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recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
To date, the only curative treatment for high-risk or refractory hematologic

malignancies non-responsive to standard chemotherapy is allogeneic

hematopoietic transplantation (allo-HCT). Acute graft-versus-host disease

(GVHD) is a donor T cell-mediated immunological disorder that is frequently

fatal and the leading cause of non-relapse mortality (NRM) in patients post allo-

HCT. The pathogenesis of acute GVHD involves recognition of minor and/or

major HLA mismatched host antigens by donor T cells followed by expansion,

migration and finally end-organ damage due to combination of inflammatory

cytokine secretion and direct cytotoxic effects. The endothelium is a thin layer

of endothelial cells (EC) that line the innermost portion of the blood vessels and

a key regulator in vascular homeostasis and inflammatory responses.

Endothelial cells are activated by a wide range of inflammatory mediators

including bacterial products, contents released from dying/apoptotic cells and

cytokines and respond by secreting cytokines/chemokines that facilitate the

recruitment of innate and adaptive immune cells to the site of inflammation.

Endothelial cells can also be damaged prior to transplant as well as by

alloreactive donor T cells. Prolonged EC activation results in dysfunction that

plays a role in multiple post-transplant complications including but not limited

to veno-occlusive disease (VOD), transplant associated thrombotic

microangiopathy (TA-TMA), and idiopathic pneumonia syndrome. In this mini

review, we summarize the biology of endothelial cells, factors regulating EC

activation and the role of ECs in inflammation and GVHD pathogenesis.
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Introduction

Endothelial cells (ECs) form a single cell layer that line the

inside of all blood and lymphatic vessels controlling the

exchange of nutrients and oxygen between blood and tissues/

organs (1, 2). In addition, they transport immune cells across the

body to reach tissues and organs regulating immune surveillance

under steady-state as well as infectious complications and

malignant disorders. Under normal conditions, EC tight

junctions regulate paracellular diffusion and homeostasis of

tissues and organs. However, under inflammatory conditions,

dramatic changes occur to the junction ultrastructures allowing

the entry of immune cells (2–4). Acute graft-versus-host disease

(GVHD) mediated by alloreactive T cells in the donor graft is a

frequently fatal complication and the leading cause of non-

relapse mortality (NRM) in patients post allo-HCT. Transplant-

associated microangiopathy (TA-TMA), veno-occlusive disease

(VOD), idiopathic pneumonia syndrome and accelerated

arteriosclerosis are vascular injury syndromes that occur after

allo-HCT (5). During allo-HCT, ECs can be directly damaged

and/or activated via multiple mechanisms – i) chemotherapy

and radiation included in the conditioning regimen; ii) cytokines

released by injured tissues; iii) translocation of endotoxins

through the damaged gastrointestinal tract as well as iv)

immunosuppressive prophylactic regimens used to prevent

acute GVHD, Figure 1. Apart from these early factors, ECs are
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also a target of alloreactive donor T cells that recognize the HLA

mismatched antigens on ECs and mediate EC damage (5–7).
Endothelial cell biology in GVHD

The permeability of the vascular system is regulated at the

junctions of adjacent ECs separated by adherent or tight

junctions (1, 8, 9), Figure 2. Even though ECs are found across

the whole circuit, their heterogeneity is quite spectacular. For

example, inside the kidney glomerulus, pores are present in tight

junction ultrastructures which increase permeability to fluids

and allow the filtration of glucose, urea, and sodium (8, 10, 11).

At the other end of the spectrum, ECs in the brain present tight

junctions which form a blood-brain barrier to prevent the entry

of blood born cells/pathogens, suggesting barrier permeability is

highly regulated and is tissue/organ specific (1, 2, 9, 12).

