allergic patients, where no

expression of HLA-DR was observed in patients allergic to

house dust mite (HDM), birch pollen as well as in healthy

individuals before or after in vitro stimulation (57–60). Yet,

patients from an allergen-rich environment displaying aFUT6

deficiency (effectively reducing the ability of basophils to egress

from the blood stream and infiltrate tissues) developed reduced

itch sensitivity and lower amounts of HDM-specific IgE,

indicating that basophils influence Th2 immunity (61). While

the mechanisms of antigen-presentation were not investigated

further in this study, MHC-II expression by basophils might be

regulated by the cytokine milieu or affect the development of

distinct basophil subsets with distinct expression patterns.

However, the reported MHC-II surface expression in murine

basophils was several orders of magnitude lower than those

observed in B cells and dendritic cells (DC) (51), highlighting

that carefully controlled isolation and analysis protocols are

necessary to avoid contaminated readouts (62).

While the tools to assess antigen uptake in vivo are limited,

uptake of natural and model antigens has not been observed in

murine and human basophils (29, 55, 58), while antigen-

processing could be observed in certain in vitro settings (54,

63). Bone marrow-cultured murine basophils generated in vitro

using IL-3 and GM-CSF showed a substantial increase of MHC-

II molecules on their surface. While no corresponding increase

in MHC-II transcript levels could be measured in basophils, it

was observed that DC, which expressed high levels of MHC-II

and were also developing under the same culture conditions,

provided a possible source for MHC-II protein (47). Further

experiments between purified bone marrow-derived basophils

and DC confirmed that MHC-II molecules were derived from

DC and acquired by basophils through cell contact-dependent

trogocytosis (63) (Figure 2A). While the molecular requirements

facilitating basophil-specific trogocytosis are not well

understood, trogocytosis has been observed in other immune

cells, either involving uptake of cellular membrane from dead

cells, resulting in killing or active cellular membrane transfer

(64). The process most similar to trogocytosis observed between

basophils and DC is the interaction between T cells and DC.
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Here, trogocytosis requires ligand-receptor interaction between

the T cell receptor (TCR) and a matching peptide-MHC

complex (65). This interaction leads to the formation of an

immunological synapse resulting in the internalization of the

TCR and the transfer of peptide-MHC complexes, together with

membrane fragments of DC onto the surface of the T cell (66,

67). This mechanism has been observed for both CD4+ and

CD8+ T cells (68) and TCR-mediated trogocytosis is dependent

on both actin polymerization and the TCR signaling pathway

(69) and can be impaired by blocking costimulatory molecules

or integrin interactions (70). While TCR-mediated trogocytosis

can be excluded as a mechanism for basophils, it remains to be

determined if integrin binding facilitates trogocytosis between

basophils and DC.

Trogocytosis might also enhance the expression of

costimulatory molecules by basophils. Naïve as well as

stimulated murine basophils can express several costimulatory

markers like CD40, CD80 and CD86 (20, 53, 71), but in contrast

to DC do not upregulate these markers upon stimulation (54).

While murine basophils constitutively express CD80 and CD86,

co-culturing with DC further increases surface CD86, which

might be linked to cell membrane trogocytosis (63). While

trogocytosis has not been studied in the context of human

basophils, basophils extracted from healthy individuals or

allergic patients did not express costimulatory molecules,

neither after being freshly isolated nor when stimulated with

cytokines, IL-3, antigens or TLR agonists (58–60).

Several studies have shown that basophils can drive Th2

polarization in vitro, when purified from immunized mice and

pulsed with OVA peptide (18, 20). While not being able to process

full length proteins, murine basophils can present and cross-

present OVA peptides efficiently and induce CD4 as well as CD8

T cell proliferation in vitro (53, 71), indicating that basophils have

a certain capacity for antigen presentation. After depletion of

basophils using an anti-FcϵRI-directed MAR-1 antibody, Th2

responses were also decreased in vivo in an MHC-II-dependent

manner (19, 20), suggesting a direct role of basophil-mediated

antigen presentation. However, Hammad et al. demonstrated that

in vivo basophil depletion with an anti-FcϵRI MAR-1 antibody

had strikingly different effects on subsequent Th2 challenge with

HDM allergen compared to anti-CD200R3 (Ba103) antibody

treatment, because of the depletion of FcϵRI+ inflammatory DC

(55). While originally classified as monocyte-derived DC, these

inflammatory DC have recently been identified as FcϵRI- FcgRIV-
expressing cDC2, which are depleted by the MAR-1 antibody due

