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Circulating brain-derived
extracellular vesicles expressing
neuroinflammatory markers are
associated with HIV-related
neurocognitive impairment
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Background: Neurocognitive impairment remains prevalent in people with HIV

(PWH) despite long term virological suppression by antiretroviral therapy (ART)

regimens. Systemic and neuro-inflammatory processes are suggested to

contribute to the complex pathology leading to cognitive impairment in this

population, yet the underlying mechanisms remain unresolved. Extracellular

vesicles (EVs) play a central role in intracellular communication and have

emerged as key modulators of immunological and inflammatory responses.

In this report, we examined the impact of EVs in PWH experiencing cognitive

deficits to determine their relevance in HIV associated neuropathology.

Methods: EV phenotypes were measured in plasma samples from 108 PWH

with either cognitive impairment (CI, n=92) or normal cognition (NC, n=16) by

flow cytometry. Matched cerebrospinal fluid (CSF)-derived EVs were similarly

profiled from a subgroup of 84 individuals who underwent a lumbar puncture.

Peripheral blood mononuclear cells were assayed by flow cytometry to

measure monocyte frequencies in a subset of 32 individuals.

Results: Plasma-EVs expressing CD14, CD16, CD192, C195, and GFAP were

significantly higher in HIV-infected individuals with cognitive impairment

compared to individuals with normal cognition. Increased CSF-EVs

expressing GFAP and CD200 were found in the cognitive impairment group

compared to the normal cognition group. Frequencies of patrolling monocytes

correlated with plasma-EVs expressing CD14, CD66b, MCSF, MAP2, and GFAP.

Frequencies of CD195 expression on monocytes correlated positively with

plasma-EVs expressing CD41a, CD62P, and CD63. Expression of CD163 on
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monocytes correlated positively with CSF-EVs expressing GFAP and CD200.

Finally, the expression of CD192 on total monocytes correlated with CSF-EVs

expressing CD200, CD62P, and CD63.

Conclusions: EVs expressing monocyte activation and neuronal markers

associated with HIV associated cognitive impairment, suggesting that distinct

EV subsets may serve as novel biomarkers of neuronal injury in HIV infection.

Further circulating platelet EV levels were linked to monocyte activation

indicating a potential novel interaction in the pathogenesis of HIV-related

cognitive impairment.
KEYWORDS

extracellular vesicles, monocytes, neurons, neurocognitive impairment, human
immunodeficiency virus
Introduction

Despite effective antiretroviral therapy (ART), people with

HIV (PWH) experience a state of chronic low-level inflammation

and immune activation that may contribute to the pathogenesis of

HIV-associated neurocognitive (HAND) (1–3). In the ART era

the incidence and severity of HIV-associated dementia (HAD)

have decreased; however, asymptomatic neurocognitive

impairment (ANI) and minor cognitive motor disorder

(MCMD) persist in 10-30% of PWH (4–6). These cognitive

deficits are not only widespread but also can affect everyday

functioning and increase morbidity and mortality (7–9). While

the migration of activated and infected monocytes across the

blood-brain barrier, drugs of abuse, the secondary effects of aging,

and persistent viral replication may be contributing factors to

neurological damage in the central nervous systems (CNS) (10,

11), it has been challenging to identify molecular mechanisms that

can be targeted to reduce neuroinflammation. In addition,

noninvasive biomarkers for neurocognitive disorders in HIV

infection is still needed, not only for diagnosis but to allow

monitoring of potential disease interventions.

Extracellular vesicles (EVs) including exosomes and

microvesicles, are membrane-bound particles of cellular origin

involved in regulating many pathophysiological and normal

functions in the body, including immune responses,

inflammation, and cell death (12–14). As a messenger of

intercellular communication, EVs contain a rich cargo of

proteins, nucleic acids, lipids, and diverse molecules (15–17).

They are shed by most cell types and are found in cell-culture

media and body fluids, including blood and cerebrospinal fluid

(CSF) (18–20). Evidence indicates that EVs play a key role in the

activity of the nervous system, providing a mechanism of

intercellular communication between the CNS with other body
02
systems (21, 22). Furthermore, EVs can move across the blood-

brain barrier and deliver biological materials to cells in the brain,

making them a promising new avenue of investigation for CNS

functioning and for the identification of new biomarkers for

neurodegenerative diseases (23–25). In addition, we recently

showed that plasma-EVs expressing monocyte markers are

associated with carotid artery intima-media thickness in HIV-

infected individuals on virologically suppressive ART. We

further showed that the EV fraction from HIV+ adults on

stable ART induced endothelial cell death via necrosis of

human umbilical vein endothelial cells (26). These properties

make EVs potential candidates as targets of immunotherapies

and putative biomarkers for diseases (17, 27–30).