The vascular endothelial cadherin (VE-cadherin) is found

across the entire endothelium, forming adherent junctions and is

particularly important for maintaining endothelial permeability

(4, 8). Apart from their roles in adhesion, transmembrane

proteins forming adherent junctions can prevent growth

through contact-inhibition and importantly allow passage of

leukocytes through the endothelium (13). The structure of tight

junctions is largely dependent on claudin and occludin along

with intermediary proteins including catenin (a, b, p120) and
FIGURE 1

Factors affecting EC activation in GVHD. High dose chemotherapy induces systemic inflammation and endothelial cell damage. In response to
inflammatory cytokines and Damage Associated Molecular Patterns (DAMPs), ECs undergo activation and express E and P selectins as well as
VCAM-1 and ICAM-1 integrins to recruit innate and later adaptive immune cells at the inflammatory site. Inside the lymph node, presentation of
allogeneic peptides by host dendritic will induce activation of CD4+ and CD8+ T cells. While cytotoxic CD8+ T cells further damage ECs,
release of inflammatory cytokines such as IFN-g and TNF-a by CD4+ T cells can bind to their receptors on ECs and further contribute to EC
activation. In response to damage and activation, ECs produce and secrete von Willebrand factor (vWf) as well as angiotensin 2 (Ang-2) and
soluble thrombomodulin (sTM). Circulating levels of these proteins are considered a biomarker of EC injury. Created with BioRender.com.
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zona occluden (ZO) families (1, 12), while junctional adhesion

molecules (JAMs) maintain the apicobasal polarity of cells (9).

Reduced expression of tight junction (ZO-1) and adherent

junction (VE-Cadherin) proteins result in increased

endothelial leakage in GVHD target organs liver and colon in

experimental models of GVHD (14) showing the importance of

barrier function in disease pathogenesis. There was also evidence

of increased endothelial cell apoptosis in experimental models of

GVHD and patients with GI-GVHD (14).

Cell adhesion molecules such as selectins and integrins play a

crucial function in the interaction between ECs and immune cells.

Selectins are sub-divided into three groups: P-selectin (platelets

and ECs), E-selectin (ECs) and L-selectin (leukocytes) (2, 15). L-

selectin allows leukocytes to access lymph nodes and following

lymphocyte activation, their surface expression is generally

downregulated to prevent lymph node homing (16). P-selectin

glycoprotein ligand 1 (PSGL-1) is the main ligand for all three

types of selectins and requires posttranslational modifications for

its activation (17). Type II leukocyte adhesion deficiency (LAD-II)

is a disease caused by deficiency in the posttranslational

modification of PSGL-1, resulting in the inability of leukocyte

binding to any selectin, leading to bacterial infection of the

mucosal membrane and skin (18, 19).

ECs can rapidly initiate the inflammatory response since

they store pre-formed molecules in specialized organelles called
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Weibel-Palade bodies. Weibel-Palade bodies contain a wide

range of inflammatory and angiogenic factors including but

not limited to von Willebrand factor, P selectin, Angiotensin-2,

IL-8, endothelin, and their content can vary based on the

microenvironment (20). Pre-formed P-selectin is found in the

Weibel-Palade bodies and upon EC activation, P-selectin is

rapidly expressed to initiate recruitment of innate immune

cells to the inflammatory site. Unlike P-selectin, E-selectin is

not pre-formed; the synthesis of E-selectin occurs during EC

activation and for this reason, its expression is normally delayed

compared with P-selectin. In preclinical GVHD mouse models,

recipients deficient for P-selectin displayed reduced GVHD

mortality with associated reduction in alloreactive T cell

infiltration into GVHD target organs (21).

PSGL-1 and CD44 expressed on leukocytes can bind E-

selectin to modulate the rolling of immune cells on the

endothelium (15, 19, 22–24). Innate immune cells such as

neutrophils constitutively express PSGL-1 whereas T cells

require cytokines and antigen presentation to induce

posttranslational modifications required for PSGL-1 function

(15, 17, 25) and subsequent rolling. As a result, neutrophils are

the first cell type to be recruited at inflammatory sites while

homing of T lymphocytes to inflammatory sites occurs later

because expression of functional PSGL-1 requires activation (22,

25, 26). However, donor T cells deficient for PSGL-1 displayed

similar migration patterns and caused GVHD similar to

wildtype donor T cells in experimental acute GVHD mouse

models suggesting that other P-selectin ligands might be

involved in T cell infiltration in GVHD (21). In experimental

models of chronic GVHD, it was shown that donor PSGL1hiCD4

+ peripheral T cells differentiate into PSGL1loCD4+ tissue-

resident memory T cells that in turn support B cell

differentiation and autoreactive antibody production (27).

Integrins are a large family of heterodimers containing a-
and b- chains forming a receptor at the cell surface (9, 28) that

are critical for tethering and rolling of leukocytes on the

endothelium. Neutrophils express integrin macrophage-1

(MAC-1) that has a wide range of ligands whereas T cells

express lymphocyte function-associated antigen-1 (LFA-1) and

a1b1 (VLA-1), a4 and b7 integrins that bind fewer types of

ligands, mainly intracellular adhesion molecules-1-5 (ICAM-1-

5), JAM-1 and vascular cell adhesion molecule-1 (VCAM-1)

present on leukocytes, epithelial and endothelial cells (29–31).