to its cross-reactivity with FcgRIV (72, 73). More specific

depletion models of basophils using the anti-CD200R3 antibody

or transgenic mouse models under the control of Mcpt8 could

show that basophils were not required for the development of Th2

cells in models of parasite infection (29, 56, 74) and models of

airway or skin allergy (55, 75, 76), despite cellular interactions

between basophils and T cells being observed (77). These studies

made clear that DC were essential for T cell proliferation and Th2
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priming, disproving earlier claims (54). In addition, these results

also aligned with findings from patients samples, which showed

that antigen-pulsed basophils purified from PBMC of healthy

donors or allergic patients could not drive T cell proliferation in

CFSE assays in contrast to other antigen-presenting cells (57–60).

While these studies cannot exclude a cooperation between

basophils and other cell types, basophils seem to have a limited

capacity to drive T cell responses independently.
Indirect mechanisms of basophil-
enhanced antigen presentation

Several mechanisms have been reported, which describe how

basophils cooperate with other immune cells to enhance antigen

presentation. In particular, the cooperation between basophils

innate lymphoid cell type 2 (ILC2) and DC has been defined as

an important immune axis in type 2 immunity (Figure 2B).

Tissue ILC2 have been shown to play a complex role in allergic
Frontiers in Immunology 05
inflammation of both the lung and the skin (78, 79) and are

found in close proximity with basophils in skin biopsies of AD

patients and in pre-clinical models of AD. It could be observed

that basophils and ILC2 form clusters in inflamed skin, with

basophil accumulation preceding ILC2 activation and

proliferation (80). Similar to IL-4-dependent accumulation of

lung ILC2 during parasite infection (81), skin ILC2

accumulation was dependent on basophil-derived IL-4 in the

murine MC903-induced model of AD (80). Basophil-derived IL-

4 also controls the function of ILC2 in allergic lung

inflammation through the production of IL-13 and the

recruitment of eosinophils (82). IL-13 has in turn been shown

to be major activator of DC both in the skin and lung (78, 83,

84), suggesting an indirect cooperation between basophils and

DC via ILC activation in the skin and lung.

Basophils have also been reported in dLN, where they are

localized within the T cell zone (19, 85). Basophils recruitment to

the dLN is driven by TSLP signaling, although it remains unclear

if TSLP acts on DC or T cells to recruit basophils or drives the
A B

C

FIGURE 2

Mechanisms of basophil-enhanced antigen presentation. (A) Basophils can cooperate with dendritic cells (DC) to prime T cells. While basophils
cannot take up and process complex antigens, they can trogocytose parts of cell membranes and antigen-loaded MHC-II complexes from DC
and thus directly influence Th2 cell differentiation. It remains unclear to what extent trogocytosis plays a role in vivo, but other mechanisms of
basophil-enhanced antigen presentation are well described. (B) In tissues, basophil-derived IL-4 activates murine innate lymphocytes type 2
(ILC2), which produce IL-13 and other mediators and activate DC to migrate to the draining lymph nodes. (C) Within lymph nodes, basophils
can enhance DC activation and OX40L expression, while also providing early IL-4 to support the differentiation of Th2 cells. Although the
requirement of early IL-4 for the differentiation of Th2 cells is debated, multiple studies provide evidence that basophils directly support the
priming of Th2 cells, at least in the murine system. This figure was created using biorender.
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development of a dLN-migratory basophil subset (33, 76, 86, 87).

Basophil entry into the dLN is facilitated by CD62L and CCL7,

which support basophil binding to high endothelial venules and

migration into the T cell zone (19, 75). Similarly, CD62L and

CCR7 were upregulated in basophils from newly diagnosed

systemic lupus erythematosus patients and associated with

their accumulation in secondary lymphoid organs (42).

Basophils have also been shown to enhance humoral

immunity and together with CD4+ T cells, profoundly

enhanced B cell proliferation and immunoglobulin

production (88).