To investigate the relevance of how EVs deliver immune

signals in the setting of HIV, both in the periphery and the CNS,

we examined whether levels of circulating EVs expressing

monocyte inflammatory phenotypic and markers of neuronal

damage differed between HIV-infected individuals with or

without CI. We also determined whether circulating

monocytes subsets associated with EVs expressing surface

markers spanning lymphoid, myeloid, and neurological

cell lineages.
Methods

Study participants

The Hawaii Aging with HIV Cohort (HAHC) study is a

longitudinal cohort established and designed to study the impact

of age and HIV on cognitive function (31). Medical and ART

history, neuropsychological testing, demographic information,

and clinical laboratory assessments were collected. Stored
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plasma, peripheral blood mononuclear cells (PBMCs), and CSF

from this cohort were cryopreserved. Exclusion criteria included

if the participants had previously been diagnosed with an

opportunistic infection, neoplasia, hepatic impairment, head

injury, learning disability, major neurologic/psychiatric

disorder, opportunistic brain infection, or active substance

abuse. This study was approved by the Institutional Review

Board of the University of Hawaii Committee on Human

Subjects, and all participants gave written informed consent.

For the quantitation of EV surface markers, a total of 108

plasma samples were collected from HIV-infected individuals,

having either normal cognition (n=16) or cognitive impairment

based on the American Academy of Neurology (AAN) criteria

for HIV-associated dementia (HAD, n=25), minor cognitive

motor d i sorder (MCMD, n=38) or asymptomat ic

neurocognitive impairment (ANI, n=29) (32). Matched CSF-

derived EVs were profiled from a subgroup of 84 individuals

with normal cognition (n=10) or with cognitive impairment

(HAD, n=19; MCMD, n=33; ANI, n=22), and PBMCs were

assayed by flow cytometry to measure monocyte frequencies in a

subgroup of 32 individuals with normal cognition (n=3) or

cognit ive impairment (HAD, n=12; MCMD, n=12;

abnormal, n=5).
Neurocognitive assessment

Neuropsychological assessments were performed by using a

comprehensive battery of eight tests (NPZ-8 score) and

additional assessments included the macro-neurologic

examination, medical and medication histories, risk behavior

inventory, and neurocognitive testing. The NPZ-8 battery tests

assessed multiple cognitive domains and included the following:

grooved pegboard, trail making tests A and B, timed gait, digit

symbol test, odd man out, animal naming, Boston naming test,

basic choice and sequential reaction time, and Rey auditory

verbal learning test (31, 33). In addition, raw scores were

transformed to z-scores and subdomain scores were calculated

as previously described (34). To better discriminate

neuropsychological subset sensitivity in our analysis, we also

used the geriatric depression scale (GDS), a self-reported

measure of symptoms of depression (35, 36). Additional tests

were included to address working memory, auditory span of

attention, verbal fluency, and execute functions as previously

described (37–39). All neuropsychological testing was

performed by an examiner trained and supervised by a

clinical neuropsychologist.
Biological sample EV processing

CSF samples were obtained by lumbar puncture in the L3/L4

or L4/L5 intervertebral space using a 25-gauge needle and were
Frontiers in Immunology 03
collected in sterile polypropylene tubes. Samples were

centrifuged at 2000 g for 10 minutes at 4°C, and stored at -80°

C. Briefly, samples were thawed and immediately processed in

order to limit the freeze-thaw cycles. The samples were

centrifuged at 2000 g and referred to as large EVs as

previously reported in an ISEV position paper (40) and used

to measure EV concentration and phenotype.

Fasting morning blood samples were collected into EDTA

tubes, centrifuged at 2000 g for 10 minutes at 4°C, and the

obtained plasma was stored at -80°C until further analysis.

