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Hepatitis B, C and D viruses (HBV, HCV, HDV, respectively) specifically infect

human hepatocytes and often establish chronic viral infections of the liver, thus

escaping antiviral immunity for years. Like other viruses, hepatitis viruses rely on

the cellular machinery to meet their energy and metabolite requirements for

replication. Although this was initially considered passive parasitism, studies

have shown that hepatitis viruses actively rewire cellular metabolism through

molecular interactions with specific enzymes such as glucokinase, the first

rate-limiting enzyme of glycolysis. As part of research efforts in the field of

immunometabolism, it has also been shown that metabolic changes induced

by viruses could have a direct impact on the innate antiviral response.

Conversely, detection of viral components by innate immunity receptors not

only triggers the activation of the antiviral defense but also induces in-depth

metabolic reprogramming that is essential to support immunological

functions. Altogether, these complex triangular interactions between viral

components, innate immunity and hepatocyte metabolism may explain why

chronic hepatitis infections progressively lead to liver inflammation and

progression to cirrhosis, fibrosis and hepatocellular carcinoma (HCC). In this

manuscript, we first present a global overview of known connections between

the innate antiviral response and cellular metabolism. We then report known

molecular mechanisms by which hepatitis viruses interfere with cellular

metabolism in hepatocytes and discuss potential consequences on the

innate immune response. Finally, we present evidence that drugs targeting

hepatocyte metabolism could be used as an innovative strategy not only to

deprive viruses of key metabolites, but also to restore the innate antiviral

response that is necessary to clear infection.
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Introduction

Studies in the immunometabolism field have identified

important connections between the cell metabolic status and

innate immunity functions. The detection of viral components

by pattern recognition receptors (PRRs) induces intracellular

signaling that results in the activation of antiviral defenses but

also triggers in-depth metabolic reprogramming that is essential

to support immunological functions. Conversely, chronic

metabolic disorders such as obesity or non-alcoholic fatty liver

disease (NAFLD) are characterized by impaired innate antiviral

defenses and deleterious chronic inflammation. This led to the

concept of immunometabolic pathologies that are associated

with poor outcomes in viral infections such as SARS-CoV-2 (1).

Therefore, innate immunity and metabolic pathways interact in

a reciprocal manner. Besides, viruses which are intracellular

parasites have developed diverse strategies to hijack the cellular

machinery to fulfill their needs in energy andmolecular blocks to

replicate. Recent studies suggest that the manipulation of cellular

metabolism by viruses is also an evolutionarily selected strategy

to control the innate immune response of infected cells (2).

Deciphering the mechanisms involved should provide key

information to design innovative antiviral therapies targeting

immunometabolic regulations.

The liver is a central organ in metabolic homeostasis,

controlling levels of macronutrients such as glucose, lipids and

cholesterol. This role is mainly devoted to hepatocytes, which are

the primary epithelial cell population in the liver. The liver is also

involved in the endocrine control of growth signaling pathways and

supports the immune response through the secretion of acute phase

proteins and cytokines. This organ is therefore a hub where

metabolic and innate immune processes connect. Hepatitis

viruses such as HBV, HCV and HDV infect specifically

hepatocytes and often establish chronic viral infections of the

liver, escaping viral immunity for years. These infections promote

metabolic disorders associated with chronic inflammation that lead

to fibrosis, cirrhosis and hepatocellular carcinoma (HCC).

Metabolic reprogramming associated with immunological

alterations are key drivers in disease progression, but interactions

between these two components are still poorly understood. Here,

we first summarize our current understanding of functional

connections between metabolism and innate immunity pathways

at the cellular level. We then present the impact of hepatitis viruses

on hepatocyte metabolism, and then discuss potential consequences

on innate immunity. Finally, we show that understanding

immunometabolic interactions in hepatocytes opens perspectives

in the development of dual-effect antiviral therapies that would

simultaneously starve viruses for key metabolites and stimulate the

innate antiviral response.
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Cross-talk between cellular
metabolism and key signaling
pathways of the innate antiviral
response: An overview

Cellular metabolism can greatly vary during activation of the

innate immune response and it has been widely observed that

reprogramming of cell metabolism can reallocate cellular resources

for the achievement of specific immune functions (3). Indeed, cells

are using carbohydrates, especially glucose that is degraded by

glycolysis into pyruvate, to produce ATP and metabolic precursors

for other pathways (Figure 1). Pyruvate is converted to acetyl-CoA

into the mitochondria, fueling the tricarboxylic acid cycle (TCA)

cycle, which is coupled to the respiratory chain and oxidative

phosphorylation (OXPHOS) in the presence of oxygen,

generating up to 36 molecules of ATP per molecule of glucose.

Although glycolysis is producing only 2 molecules of ATP per

molecule of glucose, it can be more rapidly engaged and increased

to meet the energetic demand of activated proinflammatory

immune cells. Furthermore, intermediate metabolites of glycolysis

are fueling several anabolic pathways for the synthesis of lipids,

carbohydrates, nucleosides, amino acids and other metabolites that

are essential to cellular functions including innate immunity.

The stimulation of PRRs triggers cell signaling events

resulting, among other consequences, in metabolic

reprogramming supporting innate immune response. This has

been best studied in immune cells although the molecular

mechanisms have not been completely elucidated and greatly

vary according to species and cell type. In macrophages and

myeloid dendritic cells (DCs), Toll-like receptors (TLRs)

stimulation modulates central carbon metabolism (Figure 1),

resulting in increased glycolytic activity to support a pro-

inflammatory phenotype (4–8). Glycolysis inhibition by 2-

deoxy-glucose (2-DG) reduces the secretion of cytokines, the

motility and the expression of costimulatory molecules that

characterize mature DCs (5, 6, 8, 9). In murine macrophages

and DCs, TLR4 stimulation by LPS is associated with a

metabolic shift from OXPHOS to glycolysis despite the

presence of oxygen (6, 10, 11). This shift is comparable to the

Warburg-like effect in tumor cells. In human plasmacytoid DCs

(pDCs), which are of lymphoid origin, TLR7 and TLR9

activation also stimulates glycolysis to support the production

of type-I interferon (IFN-I) (11, 12). However, a recent study

suggests that OXPHOS is also increased in these cells as opposed

to myeloid DCs and necessary to support IFN-I production

upon TLR7/9 engagement (13, 14). TLR4-induced type I IFN-b
expression, was found to be dependent on the glycolysis and

pentose phosphate pathway (15). Glycolysis activation mainly

occurs via the upregulation of glycolytic enzymes, such as
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hexokinase 1 and 2 (HK1, HK2), glyceraldehyde-3-phosphate