Integrins have three different conformational forms that

affect their affinity to the ligand: bent-closed (inactive, basal

state), extended-closed (active, low-affinity) and extended-open

(active, high-affinity) (4, 32). Conformational changes of

integrins can be induced by signaling via chemokine receptors,

selectins and Toll-like receptors (TLRs), passing from an

intermediate to high affinity state (33–35). Following this

change, integrins bind to their specific ligands and are

immobilized. The glycocalyx found on ECs is rich in

glycosaminoglycans that immobilize important chemokines
FIGURE 2

Schematic representation of gap junction, adherent junction,
and tight junction. Gap junction is mediated by connexins.
Adherent junction is mediated by two E-cadherins. Tight
junction is mediated by JAMs, occludins and claudins. Created
with BioRender.com.
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forming a chemotactic gradient thereby facilitating the homing

of leukocytes bearing the cognate chemokine receptors (CCR4/

CCR10 in the skin, CCR9 in the gut and CCR7 in secondary

lymphoid organs) and contribute to the tissue-tropism involved

in GVHD pathogenesis (36–39). Each type of TLR can respond

to pathogen-associated molecular patterns (PAMPs) or damage

associated molecular pattern molecules (DAMPs) released by

tissue injury caused by the conditioning regimen pre allo-HCT.

Release of reactive oxygen species and DAMPs such as high

mobility group box 1 (HMGB1) further amplify inflammatory

cytokine production via TLR signaling thereby positioning ECs

as both a target and contributor of the “cytokine storm” that

perpetuates GVHD (40–42). TLR stimulation signals through

mitogen-activated protein kinases (MAPKs), promoting the

release of pro-inflammatory cytokines and increasing

expression of E/P-selectin and integrins ICAM-1 and VCAM-

1 on ECs (35, 43, 44). In mouse models of acute GVHD,

allogeneic recipients showed upregulation of VCAM-1, ICAM-

1 in the GI tract compared to syngeneic recipients with

concomitant increase in T cell infiltration in GVHD target

organs of skin, liver and GI tract (45). Lymphocytes in the

intestinal mucosa express b7 integrins that bind to mucosal

addressing cell adhesion molecule-1 (MadCAM-1) and E-

cadherin, expressed on mucosal endothelium and intestinal

epithelial cells resulting in donor T cell infiltration into the

intestine (38, 46). Absence of b2 integrins on donor T cells

resulted in significant downregulation of T cell infiltration in

experimental GVHD (47).

In addition, integrin binding on the endothelium can

promote the expression of pro-inflammatory genes, suggesting

that integrin signaling can influence inflammatory

microenvironment (48). Circulating pro-inflammatory

cytokines such as TNFa, IFNg, IL-1, and IL-6 are elevated

during acute GVHD and can activate ECs (49, 50). Binding of

TNFa to its receptor on ECs (TNFRI) activates a complex

cascade of signaling events resulting in upregulation of

adhesion molecules (VCAM-1, E-selectin, and ICAM-1)

enabling transmigration of leukocytes (51, 52). Signaling

through TNFRI also results in elevation of Angiopoetin-2

(Ang-2) that increases EC vulnerability in part by destabilizing

cell junctions resulting in increased permeability (5, 53, 54)

creating a more permissive environment for T cell extravasation.

Apart from TNFRI, ECs also express TNFRII that can have both

pro- and anti- inflammatory effects. Endothelial Progenitor Cells

(EPCs) are undifferentiated ECs with stem cell like features,

present in circulation. EPCs express TNF receptor II (TNFRII)

on their surface that binds to TNFa and exerts an

immunosuppressive effect on T cells in part by secretion of

anti-inflammatory TGFb, IL-10 and HLA-G cytokines (55).