Briefly, the supernatant was thawed and centrifuged through

0.22 µm centrifugal filter (Millipore) for 10 minutes at 860 g or

until most supernatant had passed through. EVs were

resuspended in 500 µL of filtered PBS containing 2.8%

formaldehyde (BD stabilizing fixative), and their concentration

and phenotype were measured using a previously described

approach (Figure 1A) (41, 42).
EV immunophenotyping by
flow cytometry

To measure EV numbers and expression of surface markers,

blinded plasma and CSF samples were stained using pre-titrated

volumes of the following fluorochrome-conjugated monoclonal

antibodies in four separate panels, listed here according to their

cell of origin and purchased from BioLegend unless otherwise

noted: lymphocytes CD3 (Clone: OK-T3), CD4-PE (SK3), and

CD19-PECy7 (SJ25CI, BD Biosciences), CD40-FITC (5C3), and

CD154-APC (2431), monocytes CD14-APC (63D3), CD16-V421

(3G8), CD163-PECy7 (GHI6I), CD192-V421 (K036C2) CCR2,

and CD195-PE (2D7) CCR5, BD Biosciences), macrophage

colony-stimulating factor (MCSF)-PE (26786), granulocytes

CD66b-PerCP/Cy5.5 (G10FS), platelets CD41a-PerCP/Cy5.5

(HIP8), and CD62P-FITC (AK-4 BD Biosciences), tetraspanin

protein CD63-APC (H5C6), astrocytes GFAP-V421 (glial

fibrillary acidic protein (2E1E9), microglia CD11b-PECy7

(OKT3), neurons CD200-PerCP/Cy5.5 (OX104) and

microtubule-associated proteins (MAP2)-Alexa 488 (18MAP2B,

BD Biosciences) (Figure 1B). Briefly, when panels were optimized,

fluorescence minus one controls were used to determine the level

of background fluorescence. Prior to testing EV samples, antibody

filtration was performed using a pore size of 0.22 µm centrifugal

filter, and the filtrate was used for staining. One to 5 µL of titrated

monoclonal antibodies was added to 10 µL of plasma-EVs and to

100 µL of CSF-EVs and incubated at 4°C for 30minutes. EVs were

diluted in buffered 0.22 µm-filtered PBS containing 2.8%

formaldehyde (BD stabilizing fixative) to appropriate dilutions

to prevent coincident detection, and each EV sample was run

simultaneously with an unstained sample.

Acquisition was performed on an LSRII flow cytometer

(Becton Dickinson). Forward scatter (FSC) and side scatter

(SSC) were set to the voltages around of 500-600 and 300-400,
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respectively. The side scatter was set to a triggering threshold of

200arbitrary units. A 0.22 µm-filtered PBS control was recorded

to estimate the background signal. EV gates were established 100

nm (Invitrogen) to 1000 nm beads (Megamix: 160, 200, 240 and

500 nm; Spherotech 1000 nm) (26, 41, 42). Representative flow

cytometry plots are shown in Figure 1C. Samples were acquired

for 60 seconds at a low flow rate (8 – 12 µL/min), and the

concentration of EVs was calculated using TruCount™ tubes
Frontiers in Immunology 04
(BD Biosciences). Analysis was performed using FlowJo 10.7.1

software (BD).
PBMC flow cytometry phenotyping

Cryopreserved PBMCs were thawed and stained for 30

minutes at 4°C with viability dye (yellow Live/Dead Fixable
B

C

A

FIGURE 1

Characterization of EVs in biological samples. (A) Schematic of the method for isolation and analysis of EVs for their absolute count and cell of
origin. (B) Illustration of surface markers on EVs linked to neuronal cells, lymphoid cells, and myleoid cells. (C) SSC height (SSC-H) dot plot
shows sensitivity to detect beads sized 100 to 1000 nm in diameter. Representative plots of EV gated from the threshold to the 1000 nm gate
based on SSC and sorted according to surface markers from their cell of origin.
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Dead Cell stain, Invitrogen), followed by staining with

monoclonal antibodies against CD14, CD16, CD162, CD163,

CD192, CD195, CX3CR1, and HLA-DR. All antibodies were

from BD Biosciences. Control studies with unstained cells and

cells incubated with appropriate isotype-matched for each

antibody were used as a negative control. In the FSC-SSC dot

plot, a biparametric gate was drawn around the monocyte

population as previously described (43). Monocytes, positive

for HLA-DR were then classified into three subsets based on the

expression of CD14, CD16markers: classical (CD14++CD16-),

intermediate (CD14++CD16+), or non-classical (CD14+CD16++)