dehydrogenase (GAPDH), and pyruvate kinase isoenzyme M2

(PKM2). TLR engagement also increases the surface expression

of the glucose transporter GLUT1 (16–18). This metabolic

adaptation of macrophages, DCs and pDCs, is likely to

support the synthesis of metabolites that are essential to

immune functions, to satisfy energy needs for cell activation,

and to allow immune cells to be functional even in oxygen-

deprived environments. Moreover, glycolysis fuels the PPP to

generate biosynthetic precursors for nucleotides, amino acids,

and fatty acid synthesis (FAS), thereby supporting anabolic

growth and cytokine secretion (19). Furthermore, the NADPH

produced is used for the rapid production of microbicidal

reactive oxygen species (ROS) by NADPH oxidase, and for

glutathione regeneration, to maintain the redox balance.
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Hexokinase (HK) activity is the rate-limiting enzyme

controlling glucose entry into glycolysis (Figure 1). The

glucose-6-phosphate produced can be either degraded by the

glycolysis or serve as a precursor for ribose synthesis via the

pentose phosphate pathway or glycogen production. TLR4 cell

signaling induces both HK2 expression and phosphorylation in

DCs by at least 2 pathways (20). In murine bone-marrow-

derived DCs (BMDCs), TLR4 stimulation is known to induce

the secretion of pro-inflammatory cytokines through p38-

mitogen activated protein kinase (MAPK), c-Jun N-terminal

kinase (JNK), nuclear factor kappa-B (NF-kB), but also activates
TANK binding kinase 1 (TBK1)/inhibitor of NF-kB kinase

subunit epsilon (IKKϵ) and protein kinase B/Akt that

phosphorylates HK2 (5). This phosphorylation promotes HK2

binding to voltage-dependent anion channel (VDAC).
FIGURE 1

Interconnexion between innate immunity signaling pathways and central carbon metabolism of the cell. Hexokinase (HK) activity is the rate-
limiting enzyme controlling glucose entry into glycolysis. Intermediary metabolites of glycolysis are precursors of anabolic pathways (pentose
phosphate pathway, hexosamine pathway, glycerol-phospholipids and amino acids biosynthesis). Pyruvate is converted to acetyl-CoA into the
mitochondria, fueling the tricarboxylic acid cycle (TCA) cycle. This cycle is coupled to oxidative phosphorylation by the succinate
dehydrogenase (SDH) which is the complex II of the electron transfer chain (ETC). Under aerobic conditions, electron transport through the ETC
(Complex I to V) generates ATP by oxidative phosphorylation. HCV and HBV have been described as modulators of the central carbon
metabolism by different mechanisms, targeting glycolysis, lactate production, mitochondrial usage of pyruvate, fatty acid oxidation or synthesis.
Thereby these viruses can rewire the flow of metabolites in these connected metabolic pathways. Viral RNA and DNA are detected by retinoic
acid-inducible gene I (RIG-I) and cGAS respectively. RIG-I signaling is mediated by mitochondrial antiviral signaling protein (MAVS)
polymerization at the mitochondrial membrane, triggering TANK-binding kinase 1 (TBK1)/ inhibitor of NF-kB kinase subunit epsilon (IKKe)
activation. The stimulator of IFN genes protein (STING) is an essential signal transducer of cGAS and it also functions as an adapter in the
sensing of RNA viruses via RIG-I. Infected cells also produce danger signals such as high mobility group box 1 (HMGB1) which is a ligand of Toll-
like receptor (TLR) 4. TLR4 stimulation results in the activation of nuclear factor-kB (NFkB), c-Jun N-terminal kinase (JNK), p38-mitogen
activated protein kinase (MAPK), inducing the secretion of pro-inflammatory cytokines, and of TBK1/IKKe inducing interferon response factors
(IRFs)-dependent type I interferon secretion and phosphorylation of protein kinase B/Akt. Hexokinase-2 (HK2) phosphorylation at Thr473 by Akt
promotes HK2 binding to mitochondrial voltage-dependent anion channel (VDAC), where it also interacts with MAVS, the signaling adaptor of
RIG-I. Mitochondrial binding of HK2 is associated with enhanced glycolytic and reduced oxidative phosphorylation activities. In human
monocyte-derived DCs, p38-MAPK activation results in hypoxia-induced factor (HIF)-1a accumulation, enhancing the expression of metabolic
enzymes such as HK2, inducible nitric oxide synthase (iNOS) and pro-IL-1b. Nitric oxide (NO) radical produced by iNOS can inhibit the
mitochondrial respiratory chain. When succinate accumulates in the cell, this metabolite inhibits prolyl-hydroxylase domain (PHD) enzymes that
degrade HIF-1a thus favoring its accumulation. Adenine nucleotide translocase (ANT), fatty acid (FA), fatty acid transporter (FATP), glucose
transporter (GLUT), monocarboxylic acid transporter (MCT), triglyceride (TG).
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Mitochondrial binding of HK2 is associated with enhanced

glycolysis, reduced OXPHOS and resistance to apoptotic

signals (21). The subcellular localization of HK2 dynamically

regulates the catabolic versus anabolic fate of glucose-6-

phosphate, promoting glycolysis when bound to the

mitochondria and glycogen synthesis when located in the

cytosol (22). LPS stimulation of murine BMDCs and

macrophages through TLR4 also results, as a consequence of

OXPHOS inhibition, in a broken TCA cycle. This leads to

intracellular succinate accumulation that favors hypoxia

induced factor (HIF)-1a stabilization (23, 24). HIF-1a induces

the transcription of genes such as glycolytic enzymes, inducible

nitric oxide synthase (iNOS) and pro-IL-1b. NO production by

iNOS contributes to OXPHOS inhibition (4, 25). In human

monocyte-derived DCs, p38-MAPK activation upon TLR4

engagement results in HIF-1a accumulation, enhancing the

expression of glycolytic enzymes such as HK2 (8).

Additionally, phosphatidylinositol-4,5-bisphosphate 3-kinase

(PI3K)/Akt and mechanistic target of rapamycin (mTOR)

signaling pathways are important modulators of cellular

metabolism, sustaining anabolic metabolism and protein

translation (26).

Intricate interactions between hepatitis viruses and TLRs

have been reported with both activating and inhibiting effects

(27, 28). At steady state, in primary human hepatocytes (PHH),

only the expression of TLR3, 4 and 5 could be detected at the

protein level. However, a much larger panel of TLRs was

assessed in PHH by mRNA detection and activation by their

cognate ligands, indicating that more TLRs are functional (29–

31). In particular, it has been shown that HBV particles activate

PHH through TLR2 (32), and HBV-infected PHH respond to

TLR1/2 stimulation by the ligand Pam3CSK4 with an increasing

sensitivity with time, suggesting a feedforward mechanism (33).