Additionally, TNF-TNFRII activated endothelial cells produce

CCR2 ligands, that can in turn promote the differentiation of

CCR2+ monocytes into immature macrophages that can

promote inflammation (56).
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The final step of the diapedesis/leukocyte extravasation is the

transmigration of leukocytes through the pericyte and vascular

basement membrane by the receptors ICAM-1, MAC-1, LFA-1

and platelet ECs adhesion molecule-1 (PECAM-1) to reach the

site of inflammation (26, 57). ECs can also activate alloreactive T

cells by presenting antigens in the context of MHC class I on

their surface (58–60), while DAMPs such as HMGB1 released by

ECs activate dendritic cells that in turn promote T cell

inflammatory responses (42, 61, 62). ECs are also a target of

alloreactive T cells, and the subsequent tissue-related EC damage

and death is a hallmark of acute GVHD end-organ damage

(63, 64).

Prolonged EC activation results in irreversible damage

termed endothelial dysfunction. The von Willebrand factor

(vWF) is stored in the Weibel-Palade bodies and plays a

central role in the recruitment of platelets (65, 66) to adhere to

injured endothelial cells/blood vessels, and thus is a key regulator

of the coagulation cascade (65, 67, 68). Multimeric vWF is

cleaved by ADAMTS13 metalloprotease to prevent excessive

platelet aggregation (69). The massive and rapid release vWF in

the bloodstream make this protein an ideal clinical marker of

inflammation, EC activation and EC damage (65, 67).

Multiple markers of EC damage such as vWF, soluble

VCAM-1 (sVCAM-1), ADAMTS-13 activity, and soluble

tumor necrosis factor receptor-1 (sTNFRI) are upregulated in

the plasma after use of conditioning regimens (5, 70). Use of

conditioning agents busulfan and cyclophosphamide in mice

resulted in vascular endothelial injury in mice associated with

increased mobilization of endothelial progenitor cells, increased

circulating ECs and structural changes observed by transmission

electron microscopy (71). Paradoxically, the use of broadly

immunosuppressive prophylactic regimens such as calcineurin

and mechanistic target of rapamycin (mTOR) inhibitors to

prevent acute GVHD can mediate endothelial damage (72, 73)

and is associated with increased circulating levels of vWF,

soluble thrombomodulin (sTM), and ICAM-1, predictive of

VOD (72). Sirolimus, an inhibitor of mTOR, has been shown

to directly inhibit endothelial cell proliferation and function in

vitro (74) and in patients with coronary artery disease who

receive sirolimus coated artery stents (75). Calcineurin inhibitors

such as cyclosporine and tacrolimus can cause varying degrees of

endothelial dysfunction caused primarily by a reduction in the

release of endothelial protective nitric oxide (NO), increasing

formation of free radicals leading to ED (74, 76).
Clinical application of endothelial
dysfunction in graft-versus-host
disease

Studies have shown that levels of circulating Ang-2, ST2, and

sTM are increased prior to HCT suggesting endothelium is
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already damaged by underlying disease. The Endothelial

Activation and Stress Index (EASIX) score (that measures

creatinine, lactate dehydrogenase and platelets) was developed

as surrogate of endothelial dysfunction. A study by Luft et al.

used the EASIX score prior to conditioning regimens (EASIX-

pre) to predict mortality after alloSCT. EASIX-pre was successful

in predicting overall survival and risk of TAM after allo-SCT.

However, EASIX-pre only showed an association with higher

risk of grade 3-4 acute GVHD and no correlation with Ang-2

and ST2 levels (77). The EASIX score has since been adopted as a

prognostic tool for predicting outcomes for a number of diseases

including small cell lung cancer, bilirubinemia, and

myelodysplastic syndromes (78–81).These studies suggest

while ED is not specific to GVHD onset, ED and related

systemic inflammation contribute to pathogenesis of GVHD,

bolstering the use of EASIX/endothelial dysfunction to predict

non-relapse mortality after transplant.

Supporting the role of EC activation or dysfunction in

GVHD pathogenesis, histologic analysis of patients with

cutaneous GVHD showed evidence of increased adhesion

markers VCAM-1, endothelial leukocyte adhesion molecule-1

(ELAM-1) and vWF extravasation (82), while upregulation of

vWF and thrombomodulin (TM) levels was observed in patients

who developed acute GVHD post-transplant compared to those

who did not (83), and serum levels of sICAM-1 and skin biopsies

of E-selectin were both increased in acute GVHD patients (84).