monocytes. Monocytes populations were further assessed for

CD162, CD163, CD192, CD195, and CX3CR1 expression. Cells

were fixed with 1% formaldehyde solution (BD Biosciences) and

measured on a four-laser custom BD-Fortessa flow cytometer

(Becton Dickinson). Compensation and gating analyses were

performed using FlowJo software (BD).
Statistical analysis

Statistical analyses were performed using Prism 7.0

(GraphPad Software). Subject demographic and clinical

characteristics between the normal cognition and cognitive

impairment subgroups (ANI, MCMD, and HAD) were

compared by Kruskal-Wallis test with Dunn’s Multiple

Comparison post hoc test, and those between categorical

variables were examined using chi-square test. EV data were

log10 transformed prior to analysis. The Shapiro-Wilk test was

used to determine normality for all datasets prior to

implementation of the unpaired t-tests. The nonparametric

Mann-Whitney U test was used for unpaired comparisons.

The Spearman correlation matrix test was used to determine

pairwise associations between variables. The data are expressed

as means ± standard deviation, unless otherwise indicated. A

level of P ≤0.05 was considered statistically significant. The p-

values are two-sided. The false discovery rate (FDR) for each

type of comparison was calculated using the Benjamini and

Hochberg where indicated (44), and FDR <0.1 was used as a

significance threshold.
Results

Demographics and clinical
characteristics

Of 108 enrolled HIV-infected participants, over 82% were

male, with no significant differences in gender across the NC,

ANI, MCMD, and HAD groups. We estimated the duration of

viral suppression using the shortest duration of combination

ART (cART) regimens, including NRTIs, NNRTIs, and PIs.

Integrase inhibitors had not been approved, and no patients
Frontiers in Immunology 05
were on fusion inhibitors. There were no significant differences

in the duration of cART therapy between the NC, ANI, MCMD,

and HAD groups (Table 1A). The mean age ranged from 44 to

49 years, and there was no significant difference between the

groups with respect to age. Significant differences were observed

in CD4+ T cell count between the MCMD and HAD groups

(p=0.028) and CD4+ T cell count nadir (cells/µL) between the

ANI and HAD groups (p=0.017). Of the 108 participants, 55 had

detectable plasma HIV RNA, 9 had diabetes mellitus (DM), 8

had hypertension, 4 had prior history of myocardial infarction

(MI), 3 had a history of stroke, 43 were current smokers, and 31

had a prior history of smoking. No significant association

between the co-morbid states DM, MI, stroke, or current use/

history of smoking was observed. However, hypertension was

borderline significantly more prevalent in participants with

HAD (p=0.050). Detailed demographic and clinical

characteristics are presented for the subgroup of 84 HIV-

infected individuals for whom matched CSF samples were

available (Table 1B).
EVs expressing inflammatory phenotypes
are associated with HIV-related
neurocognitive impairment

To examine whether plasma-derived EVs associate with

markers of cellular activation and neuroinflammation in HIV-

infected individuals with cognitive impairment, we tested four

panels consisting of several antigens linked to neuronal cells

(GFAP, MAP2, CD11b, and CD200), lymphoid cells (CD3, CD4,

CD19, CD40, and CD154), myeloid cells (CD14, CD16, CD163,

CD192, CD195, CD41a, CD62P, CD66b, and MCSF), and

multivesicular bodies (CD63). When the quantity of plasma-

EVs from HIV-infected individuals with and without cognitive

impairment was compared, we found no statistical difference in

the concentration of EVs. However, we found significant

elevations in levels of EVs expressing monocyte-associated

markers in HIV+ persons with cognitive impairment including

CD14+EVs, CD16+EVs, CD192+EVs, CD195+EVs, as well as

EVs expressing glial fibrillary acidic protein (GFAP) (Figure 2A).

There were no significant differences in EVs expressing CD3,

CD4, CD19, CD11b, CD40, CD41a, CD62P, CD63, CD66b,

CD154, CD163, MCSF, CD200, and MAP2 between the

cognitive impairment and normal cognition groups (Figure S1).

We next assessed whether EV counts and phenotype were

elevated in the CSF of HAND individuals. There were no

significant differences in the concentration of EVs between the

groups. However, we found a significant increase in CSF-EVs

expressing two of the neuronal-associated markers, GFAP and

CD200, in HIV+ individuals with cognitive impairment group

compared to those without cognitive impairment (Figure 2B).