HCV components can also be sensed by TLRs such as HCV Core

that is recognized by human TLR2 (34). Conversely, hepatitis

viruses have evolved countermeasures to block TLR signaling

(28). For example, the NS3/4A protease of HCV is able to cleave

TRIF, the signaling adaptor recruited by TLR3 (35). Another

example is HBsAg from HBV that inhibits TLR3 and TLR4

activation in liver cells by their cognate ligands (36) and alters

TLR2 response in macrophages (37). Finally, these complex

interactions between hepatitis virus and TLR signaling can be

manipulated for therapeutic purposes. For example, TLR1/2 and

3 ligands are investigated as a therapeutic approach to block

HBV with direct antiviral effects on infected hepatocytes,

whereas TLR7 and 8 ligands like GS-9620 and GS-9688 would

act indirectly through the stimulation of other liver cell types

such as pDC and macrophages (38). These interactions of

hepatitis viruses with TLR signaling pathways probably have a

direct impact on hepatocyte metabolism, but literature is

surprisingly limited. Indeed, HBV interaction with TLR2 has

been shown to increase LDL uptake and to induce the expression

of low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-
Frontiers in Immunology 04
methylglutharyl-coenzyme A reductase (HMGCR) in the

hepatocyte cell line HepG2 via TLR2 (39). Interestingly, TLR2

also participates in metabolic reprogramming of CD8+ T cells

and B cells in the woodchuck hepatitis virus (WHV) model and

upon HBV stimulation (40, 41). Enhanced immune functions

were associated to increased glucose consumption, lactate

secretion and glutaminolysis, supporting a key role of this

metabolic switch in the induction of an effective antiviral

immune response. Altogether, this supports further studies to

better explore the consequences of TLR engagement on liver

metabolism in the context of hepatitis virus infections.

Detection of viral components by cytosolic PRRs also triggers

metabolic reprogramming in liver cell types (29, 30). In particular,

PHH are functional for cytosolic RNA sensors of the RIG-like

receptor (RLR) family, retinoic acid-inducible gene I (RIG-I) and

melanoma differentiation-associated gene 5 (MDA5), that trigger

the downstream signaling molecule mitochondrial antiviral

signaling protein (MAVS). RIG-I and MDA5 are essential in the

sensing of HCV and HDV in hepatocytes (42–45). Several reports

have recently established functional links between glucose

metabolism and signaling pathways downstream of these

receptors (46–48), which are usually associated with antiviral

responses. On the one hand, glucose metabolism supports RIG-I

and MDA5 signaling by feeding the hexosamine biosynthesis

pathway that is required for the O-GlcNAcylation of MAVS (46).

On the other hand, lactate produced by glycolysis inhibits RLR

signaling by direct binding to MAVS (47). Besides, HK isoenzymes

more directly interfere with RLR signaling in hepatocytes. Indeed,

results obtained by Zhang W. et al. (47) indicated that HK2

interacts with both VDAC and MAVS. This mitochondrial

localization stimulates HK2 activity and by increasing lactate

production, inhibits MAVS signaling and restrains RIG-I-induced

IFN-b secretion. Interestingly, RIG-I activation by viral RNAs

dissociates HK2 from MAVS and thus reduces glycolysis and

lactate production (47). Therefore, the reciprocal negative

interactions between RLRs and HK2 form a toggle switch

controlling innate immunity. Accordingly, we showed that HK2

expression but not HK4 (or GCK), the liver-specific hexokinase,

inhibits RIG-I-induced IFN response in hepatocytic cell lines (49).

In the infected liver, the situation is even more complex because

hepatitis viruses have evolved mechanisms to block this pathway.

The HBV X protein (HBx) binds MAVS and blocks IFN-b
induction in response to RIG-I/MDA5 ligands (50–52). Upon

HCV infection, the NS3-NS4A cleaves MAVS but also the E3

ubiquitin ligase Riplet that activates RIG-I (53–58). The

consequence of these viral countermeasures on the metabolic

reprogramming induced by the RLR/MAVS pathway in the

context of HCV, HBV and HDV infections are largely unexplored.

Another important PRR that regulates metabolism is the

stimulator of IFN genes protein (STING). This protein is a

universal receptor for cyclic dinucleotides (cGAMP and cCGMP)

which plays a pivotal role in cytosolic DNA sensing cascades and

immune activation in response to DNA viruses, mitochondrial
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damages and genotoxic stress. Cyclic dinucleotides, which are

produced by the cyclic GMP-AMP synthase (cGAS) in response

to cytosolic DNA, bind to STING at the ER. This promotes the

recruitment of TBK1, which phosphorylates the transcription factor

IRF3, resulting in the production of IFN-I. Recently, several studies

have linked STING activation to metabolic pathways (59). The

STING pathway was identified as a key player in mediating obesity-

induced chronic low-grade inflammation (60). Interestingly,

chronic activation of TBK1 has been shown to inhibit mTORC1

activity, leading to dysregulated cellular metabolism (60). This is

suggesting that activation of the STING pathway may inhibit

mTORC1 signaling. Conversely, Meade N. et al. have shown that

by targeting the mTORC1/mTORC2 regulatory circuit, the F17

protein of poxviruses suppresses STING signaling (61), indicating

that the STING pathway is controlled by mTOR and could be

regulated by nutrient availability. In the liver, STING is mainly

expressed in non-parenchymal cells (including Kupffer cells,

sinusoidal endothelial cells and stellate cells) but is virtually

absent from hepatocytes (62). As a consequence, HBV DNA

sensing is ineffective in hepatocytes because STING expression is

too low (63). However, components of the cGAS/STING pathway

can be upregulated in obese patients, which could favor the sensing

of hepatitis viruses and aggravate inflammatory processes (64).

Even though, the virus can also avoid DNA detection by active

mechanisms (65). For example, it was shown that HBV polymerase

inhibits the sensing of cytosolic DNA by interfering with the

ubiquitin-dependent activation of STING (66). Besides, HCV has

been shown to inhibit STING-mediated IFN induction through

expression of the viral protein NS4B (67, 68).
Viral hepatitis infection interferes
with host cell metabolism

Although it was observed a long time ago that cellular

metabolism increases upon viral infection, especially glucose

consumption (69, 70), this phenomenon was little studied for

decades. It is only since the 2010s and the advent of

metabolomics and fluxomics technologies that the scientific

community investigated the interference of viruses with central

carbon metabolism at the cellular level. In recent years, many

viruses have been shown to stimulate the biosynthetic pathways

necessary for their replication (for review see (71)). However,

underlying molecular mechanisms are not fully described.

Furthermore, even if viral replication can be effectively

impaired by specific metabolic inhibitors, whether this also

involves indirect effects on antiviral immunity remains an

open question. Therefore, the characterization of molecular

mechanisms selected by viruses to control metabolism appears

as a way to identify new pathways controlling innate immunity.

Hepatotropic viruses are highly adapted to hepatocytes,

which have per se a very specific central carbon metabolism to
Frontiers in Immunology 05
regulate the energy homeostasis of the whole organism. Indeed,

hepatocytes control glycemia by storing glucose in the form of

glycogen upon insulin signaling (glycogenesis) or by producing

glucose through breaking down intracellular glycogen

(glycogenolysis) or gluconeogenesis from pyruvate. The liver is

also at the center of the lipoproteins metabolism that distributes

lipids throughout the organism. Hepatocytes have the ability to

produce triglyceride-rich very-low density lipoproteins (VLDL)

using lipids that are either neosynthesized from carbon sources

or recycled from uptake of circulating lipoproteins. Hepatocytes

are supplied by exogenous lipids coming from the intestine

through chylomicron uptake during immediate post-prandial

phases. Then, hepatocytes redistribute lipids in the form of

VLDL that are secreted in the blood during inter-prandial

phases. Thus, these cells have intrinsic specific capacities to

switch their metabolism from anabolism to catabolism,

depending on the body’s energy supply and demand.