Soluble levels of vWF and TNFRI at day 7 post-transplant

could positively predict the development of acute GVHD in

majority of patients who (90%) expressed higher than cut-off

levels of these markers (52). Circulating levels of Ang-2, was

reported to be significantly higher by day 21 post HCT in

patients who went on to develop acute GVHD compared to

the non-GVHD group (85) and has shown to be an effective

biomarker for patients who develop endothelial damage post

allo-HCT (86, 87). More significant levels of vWF led to more

severe acute GVHD. Other damage-associated angiogenic

factors that indicate tissue damage and inflammation such as

follistatin (FS) and soluble endoglin (sEng) are elevated at day

+28 post HCT and predict one-year NRM (88).

Interventions to prevent or restore EC damage, activation,

and dysfunction are being explored as potential therapeutic

agents in ameliorating GVHD. Treatment with an

anticoagulant agent, recombinant TM, significantly reduced

levels of sCAMs that predict EC dysfunction level and acute

GVHD frequency (89). Another treatment for coagulation and

thrombotic disorders, defibrotide, has been shown to protect

ECs by preserving EC homeostasis. Defibrotide lowers vWF,

VCAM-1, and sICAM-1 levels in GVHD patients by suppressing

EC proliferation (90, 91). Epidermal growth factor-like domain 7

(EGFL7) inhibits EC activation by pro-inflammatory cytokines

through a negative feedback loop. Using mouse models of

disease, we have shown that treatment with recombinant

EGFL7 reduced VCAM-1 expression on ECs and led to
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reduction of T cell infiltration, resulting in significant GVHD

improvement (92).

High-dose corticosteroids remain the first-line therapy for

GVHD patients, despite poor response rates. Patients with

steroid-refractory GVHD do poorly with less than 50%

survival at 6-months highlighting the need for novel treatment

approaches (93). Steroid-refractory acute GVHD (SR-aGVHD)

immunotherapies eradicate alloreactive T cells but fail to stop

organ damage suggesting there are additional mechanisms that

are relevant independent from initial T cell insult. Endothelial

damage in patients has been correlated with pathogenesis of

steroid resistant GVHD and increased NRM (94). A seminal

study by Luft et al. showed that serum levels of Ang-2 were

higher in SR-GVHD patients compared to steroid-sensitive

GVHD while T cell activation patterns between groups were

similar. In the same study, soluble TM (sTM) levels increased

steadily in steroid-refractory patients and remained constant in

patients who responded to corticosteroids. Both Ang-2 and sTM

levels differentiated GVHD patients and the category of therapy

response within those patients (95). Suppression of

tumorigenicity 2 (ST2), a marker of endothelial injury, has

high-risk association with SR-aGVHD and emerged as an

important biomarker for treatment-resistant GVHD, NRM

(96) as well as TA-TMA NRM at 6 months (97). A recent

study demonstrated the endothelium protective effects of PDE5

inhibitor sildenafil, and showed promising results in steroid-

refractory experimental mouse models of GVHD (14). Alpha-1

Antitrypsin (AAT), a serine protease inhibitor modulates

inflammatory response of ECs to TNFa (98) and enhances T

regulatory cell recovery in experimental mouse models of acute

GVHD (86, 99). Multiple clinical trials have shown that AAT is

well-tolerated in allo-HCT patients with varying efficacy in the

treatment of steroid refractory GVHD (100–102), however, pre-

emptive use AAT in of patients at high risk of developing SR-

GVHD, did not change the incidence of steroid-resistance (103).
Conclusions and future directions

In recent years, there has been an increasing appreciation of the

role played by ECs in the pathology of GVHD. While it was

believed that EC dysfunction resulted from complications of allo-

HCT and GVHD, our current understanding of the biology of ECs

suggests that EC dysfunction and associated systemic inflammation

also contribute to the onset and pathogenesis of acute GVHD.

While chemotherapeutic insults can induce significant damage to

ECs, the inflammatory milieu probably add to EC dysfunction by

allowing uncontrolled migration of immune cells between the

blood and tissues. Biomarkers of endothelial cell dysfunction are

typically involved in hemostasis and while they might be reliable to

measure EC damage, it remains uncertain as to whether these

markers can be used to diagnose or predict acute GVHD onset,

severity and/or overall allo-HCT outcomes. Early detection of
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biomarkers could lead to prevention of irreversible ED, and

strategies to improve EC function and restore vascular barrier

presents an attractive regenerative-based approach to prevent or

treat GVHD. Given the importance of the vascular system in

nutrient and gas exchange, reversing, or preventing EC

dysfunction after allo-HCT may perhaps surpass the benefit of

actual immunosuppressive therapies currently used to treat GVHD.
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