None of the other markers spanning the lymphoid and myeloid

lineages showed differences among study groups. Of note, there
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was no significant relationship between circulating EVs and

plasma viral load (data not shown). These results showed that

both CSF and plasma-derived EVs expressing GFAP correlated

with cognitive impairment in HIV-infected individuals, with the

largest increase seen in plasma-EVs expressing monocyte-

associate markers in HIV+ persons with cognitive impairment.

A sensitivity analysis was performed to exclude the viremic

individuals (viral load >50 RNA copies/mL), and levels of
Frontiers in Immunology 06
plasma-EVs expressing monocyte-associated markers

remained significantly elevated in the aviremic HIV-infected

individual with cognitive impairment (Figure 3). Finally, we

examined the relationship between all EV subtypes in plasma

and CSF based on their surface marker phenotype. Using

Spearman’s rank correlation, no significant correlations were

found between EV phenotypes and clinical global deficit scores

(GDS and NPZ8 score; data not shown).
TABLE 1A Demographic and clinical characteristics of HIV-infected participants.

Participants characteristics NC N= 16 ANI N= 29 MCMD N= 38 HAD N= 25 P Value

Demographics

Age, yrs 44 ± 12 43 ± 11 43 ± 11 49 ± 9 0.165

Male [N (%)] 13 (82) 26 (90) 33 (87) 24 (96) 0.497

BMI (Kg/m2) 25 (22 – 27) 24 (22 – 26) 24 (22 – 27) 25 (22 – 27) 0.801

Education (years) 12 (12 – 16) 14 (12 – 16) 14 (12 – 16) 14 (12 – 16) 0.865

NPZ global score* 0.4 (0.1 – 0.5) -0.1 (-0.7 – 0.2) -0.5 (-0.9 – 0.1) -1.1 (-1.7 – -0.5) <.0001

GDS* 0.7 (0.1 – 0.2) 0.3 (0.2 – 0.7) 0.4 (0.3 – 0.7) 1.1 (0.8 – 1.3) <.0001

HIV-related

ART, yearsa 2.1 (0.59 – 5.07) 1.47 (0.77 – 3.08) 1.5 (0.64 – 3.44) 2.75 (1.88 – 4.64) 0.502

CD4+ nadir (cells/µL) 265 (137 – 434) 202 (130 – 500) 180 (53 – 351) 90 (36 – 237) 0.017

CD4+ count (cells/µL) 420 (240 – 619) 426 (306 – 673) 520 (308 – 651) 230 (123 – 610) 0.028

HIV viral load, copies/mL 50 (50 – 2534) 211 (50 – 31,070) 133 (50 – 29,746) 137 (50 – 105,629) 0.711

Results are reported as mean values ± SD or median with interquartile ranges. aCertain data were not available for all participants: NC= 9, ANI= 13, MCMD= 17, and HAD= 11.
*significant differences between the NC group and ANI, MCMD, HAD groups by Kruskal-Wallis test with Dunn´s Multiple Comparison post hoc test. NC, normal cognition; ANI,
asymptomatic neurocognitive impairment; MCMD, minor cognitive motor disorder; HAD, HIV-associated dementia; GDS, geriatric depression scale; NPZ global score,
neuropsychological z score; ART, antiretroviral therapy.

TABLE 1B Demographic and clinical characteristics of study participants.

CSF subset NC N= 10 ANI N= 22 MCMD N= 33 HAD N= 19 P Value

Demographics

Age, yrs 39 ± 10 42 ± 11 47 ± 9 48 ± 10 0.128

Male [N (%)] 8 (80) 20 (91) 29 (88) 18 (95) 0.659

BMI (Kg/m2) 23 (21 – 26) 23 (21 – 26) 24 (22 – 26) 26 (21 – 29) 0.693

Education (years) 12 (12 – 15) 14 (12 – 16) 14 (12 – 16) 14 (12 – 16) 0.709

NPZ global score* 0.4 (0.2 – 0.5) -0.1 (-0.8 – 0.2) -0.5 (-0.9 – 0.1) -1.0 (-1.4 – -0.5) <.0001

GDS* 0.02 (0 – 0.1) 0.3 (0.2 – 0.7) 0.4 (0.2 – 0.6) 1.1 (0.8 – 1.2) <.0001

HIV-related

CD4+ nadir (cells/µL) 279 (154 – 426) 372 (135 – 530) 168 (28 – 300) 90 (46 – 274) 0.028