Therefore, chronic viral infection of hepatocytes requires

specific viral strategies to control this unique cellular

metabolism. For HCV, the interference with carbohydrate-

lipid metabolism is exemplified by the metabolic syndrome

developed in chronically infected patients (hypertension,

insulin resistance, increased abdominal fat, dyslipidemia,

steatosis and overweight). In chimpanzees, the most relevant

in vivo model for HCV infection, a modulation of the genes

involved in lipid metabolism was observed in animals that

developed an acute infection and cleared or transiently cleared

the infection (72). This was not the case in the animal that did

not show an initial peak of viral replication but developed a

persistent infection with a viral load only detected after 10 weeks.

Upon HCV infection of hepatocytic cell lines, glucose

consumption and STAT3 signaling pathway are increased and

lipid peroxidation reduced (73), which correlates with

accumulation of very long-chain fatty acids in cells and

steatohepatitis in chronically-infected patients. Metabolomic

combined with transcriptomic analyses in primary hepatocytes

showed that metabolic pathways, including long chain fatty acid

metabolism, glycolysis, and glycogen metabolism, are also

altered by HBV (74). Although HBV is clearly inducing

metabolic modulations in infected hepatocytes, HBV infection

is probably not responsible for liver steatosis as opposed to HCV

infection (75). It is thus clear that liver viruses interfere with

host-specific cell metabolic pathways and we have reviewed

below the major pathways that are targeted by HCV or HBV

and its satellite virus HDV.
Hepatitis virus interference with
glucose metabolism

Like other viruses, HBV and HCV increase the glycolytic

activity of infected cells (76–78) in different ways to support viral
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replication and virion production (77, 79, 80). Since

intermediate metabolites of glycolysis are precursors for

multiple biosynthetic pathways, it is not surprising that

increasing glycolysis is paramount for viral particle synthesis.

This increase in glycolytic activity is often associated with a

decrease of oxidative phosphorylation, leading to the synthesis of

lactate from pyruvate and thus promoting the flow of glycolytic

intermediates required for anaplerosis. Likewise, during the

cellular transformation of hepatocytes into cancer cells, one of

the adaptations is the increase of glycolysis associated with

reduced oxidative phosphorylation. It is now clear that by

promoting the anabolic reactions necessary for its replication,

HCV reprograms the metabolism of normal hepatocytes

towards a profile similar to cancer cells (81, 82). By analyzing

the proteome of HCV-infected cells, Diamond et al. first revealed

in 2010 that HCV infection induces early perturbations in the

glycolysis, that has repercussions on the pentose phosphate

pathway and TCA cycle, which favor host biosynthetic

activities supporting viral replication and propagation (83). In

hepatoma cell lines, HCV decreases the expression of respiratory

chain proteins, thus contributing to the fall of oxidative

phosphorylation in the infected cell (84). The HCV-induced

shift from oxidative phosphorylation to glycolysis appears to be

dependent on activation of the nuclear factor HNF-4a (82). As

previously reported in tumor cells, HCV induces pyruvate

dehydrogenase kinase (PDK) activity which inhibits the entry

of pyruvate into the TCA cycle, further promoting aerobic

glycolysis (79). In this context, it was observed that HCV

proteins expression activates HIF-1a leading to enhanced

expression of glycolytic enzymes (76). The activation of HIF-

1a was confirmed in liver biopsy specimens from patients with

chronic hepatitis C. In Huh7.5 cells, the ectopic expression of

HCV NS5A has the potential to induce insulin resistance by the

phosphorylation of insulin receptor substrate (IRS)-1 at serine

residue (Ser307) followed by decreased phosphorylation of Akt,

forkhead box O1 (FoxO1) and glycogen synthase kinase 3 beta

(GSK3b), the downstream players of insulin signaling pathway

(85). In addition, the expression of the gluconeogenic enzyme

phosphoenolpyruvate carboxykinase (PEPCK) and associated

transcription factors are also up-regulated in hepatoma cells

stably expressing NS5A or infected with HCV subgenomic

replicon (86). In Huh7 cells, E2 expression was also a

modulator of IRS-1 by impairing its insulin-induced

phosphorylation and the phosphorylation of GSK3b, leading
to an inhibition of glucose uptake and glycogen synthesis,

respectively (87). It was also observed in HCV core transgenic

mouse model that the core protein-induced serine

phosphorylation of IRS-1 stimulates insulin resistance and

decreases glucose uptake (88). Nevertheless, a high level of

tumor necrosis factor-alpha, which has also been observed in

human HCV patients, was considered to be one of the bases of

insulin resistance in these transgenic mice. In hepatoma cell

lines, the degradation of IRS-1 by HCV core protein translates to
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impaired ability of insulin to inhibit the expression of the target

gene such as insulin growth factor binding protein-1 (IGFBP-1)

and may provide a mechanism of insulin resistance and

hyperglycemia observed in HCV patients (89). In HepG2 cell

line, core protein expression results in the suppression of Sirtuin

1 expression at the origin of the upregulation of PEPCK and

g lucose -6 -phospha t e dehydrogenase (G6PD) and

downregulation of glucose transporter 2 (GLUT2) (90, 91).

The downregulation of cell surface expression of GLUT2 is

also observed during infection (92). Meanwhile, we recently

described that the HCV protein NS5A enhances glycolysis

through a direct interaction with hexokinases, thereby altering

the catalytic parameters of these enzymes (93, 94). Interestingly

this enhancement of the glycolytic flux induced by NS5A does

not result in the accumulation of glycogen suggesting a more

complex rewiring of intracellular intermediate metabolites than

expected in hepatocytes facing an increased glycolysis.

Altogether, it suggests a complex interplay between viral

replication and glycolytic control.

HBV infection or HBx expression in primary rat hepatocytes

was also shown to alter glycolysis, and glycogen metabolism

(74). In this cellular model, HBx was reported to activate

mTORC1 and AMPK signaling, a master sensor of

intracellular energy (95). These two factors have opposing

effects on HBV replication and balance viral replication.

Interestingly, HNF-4a has also been involved in the epigenetic

regulation of glycolytic enzymes by HBV to meet the increased

energy demand of infected cells (96). A truncated form of HBx

called Ct-HBx was found to promote aerobic glycolysis by

inhibiting the expression of thioredoxin-interacting protein

(TXNIP) while increasing mTORC1 and HIF-1a expression

(97). Proteomic analysis showed that cellular interactors of

HBV whole-X protein (HBwx), a longer form of HBx, are

functionally enriched in host proteins involved in glycolysis

and gluconeogenesis (98). In hepatocytes, HBx protein also

stimulates the expression of G6PD, the rate-limiting enzyme of

the pentose phosphate pathway, in a Nrf2-dependent way (99).