It has been suggested that basophils can present antigen

under certain contexts, but this mechanism might be less

relevant for initial Th2 cell priming, as much fewer basophils

are found in the dLN compared to DC and are recruited to the

dLN at later timepoints (55). These findings are supported by

observations that basophils isolated from healthy human spleens

showed no expression of HLA-DR or costimulatory molecules at

steady state or after in vitro stimulation and could not drive T

cell proliferation, indicating that human basophil function is

restricted to the secretion of soluble mediators (89). However,

other studies have suggested that basophils provide help to DC

for optimal Th2 induction (75, 90, 91). As basophils are major

producers of IL-4, while DC are not (92), basophils could

provide an early source of IL-4 (93), especially in dLN

(Figure 2C). IL-4 has also been suggested to activate DC and

induce the differentiation of inflammatory DC (94) observed in

allergic and viral inflammation (55, 73). In vitro co-cultures

between IL-4-deficient basophils, DC and OT-II T cells showed

that Th2 cell differentiation was reduced and OX40L expression

by DC was decreased in the absence of basophils or basophil-

derived IL-4 (95). Furthermore, Di et al. underline the

importance of OX40L signaling by DC and basophils. Blocking

OX40-OX40L interactions with an anti-OX40L antibody

strongly reduced allergic airway inflammation following OVA

sensitization and adoptive transfers of OVA-challenged

basophils into OX40-/- mice or blockade of OX40L led to

reduced lung inflammation (96). As the requirement for an

initial source of IL-4 in Th2 priming continues to be critically

debated (97–100), regulation of OX40L expression through

basophils might represent an additional mechanism of how

basophils can influence antigen presentation (Figures 1, 2C).
Discussion

In the early 2000s an interesting hypothesis developed, which

suggested that basophils could drive Th2 immunity independently

of DC, and supply signals for antigen presentation, costimulation

and Th2 polarizing cytokine secretion (20, 54, 101). This led to

multiple studies investigating this hypothesis in different models of

parasite infection, skin and lung allergy, which found that

basophils could not process and present complex protein
Frontiers in Immunology 06
antigens, where present in dLN in much lower numbers than

DC and arrived at later timepoints (55, 56, 74). Similarly, basophils

collected from allergic patients, were not able to internalize, process

or present allergen and thus failed to induce proliferation and

cytokine secretion in T cells (57, 58). In line with this, basophils are

unlikely directly involved in the priming of de novo Th2 cells, but

could enhance DC activation and Th2 priming through the

production of IL-4, the activation of ILC or other mechanisms of

cellular cooperation [as reviewed in (47, 89, 90, 102)].

In patients, different populations of basophils have been

observed in a range of human diseases including tumors,

fibrosis, infection and chronic inflammation (5), and it is

unknown if under certain conditions human basophils obtain

antigen-presenting capacities, especially in the context of antigen

challenge or chronic disease. Multiple murine studies have

shown that basophils enhance T cell responses after antigen

challenge (22, 103), yet little is known regarding human diseases,

due to limited studies in affected tissues. While many studies

agree that basophils do not express MHC-II or HLA-DR

transcript, cell contact-dependent acqusition of MHC-II

through trogocytosis could represent an additional molecular

mechanism that allows basophils to be involved in antigen

presentation. While trogocytosis has been studied in murine

bone marrow-derived basophils (63), it is unknown if it also

occurs in vivo, affects human basophils and also other surface

molecules reported on basophils, including costimulatory

molecules or MHC-I (20, 53, 71).

Additional studies to understand the molecular mechanisms

that lead to the differentiation of basophil populations in the

context of disease are therefore urgently necessary. While it is

difficult to follow basophil differentiation during the progression

of disease, seeding of basophils into tissue organoids from

control- or patient-derived samples might offer new

opportunities to study cellular differentiation and mechanisms

of cellular cooperation and trogocytosis.

As basophils represent very rare immune cells, improved

protocols to isolate basophils from affected tissues are also

necessary to characterize basophils with novel technologies like

single-cell sequencing. These analyses should however not only

focus on transcriptomic signatures (e.g. by using single-cell RNA

sequencing), but be combined with surface protein detection,

such as site-seq or high-dimensional flow cytometry, to capture

functional molecules that might have been acquired from other

cells types. These studies might highlight tissue- and disease-

dependent differences between basophil populations that

contribute to disease and indicate their relationship to

basophils within tissues in comparison to circulating basophil

populations (104). As basophils have a multifaceted

immunological role, these studies might ultimately define

subpopulations that drive specific disease phenotypes through

direct or indirect antigen presentation, cytokine secretion or

histamine/leukotriene release, and allow for their selective

targeting in the context of disease.
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