CD4+ count (cells/µL) 387 (203 – 601) 437 (306 – 680) 507 (287 – 590) 262 (120 – 645) 0.102

HIV viral load, copies/mL 1238 (50 – 25,051) 1184 (50 – 44,722) 291 (50 – 35,367) 137 (50 – 125,872) 0.985

Results are reported as mean values ± SD or median with interquartile ranges. *significant differences between the NC group and ANI, MCMD, and HAD groups by Kruskal-Wallis test
with Dunn´s Multiple Comparison post hoc test. NC, normal cognition; ANI, asymptomatic neurocognitive impairment; MCMD, minor cognitive motor disorder; HAD, HIV-
associated dementia; GDS, geriatric depression scale; NPZ global score, neuropsychological z score.
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EV phenotypes associate with peripheral
blood monocytes in individuals with
cognitive impairment

We next analyzed the relationship of PBMC-derived

monocytes with EV phenotypes in a subset of 32 HIV-infected

individuals for whom both data sets were available. We observed

a significant correlation between percent classical monocytes

and plasma-EVs expressing CD14 (Figure 4). A negative

relationship was observed between non-classical monocytes

and levels of EVs expressing the monocyte marker CD14, the

neutrophil marker CD66b, and the CNS cell markers MAP2,

GFAP, and MCSF.
Frontiers in Immunology 07
We therefore assessed the relationship of monocyte CD162

(P-selectin glycoprotein ligand 1), CD163 (haptoglobin-

hemoglobin scavenger receptor), CD192 (CC chemokine

receptor 2), and CD195 (CC chemokine receptor 5) surface

expression and plasma-EV inflammatory surface markers due to

their known importance as biomarkers for immune activation

and/or resolution of inflammation in HIV-infected individuals

associated neurocognitive impairment. MFI of CD162 on total

monocytes correlated negatively with CD11b+EVs.MFI of CD162

on intermediate monocytes correlated negatively with levels of

EVs expressing CD4, and MCSF. There was a negative

relationship between the percentage of CD163 on total

monocytes and EVs expressing CD41a and CD62P. Negative
B

A

FIGURE 2

Circulating EVs expressing monocyte-associated markers and neuronal damage associate with cognitive impairment in HIV-infected individuals
on stable ART. Scatter plots of EVs/µL numbers (log 10-transformed). (A) Plasma-EVs expressing monocyte-associated markers (CD14, CD16,
CD192, and CD195) and neuronal damage marker (GFAP) were significantly higher in HIV+ adults with cognitive impairment (CI) compared to
those with normal cognition (NC). (B) There was a significant increase in levels of CSF-EVs expressing GFAP+ and CD200+ in the CI compared
to the NC group. P values were determined by using two-tailed Mann-Whitney test. *P<0.05, **P<0.01, ***P<0.001.
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correlations were also observed between MFI of CD192 on total

monocytes and EVs expressing CD41a (Figure 4). Frequencies of

CD195 on total monocytes correlated positively with CD41a+EVs,

CD62P+EVs, and CD63+EVs (Figure 4). These associations

remained significant after correcting for multiple testing with an

FDR of <0.1. Taken together, these results suggest that circulating

monocyte subsets are associated with pro-inflammatory EVs, and

monocyte activation associated with circulating platelet EV levels,

indicating the interaction between platelet activation-associated

phenotypes and monocytes in HIV-infected individuals with

cognitive impairment.

Finally, to further assess generalizability of the data, we also

examined correlations between CSF-EV phenotypes and

circulating monocyte subsets in peripheral blood from HIV-

infected individuals with cognitive impairment. There was a

significant positive correlation between the percentage of
Frontiers in Immunology 08
CX3CR1 on total monocytes and EVs expressing CD195

(Figure 5). MFI of CD192 on total monocytes correlated

positively with CD200+EVs and negatively with CD63+EVs and

CD62P+EVs. We found a significant positive correlation between

the percentage of CD163 on non-classical monocytes and GFAP

+EVs and CD200+EVs. We also found a positive correlation

between the percentage of CD163 on intermediate monocytes

and GFAP+EVs and CD200+EVs. Finally, MFI of CD163 on

total monocytes correlated positively with GFAP+EVs and CD200

+EVs. These associations remained significant after correcting for

multiple comparisons (FDR of <0.1). These data demonstrate

correlation between neuronal damage markers in the CSF and

monocytes in the periphery in HIV-infected individuals with

cognitive impairment.