Altogether, these data suggest that HBV reprograms cellular

glucose metabolism which may contribute to the development of

HBV-associated hepatocarcinoma. Glycolysis and amino acid

metabolism are also up-regulated in HCC cells transfected by the

HBV core protein (HBc), suggesting that HBc contributes to the

development of HCC (100). HBV surface glycoproteins were

also involved in the metabolic reprogramming of hepatocytes.

The large viral surface antigens of HBV (HBsAg-L) affects the

oligomerization of pyruvate kinase isoformM2 (PKM2), thereby

increasing glycolysis and lactate secretion (77). In addition, a

natural mutant of HBsAg-L that is partially deleted for the pre-

S2 region (pre-S2Delta) was reported to interact and activate the

acid a-glucosidase, a lysosomal enzyme essential for the

degradation of glycogen to glucose (101). In transgenic mice

liver, the expression of this pre-S2Delta mutant can induce HCC

and it initiates an mTOR-dependent glycolytic pathway
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contributing to glucose uptake and lactate production at the

advanced stage of tumorigenesis (102). It should be stated that

most of these results were obtained in various in vitro or in vivo

models following overexpression of viral proteins, which

imperfectly replicates physiological expression levels in the

liver of infected patients (103).
Hepatitis virus interference with
lipid metabolism

A strong link between chronic HCV infection and lipid

metabolism was discovered early because of liver steatosis

associated to chronic HCV infection (104), the dysregulation

of lipoprotein metabolism in patients (105) and because highly

infectious particles are lipo-viral particles (LVP) that have the

buoyant density of lipoproteins (106). Production of HCV viral

particles requires the lipoprotein synthesis and secretion

pathways (107) and cytoplasmic lipid droplets (LDs) are used

by the virus as a platform of assembly (108, 109). Accordingly,

LDs abundance, in which triglycerides are stored, is an essential

determinant of HCV particle production (110–112). HCV

infection up-regulates rate-limiting enzymes for cholesterol

and fatty acids biosynthesis (113). Several proteins essential for

LDs biogenesis, such as diacylglycerol acyltransferase (DGAT)-1

or perilipins are important host factors for HCV particles

production (114–117). Because most infectious HCV viral

particles are LVP that resemble lipoproteins, and because LDs

are essential for lipidation of VLDL, it has been proposed that

LDs are used in the first stages of infectious virions production

(118). Lipoproteins are cargoes of neutral lipids (i.e. triglycerides

and cholesterol esters) structured by proteins called

apolipoproteins, which play an important role in the biology

of circulating lipoproteins. While most apolipoproteins are

exchangeable between lipoproteins in the blood stream,

apolipoprotein B (ApoB) is structuring the particle and

remains a lipoprotein constituent from its synthesis as a VLDL

until its recapture by the liver. As LVP assembly depends on

lipoprotein synthesis and secretion, important efforts have been

made to elucidate how apolipoproteins interfere with HCV life

cycle. Indeed, LVP share with VLDL several components such as

ApoE, B, CI and CIII (119–124). In cell models, structural viral

components such as capsid or envelope proteins associate with

VLDL-precursor particles that form in the endoplasmic

reticulum intermembrane space. Then luminal LDs bearing

ApoE and ApoC can fuse with these precursor particles to

form LVPs, in a similar process to one occurring during

VLDL synthesis and maturation in hepatocytes. It was also

demonstrated that viral envelopes can directly interact with

ApoE reinforcing the intriguing interference of LVP

morphogenesis with lipoproteins components (124). Moreover,

ApoE is also involved in the interaction of LVP with scavenger

receptor class B type 1 (SR-B1), LDLR, VLDL receptor and
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heparan sulfate proteoglycans (HSPGs), promoting HCV entry

in hepatocytes (125–127). Interestingly it was recently reported

that ApoE is enriched on the HBV envelope and promotes HBV

infection and production (128). Targeting LDLR, both with

blocking monoclonal antibody or siRNA, inhibits HBV

infection (129). Targeting ApoE expression also interferes with

the secretion of enveloped HBV particles, but not with non-

enveloped nucleocapsid suggesting a role of ApoE in the

secretion of infectious HBV particles. Despite this

incorporation of ApoE into HBV viral envelope, HBV does

not appear to induce intracellular lipid accumulation as does

HCV. Detailed lipidomic analysis of HCV-infected hepatoma

cells showed that HCV infection induced changes in the lipid

composition of membranes and revealed that elevated

polyunsaturated fatty acids were needed for virion

morphogenesis (130). In liver cell lines replicating the virus,

an accumulation of intracellular LDs was induced upon hypoxia,

promoting the assembly of very low density, triglyceride-rich,

highly infectious particles, similar to LVPs circulating in patients

(131). These results establish a link between cellular respiration,

response to hypoxia, and the synthesis of HCV particles through

the modulation of lipid metabolism.

The expression of several HCV proteins was found to induce

either LDs accumulation or de novo triglyceride synthesis (132,

133). Numerous studies found that HCV core protein associates

to cellular lipid storage droplets both in liver biopsies from

chronically HCV-infected chimpanzees and in various

hepatocytic cell models (104, 134–136). HCV core protein

expression alone is able to induce liver steatosis (105, 137–

139) and the accumulation of larger or modified LDs in cultured

hepatocytes (140–144). LDs association of HCV Core protein

was found to determine the production of HCV infectious

particles (145–147). HCV-NS5A can colocalize with Core at

the surface of LDs (148, 149) and this is also important for viral

particles production (150). HCV-NS5A protein upregulates fatty

acid synthase (FAS) expression and therefore promotes

synthesis of triglycerides (151). This induction depends on the

AMPK/SREBP-1c signaling pathway (152). HCV RNA interacts

with DEAD box polypeptide 3, X-linked (DDX3X) through its 3’

untranslated region, activating IKK-a, which translocates to the

nucleus and induces a CBP/p300-mediated transcriptional

program involving sterol regulatory element-binding proteins

(SREBPs). This induces lipogenic genes and enhances core-

associated LD formation to facilitate viral assembly (153).

HBV is also inducing major changes in lipid metabolism of

hepatocytes (75). In the liver of HBV transgenic mice, the

expression of genes involved in lipid synthesis is increased

(154, 155). Chronic HBV infection associates with lipoproteins

disorders included decreased circulating high density

lipoproteins (HDL) and ApoA levels. HBV inhibits the

transcription and translation of ApoA5, an apolipoprotein

involved in the regulation of lipid metabolism, through its

core gene (156). HBV also inhibits the synthesis and secretion
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of ApoC3 both in vivo and in vitro (157). It was found that HBx

expression alone can cause lipid accumulation in hepatocytes,

likely mediated by SREBP1 and peroxisome proliferator-

activated receptor g (PPARg) (158). HBx can also increase the

expression of liver fatty acid binding protein 1 (FABP1), a key

driver gene of lipid accumulation in hepatoma cells, which level

was enhanced in the sera of HBV-infected patients and the sera

and liver of HBV transgenic mice (159). The induction of the

steatogenic factors SREBP-1c, FAS, and PPAR can be triggered

by liver-X-receptor (LXR) which is induced by HBx in vitro and

in transgenic mice and is increased in human HBV-associated

HCC (160). Intracellular lipids are also a source of energy that

can be mobilized to fuel mitochondrial activity. Fatty acid

oxidation (FAO) in the mitochondria produces acetyl-CoA

that will enter the TCA cycle, fueling OXPHOS and generating

large amounts of ATP. It was found that HBx interacts with

essential enzymes for lipid metabolism (161) and activates the

FAO upon glucose deprivation of cells and therefore plays a

critical role for the survival of HBV-induced HCC cells (162).

HBV also enhances nicotinamide phosphoribosyltransferase

(NAMPT) expression, a critical rate-limiting enzyme involved

in NAD synthesis, to support viral replication (163). NAD acts

in the various metabolic signaling pathways as a coenzyme, and

notably in fatty acid oxidation. NAD synthesis is also crucial to

survival and proliferation of cancer cells.

Hepatocytes are also the cells that synthesize bile acids from

cholesterol. Bile acid secretion into the intestine is primordial to

fat emulsion before being absorbed by enterocytes. 90% of

secreted bile acids are indeed reabsorbed and recycled through

enterohepatic transport. Both HBV and HDV are indirectly

dependent on bile salt metabolism for their infectivity, since

they use as a receptor the bile acid transporter sodium

taurocholate co-transporting polypeptide (NTCP), a

transmembrane protein highly expressed in human

hepatocytes (164). Later on, in the HDV replication cycle, an

essential step in the virus assembly process involves the post-

translational prenylation of the large isoform of the delta antigen

(HDAg-L), introducing a lipid moiety (farnesyl) derived from

the mevalonate-isoprenoid-cholesterol pathway. Preventing

prenylation effectively abolishes virus particle formation (165).

Therefore, farnesyl transferase inhibitors have been developed

and Lonafarnib is now evaluated in advanced clinical trials to

treat HDV-infected patients (166). Bile acids are also ligands of

transcription factors such as farnesoid-X-receptor alpha (FXR).

It was demonstrated that bile acids activate in vitro HCV

replication through FXR (167, 168). Moreover, FXR

heterodimers with retinoid X receptor alpha (RXR) can bind

two sequences in the cccDNA of HBV, located in enhancer II

and core promoter transcription regulatory regions (169).

Indeed, activation of FXR by ligands resulted in inhibition of

HBV infection in in vitro differentiated HepaRG cells and PHH,

as well as in an in vivomouse model (170). It was also found that

a specific agonist of RXR inhibited HBV infection while
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knockdown of RXRa expression enhanced viral infection

(171). This inhibitory effect on early-stage HBV infection is

mediated by arachidonic acid and prostanoids. Inversely, it has

been shown that HBV infection induces changes in FXR

expression and activity with modifications of FXR target genes

expression in a humanized mouse model and in liver biopsies

from chronically infected patients (172). Finally, HBc protein

expression enhanced the cholesterol biosynthesis pathway and

inhibited the cholesterol degradation pathway in synergy with

ethanol (173).

All these results show that hepatitis viruses have a significant

impact on hepatocyte metabolism. This can be due to the active

reprogramming of specific pathways by viral proteins through

molecular interactions. This may also simply reflect the

adaptation of host cell metabolism to viral replication that

consumes metabolites and energy in large quantities. A third

mechanism is the activation of innate immunity pathways by

viruses which is known to trigger metabolic changes as described

above. When studying infected hepatocytes, we usually observe

the overall result of these different interactions, and we only

partially understand their specific contributions in the metabolic

changes induced by hepatitis viruses. Finally, this necessarily has

consequences on the innate immune response of infected

hepatocytes. This is due to the complex interplay between

cellular metabolism and innate immunity as described in part

1. This suggests that modulation of central metabolic pathways

by HBV and HCV not only serves to meet the demand in basic

metabolites during viral propagation, but also contributes to the

inhibition of the innate antiviral response (Figure 1). It is also

tempting to speculate that the glycolytic switch induced by these

viruses promotes the expression of inflammatory cytokines

contributing to disease progression. Moreover, enhanced

aerobic glycolysis and lactate accumulation in this context may

further inhibit MAVS activation, as described in a non-

infectious context (47), thereby restraining the activation of

the anti-viral RIG-I/MAVS pathway. Altogether, this supports

the idea that metabolic pathway modulators could be used to

starve hepatitis viruses from metabolites they need but also to

restore the immune response in order to clear the infection

(Figure 2). In the following chapter of this review, we provide

evidence supporting this concept for the development of

innovative therapies against hepatitis viruses.
Stimulation of the innate antiviral
response in hepatocytes with
metabolic drugs

Since cellular metabolism is connected to the innate antiviral

response in hepatocytes, this functional interaction gives

leverage for developing innovative host-directed therapies.

Drugs interfering with nucleoside/nucleotide biosynthesis well

illustrate this idea since these antimetabolites enhance the innate
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antiviral response. A good example is provided by inhibitors of

inosine monophosphate dehydrogenase (IMPDH), an enzyme

conver t ing inos ine monophosphate into xanthine

monophosphate in the purine nucleotide biosynthesis

pathway. IMPDH inhibition with mycophenolic acid (MPA)

has been shown to inhibit HCV replication in Huh7 cells both in

vitro and in xenografted mice (174). IMPDH was also identified

as a prominent target for inhibiting hepatitis E virus (HEV)

replication (175). Indeed, MPA and other IMPDH inhibitors

potently restrain the replication of HEV in Huh7 cells. Antiviral

properties of MPA were associated to the induction of antiviral

interferon-stimulated genes (ISGs) and synergistic effects with

IFN-a stimulation (174, 175). Although initially controversial,

recent reports showed that this induction of ISGs is reversed by

guanosine supplementation of culture medium, thus

demonstrating the role of purine depletion in MPA-treated

cells (175). Besides, ISG induction is mediated by a non-

canonical pathway that is independent of both IFN-I

induction and JAK/STAT signaling. It has been suggested that

a similar mechanism contributes to the anti-HCV effect of

ribavirin, another inhibitor of IMPDH that is acting

synergistically with IFN-a (176). However, these observations

are apparently specific to transformed cells as a recent report
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showed that in PHH and in the non-transformed cell line

HepaRG, ribavirin does not induce but rather represses and

resets the expression of ISGs by chromatin remodeling (177).

Besides, this phenomenon appears to be independent of IMPDH

inhibition. Whether MPA is also showing the same activity in

PHH and HepaRG cells has to be determined. More recently, it

has been shown that an excess of guanosine also inhibits HCV

replication (178). Indeed, when guanosine is added to the culture

medium, intracellular levels of NDPs and NTPs are modified,

thus increasing the frequency of mutations in HCV genome

during viral replication. Quite unexpectedly, it was also found

that the inhibition of enzymes upstream of IMPDH in the purine

biosynthesis pathway does not inhibit but rather enhances the

replication of HEV (175). Altogether, these results demonstrate

that drugs inducing imbalance in the pool of purine nucleoside/

nucleotide have an impact on the expression of ISGs, and this

clearly contributes to their antiviral effect. However, the

mechanisms involved need to be further investigated in

primary cell cultures.