These results suggest that EVs associate not only with

predictors of cognitive impairment but also with peripheral
B

A

FIGURE 3

Sensitive analysis of circulating EVs expressing monocyte-associated markers and neuronal damage associate with cognitive impairment in virally-
suppressed HIV+ individuals. Scatter plots of total EV numbers and concentration of each subtype of EV are shown. (A) levels of EVs expressing CD14,
CD16, and CD195 were elevated in the plasma of aviremic HIV-infected individuals with CI compared to the NC group. (B) There was no significant
difference in levels of GFAP+EVs and CD200+EVs in the CSF of aviremic CI compared to the NC group. P values were determined by using two-tailed
Mann-Whitney test. *P<0.05, **P<0.01, ***P<0.001. NC, normal cognition; CI, cognitive impairment.
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blood monocytes in ART-treated HIV-positive individuals with

cognitive impairment, suggesting cross-talk between the

periphery and brain during disease.
Discussion

To the best of our knowledge, this study is the first that

provides evidence that neurocognitive impairment in HIV-

infected individuals is associated with increased levels of both

CSF and plasma EVs enriched with the neuronal marker GFAP

compared to normal cognition. These results suggest that this

neuronal damage biomarker in EVs may reflect brain

pathological changes, and further studies would be needed to

confirm if GFAP+EVs could represent a potential biomarker for

HAND screening. This would be particularly valuable if a panel

of biomarkers could be assembled that would be more predictive

than each individual biomarker. Furthermore, we also found

that plasma-EVs expressing monocyte-associate markers,

including CD14, CD16, CD192, and CD195 were significantly

elevated in HIV-infected individuals with cognitive impairment

compared to those without cognitive impairment (Figure 6). We

further revealed that circulating monocyte subsets were related

not only with CSF and plasma EVs expressing monocytes and

neuronal markers, but also with platelet markers in HIV-

infected individuals with cognitive impairment. Together,

these results indicate that EVs derived from both myeloid and

neurological cell lineages may provide new insights into
Frontiers in Immunology 09
mechanisms impacting neurological disorders in treated

HIV individuals.

Our findings are consistent with previously published data.

In a longitudinal cohort, Flynn et al. reported that blood-derived

EV concentrations of GFAP were higher in individuals with

moderate and severe traumatic brain injury compared to

controls (45). Further, Guha et al. reported that elevated levels

of CSF-EVs correlated with the neuronal marker neurofilament

light chain in treated HIV-infected individuals with

neurocognitive impairment (46). A relationship between

plasma neuron-derived EVs from HIV-infected individuals

and CNS injury was also reported by Sun and colleagues, who

investigated proteins (neurofilament-light chain, amyloid beta,

and high mobility group box1) associated with neuronal damage

(47). Furthermore, our group previously reported an association

between neurocognitive impairment and a higher number of

cells harboring HIV DNA selected from PBMCs enriched with

CD14 monocytes (48). Notably, our findings predicted a higher

number of monocyte-associated markers expressing EVs in

HIV-infected individuals with cognitive impairment compared

to those with normal cognition. Taken together, our findings and

these observations suggest that higher abundance of EV-

associated proteins related to neuroinflammation may reflect

pathophysiological process in the CNS and both CSF and plasma

EVs are a valuable source of new biomarkers.

Given the interactions of platelets with monocytes in HIV

neurological disease (49, 50), the relationship found between

EVs expressing the activated platelet marker CD62P and
FIGURE 5

Correlations between all CSF-EV subtypes and circulating
monocyte subsets. Spearman correlation matrix showing the
association between all CSF-EV subtypes and circulating
monocyte subsets in HIV-infected individuals on stable ART.
Positive correlations are displayed in red shades and negative
correlations are in blue shades.
FIGURE 4

Relationship between all plasma-EV subtypes and circulating
monocyte subsets. Spearman correlation matrix showing the
association between all EV subtypes based on their cellular
origin and circulating monocyte subsets in HIV-infected
individuals on ART. Positive correlations are displayed in red
shades and negative correlations are in blue shades.
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circulating inflammatory monocyte subsets in HAND subjects

provides new insights into molecular mechanisms that could

contribute to the development and progression of cognitive

impairment. Consistent with our observations, previous

reports have shown interactions of activated platelets and

monocytes in the CNS contribute to HIV-associated

neuroinflammation (49, 51, 52). Furthermore, consistent with

this notion, Singh et al. showed that platelet-derived soluble

CD40 ligand in the CSF and plasma from HAND individuals

may contribute to blood-brain barrier permeability and

neuroinflammation (49). As relevant examples, Furman et al.

reported that monocyte/platelet aggregates in circulation were

higher in subjects with myocardial dysfunction compared to

healthy controls (53). Tian and colleagues reported that brain-

derived EVs may promote platelet aggregation by binding to

platelets and contribute to activation of the exogenous
Frontiers in Immunology 10
coagulation pathway and inflammatory response (54).