Conflicting results have been reported regarding the effect of

purine biosynthesis inhibitors on HBV replication. MPA has

been shown to enhance the replication of HBV in human

hepatocyte cell lines HepG2 and Huh7 (179, 180). This effect
FIGURE 2

Using drugs targeting host metabolic pathways as an antiviral strategy. Modifying host cell metabolism using drugs will alter the balance in
several metabolite pools. This can primarily prevent viral replication by depletion in essential metabolites. These metabolic changes can be
detected by cellular metabolic sensors and have an impact on both the innate immunity response and the cellular machinery. Stalled cellular
machinery could both enhance the antiviral immune response and prevent viral propagation.
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is dependent on p38-MAPK and is reversed by the addition of

guanosine in the culture medium, demonstrating the role of

purine inhibition in this phenomenon (180). Conversely, an

inhibitory effect or no effect were reported by other groups when

treating HBV-replicating cell lines with MPA or VX-497,

another IMPDH inhibitor (181–183). Most importantly, MPA

was shown to inhibit HBV replication in PHH that represents

the most relevant in vitro model for HBV infection (184). In

these cells, the inhibitory effect of MPA was reversed by the

addition of guanosine. Besides, MPA showed no antiviral effect

in liver transplanted patients with HBV (185). Therefore, the

inhibition of purine biosynthesis has variable effects on HBV

infection depending on the cellular model and the metabolic

status of host cells. Whether modulation of the innate immune

response contributes to the impact of MPA on HBV replication

has not been investigated yet.

The pyrimidine biosynthesis pathway was also involved in

the replication of hepatitis viruses. Dihydroorotate

dehydrogenase (DHODH) is the fourth rate-limiting enzyme

in the de novo pyrimidine biosynthesis pathway and represents a

prime target for pharmacological drugs. DHODH inhibition has

been shown to block the replication of HCV in Huh7.5 or

Huh7.5.1 cells (186, 187). Quite similarly, DHODH inhibition

impaired the replication of HEV in Huh7 cells (175).

In t e r e s t ing l y , DHODH inh ib i t i on wi th d i ff e r en t

pharmacological drugs has been shown to induce the

expression of several ISGs through an IFN-independent and

JAK/STAT-independent pathway (175). This induction was

reversed by the addition of uridine, thus demonstrating that

pyrimidine depletion is responsible for this induction of innate

antiviral genes. The inhibition of orotidine-5’-monophosphate

decarboxylase (ODCase), an enzyme that is two steps

downstream of DHODH in the de novo pyrimidine

biosynthesis pathway, showed a similar effect on ISG

induction and HEV inhibition (175). In a similar fashion, the

pyrimidine biosynthesis inhibitor Gemcitabine also impaired the

replication of HEV through the activation of STAT1 and the

induction of ISGs through a non-canonical pathway (188).

Surprisingly, DHODH inhibitors Leflunomide and FK778 were

initially reported to enhance the replication of HBV when tested

in HepG2 and Huh7 cells, and this was confirmed in a recent

report (179). However, the inhibition of the carbamoyl-

phosphate synthetase 2, aspartate transcarbamylase and

dihydroorotase (CAD) enzyme, which is upstream of DHODH

in the pyrimidine biosynthesis pathway, showed no effect on

HBV replication in HepAD38 or HepG2 cell lines (189). As

above, this suggests that inhibitors of pyrimidine biosynthesis

have variable effects on HBV that are highly context and cell type

dependent. Finally, the same report showed that the CAD

inhibitor PALA suppresses the replication of HDV both in

Huh-106 and PHH (189). This antiviral effect of PALA is

reversed by the addition of uridine to culture medium, thus

demonstrating that it depends on pyrimidine biosynthesis
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inhibition. It is thus expected that DHODH inhibitors would

also be able to inhibit HDV replication, but this has not yet been

experimentally validated.

Besides nucleoside/nucleotide biosynthesis pathways,

glucose metabolism also represents a therapeutic target to

enhance the immune response against hepatitis viruses.

Besides the already described O-GlcNAcylation of MAVS (46),

hexosamine biosynthetic pathway positively regulates host

antiviral response against HBV in vitro and in vivo through O-

GlcNAc modification of sterile alpha motif and histidine/

aspartic acid domain-containing protein 1 (SAMHD1) (190).

Indeed, SAMHD1 is an interferon-induced deoxynucleotide

triphosphate triphosphohydrolase (dNTPase) that restricts the

replication of DNA viruses including HBV by degrading the

intracellular pool of dNTPs. The O-GlcNAcylation of SAMHD1

stabilizes the expression of this restriction factor and increases its

antiviral activity. These results reveal a link between the

hexosamine pathway derived from the fructose-6-phosphate of

the glycolytic pathway and innate antiviral immunity.

Other lipid-related factors that are targeted for antiviral

purposes in the liver include components of the bile acid

pathways, especially the bile acid transporter NTCP and the

nuclear receptor FXR. Some links have been unraveled between

bile acids metabolism and innate immunity. NTCP is a

membrane transporter for bile acid but also an entry receptor

for HBV and HDV that share the same surface glycoprotein

HBs. Bulevirtide, a NTCP inhibitor derived from the preS1

peptide of HBs, is now used in the treatment of chronic HDV

infection. Interestingly, it has been shown that by binding

NTCP, Bulevirtide reverts the inhibitory effect of bile acids on

the interferon response. This suggests that Bulevirtide inhibits

HDV propagation not only by interfering with viral entry but

also by restoring innate immunity (191). Since it has been

proposed that FXR is hijacked by HBV to regulate viral

transcription in cooperation with PGC-1a and SIRT1 (192),

FXR modulators are now developed as HBV inhibitors and are

evaluated in clinical trials. Whether the antiviral activity of FXR

ligands on HBV infection implies a modulation of the immune

response remains to be determined, but recent studies showed

that FXR regulates inflammation. A direct interaction between

FXR and NF-kB has been described resulting in a negative

crosstalk between FXR and NF-kB signaling pathways. It has

also been shown that treatment with FXR agonists inhibit the

expression of inflammatory mediators in response to NF-kB
activation in both HepG2 cells and in vitro cultured primary

hepatocytes (193, 194). This nuclear receptor is also a negative

regulator of NLRP3 inflammasome with trans-repressive effects

on NF-kB and AP-1 target gene expression (195). Therefore,

FXR ligands may have dual effects both on the virus and the

innate immune response, and should help control the

inflammatory response associated with chronic hepatitis. Like

bile acids, vitamin D biosynthesis depends on cholesterol

metabolism. Interestingly, vitamin D exhibits antiviral effects
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on HCV and this activity is associated with the induction and the

amplification of IFN-I signaling (196, 197). Another cholesterol

derivative and female sex hormone, 17b-estradiol, has been

shown to protect cells from HCV infection and this antiviral

effect depends on IFN-I induction (198). Altogether, these

observations suggest that cholesterol metabolism in the liver

could be targeted to inhibit hepatitis viruses through the

modulation of innate immunity pathways.

Other metabolic pathways have been implicated in the

regulation of antiviral immunity against several viruses.

Although their impact on hepatitis viral infections has not

been investigated yet, their broad antiviral activity deserves

attention. This includes itaconate and its isomers metaconate

and citraconate that were recently reported to inhibit the

production of influenza virus particles by A549 infected cells

(199). Immunomodulatory properties of itaconate have been

extensively reviewed elsewhere (200). Interestingly, the TCA

cycle intermediate succinate was also described to inhibit

influenza virus infection both in vitro and in vivo by

succinylation of the viral nucleoprotein (201). The potential

impact of these metabolites on hepatitis virus infections deserves

to be analyzed. Other metabolic pathways of prime interest

include the tryptophan/kynurenine pathway. Although

kynurenine is a well-known immunosuppressive metabolite, its

degradation by kynurenine-3-monooxygenase (KMO) and

downstream enzymes produces quinolinic acid that shows

potent antiviral effects. Quinolinic acid has been shown to

activate the N-methyl-D-aspartate receptor (NMDAR), which

triggers Ca2+ influx, the phosphorylation of calcium/

calmodulin-dependent protein kinase II (CaMKII) and IRF3,

and finally leads to IFN-I production (202). This study shows

that quinolinic acid produced from tryptophan has broad

antiviral activity against HSV-1, adenovirus 5, VSV, influenza

virus, ZIKV, DENV and SARS-CoV2. Whether it could also

inhibit hepatitis viruses was not investigated.
Conclusion

The development of drugs targeting host cellular metabolism

as antivirals is an attractive strategy to deprive viruses of the

metabolites they need and, more generally, to make the cellular

environment inappropriate for viral replication (Figure 2).

Targeting metabolism can also induce cellular stress that shuts

down basic machinery such as protein translation, with indirect

inhibitory effects on viral replication. As discussed in this review,

a third possibility is that altered metabolism is detected by

metabolic sensors that activate the innate immune response

(Figure 2). This fits the interesting concept of “homeostasis-

altering molecular processes” (HAMPs) developed by A. Liston

and S.L. Masters in the context of inflammasome activation
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(203). Indeed, metabolic imbalance induced by specific viruses

and drugs can be viewed as HAMPs, and quite similarly to

PAMPs (pathogen-associated molecular patterns) and DAMPs

(damage-associated molecular patterns), stimulate the immune

response. Thus, targeting metabolic pathways to stimulate host

innate immunity now appears to be a valuable strategy for

controlling the replication of viruses. Modulators of nucleotide

biosynthesis pathways have proven, for example, their ability to

inhibit hepatitis viruses while stimulating the innate immune

response. The exact contribution of immunity factors in the

antiviral effect of these drugs needs to be further explored, and

whether this general concept can be translated in vivo has to be

determined. Lipid and cholesterol biosynthesis pathways are also

considered as therapeutic targets in the treatment of HBV based

on observations that drugs inhibiting these pathways decrease

the production of subviral and/or viral particles (75, 204).

Interestingly, serum lipid profiles change in HCV-infected

patients treated with direct-acting antivirals (DAA) and this

correlates with viral clearance (205, 206). Although direct

evidence is missing, it is tempting to speculate that

modulation of lipid metabolism associated to DAA contributes

to viral clearance (207). In the case of HBV and HDV,

metabolism could be manipulated on purpose with drugs to

improve viral inhibition, to restore the immune response and

finally to achieve functional cure. This will deserve attention in

the near future and viral hepatitis, because of the close

connection between viral replication, metabolism and innate

immunity in the liver, is clearly an appropriate field to explore

this concept.
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ASA21007CRA, ECTZ72972, ECTZ136480 and the Fondation

pour la Recherche Médicale Grant DEQ20160334893.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1033314
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Diaz et al. 10.3389/fimmu.2022.1033314
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Immunology 12
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Muskiet FAJ, Carrera-Bastos P, Pruimboom L, Lucia A, Furman D. Obesity
and leptin resistance in the regulation of the type I interferon early response and
the increased risk for severe COVID-19. Nutrients (2022) 14:1388. doi: 10.3390/
nu14071388

2. Zhou L, He R, Fang P, Li M, Yu H, Wang Q, et al. Hepatitis b virus rigs the
cellular metabolome to avoid innate immune recognition. Nat Commun (2021)
12:98. doi: 10.1038/s41467-020-20316-8

3. Perrin-Cocon L, Diaz O, Aublin-Gex A, Vidalain P-O, Lotteau V.
Reprogramming of central carbon metabolism in myeloid cells upon innate
immune receptor stimulation. Immuno (2021) 1:1–14. doi: 10.3390/immuno1010001

4. Everts B, Amiel E, van der Windt GJW, Freitas TC, Chott R, Yarasheski KE,
et al. Commitment to glycolysis sustains survival of NO-producing inflammatory
dendritic cells. Blood (2012) 120:1422–31. doi: 10.1182/blood-2012-03-419747

5. Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, et al. TLR-
driven early glycolytic reprogramming via the kinases TBK1-IKKepsilon supports
the anabolic demands of dendritic cell activation. Nat Immunol (2014) 15:323–32.
doi: 10.1038/ni.2833

6. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al.
Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell
activation. Blood (2010) 115:4742–9. doi: 10.1182/blood-2009-10-249540

7. Perrin-Cocon L, Aublin-Gex A, Sestito SE, Shirey KA, Patel MC, Andre P,
et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic
reprogramming in dendritic cells, and protects mice from lethal influenza infection.
Sci Rep (2017) 7:40791. doi: 10.1038/srep40791

8. Perrin-Cocon L, Aublin-Gex A, Diaz O, Ramiere C, Peri F, Andre P, et al.
Toll-like receptor 4-induced glycolytic burst in human monocyte-derived dendritic
cells results from p38-dependent stabilization of HIF-1alpha and increased
hexokinase II expression. J Immunol (2018) 201:1510–21. doi: 10.4049/
jimmunol.1701522

9. Guak H, Al Habyan S, Ma EH, Aldossary H, Al-Masri M, Won SY, et al.
Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell
migration. Nat Commun (2018) 9:2463. doi: 10.1038/s41467-018-04804-6

10. Vijayan V, Pradhan P, Braud L, Fuchs HR, Gueler F, Motterlini R, et al.
Human and murine macrophages exhibit differential metabolic responses to
lipopolysaccharide - a divergent role for glycolysis. Redox Biol (2019) 22:101147.
doi: 10.1016/j.redox.2019.101147

11. Bajwa G, DeBerardinis RJ, Shao B, Hall B, Farrar JD, Gill MA. Cutting edge:
Critical role of glycolysis in human plasmacytoid dendritic cell antiviral responses.
J Immunol (2016) 196:2004–9. doi: 10.4049/jimmunol.1501557

12. Fekete T, Sütö MI, Bencze D, Mázló A, Szabo A, Biro T, et al. Human
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