However, very little is known about the effects of platelet-

derived EVs in the pathological processes involved in HIV-

associated neurological disorders. It is notable that using only a

plasma sample we were able to identify correlates of neurological

dysfunction that reflect the underlying cellular pathology. The

ability to gain valuable information from plasma samples would

vastly expand the number of individuals who can be studied,

since banking PBMC samples is a costly and laborious process.

It is important to note that we observed a relationship with EV

expressing neuroinflammatory damage markers (GFAP, MAP2,

and CD200) and monocytes in the periphery in ART-treated

HIV-infected individuals with cognitive impairment, suggesting

the presence of a cross-talk between the periphery immune system

and the brain during disease. Consistent with our observations,

Farmen et al. reported a correlation between PBMC-derived
FIGURE 6

Diagrammatic representation of the biogenesis of EVs expressing inflammatory phenotypic markers in neurocognitive disorders. Scheme
presents the healthy brain and the inflammatory environment of the cognitively impaired brain. EVs are generated reflecting the underlying
surface proteins on their cell of origin.
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monocytes with immune activation in the brain and changes of

dopaminergic synapse function (55). Intermediate monocytes

may play a prominent role, as other studies assessing monocyte

subjects infected with HIV reported that intermediate monocytes

could contribute to immune activation and inflammation (56–58),

and could migrate across the blood-brain barrier (59). Another

study performed by Veenhuis et al. reported that levels of

intermediate monocytes are associated with worse cognitive

function and may contribute to immune-brain interactions in

HIV-infected individuals on virologically suppressive ART (60). A

relevant study demonstrated that peripheral pro-inflammatory

signals may be delivered to the CNS resident cells via choroid

plexus-derived CSF EVs (61). Interestingly, studies have reported

that EVs carry miRNA molecules that across the blood-brain

barrier and may bind to activate surface or intracellular receptor,

and this cross talk may lead to either pro- or anti-inflammatory

responses (62–64). Based on our observations and published

reports, our data suggest that EVs derived from myeloid

immune process in HAND individuals may involve both

periphery and brain and that both processes may be related.

However, we propose that future studies should be focused on the

mechanisms of how blood EVs-brain communicate with the CNS

during systemic inflammation and elucidate the pathway targets

that are affected by a portion of the candidate EV miRNAs in

HAND-related neuroinflammation which could lead to new

therapeutic strategies.

Our studyhas limitations;first, the studycohort consistedofHIV

+ individuals with low CD4 nadir, and exposure to older ART

regimens, so it is possible that some differences we found between

cognitive impairment versus normal cognition could be confounded

by factors other rather than cognitive status. Another limitation was

that this cohort did not collect viral load in CSF samples, but no

significant correlations were observed between circulating EVs and

plasmaviral load. Further investigationsusing a larger cohort and the

use of a validation cohorts (with different clinical and demographic

characteristics) of cognitive impairment in virally suppressed HIV-

infected individuals are needed to confirm our findings. Finally, the

progression of HAND is highly variable, and the molecular

mechanisms underlying whether EVs and their cargo impact the

resolution of inflammation to influence the accelerated progression

of HAND in virally suppressed individuals remains undefined,

though candidate mechanisms include EV-associated molecular

cargo [reviewed in references (65, 66)]. Further investigation of

these EVs to elucidate their potential as biomarkers of and monitor

progression of disease and response to therapy in ART-treated

HAND individuals is warranted.
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15. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular
interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol
(2014) 30:255–89. doi: 10.1146/annurev-cellbio-101512-122326

16. Kapogiannis D, Boxer A, Schwartz JB, Abner EL, Biragyn A, Masharani U,
et al. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-
derived blood exosomes of preclinical alzheimer’s disease. FASEB J (2015) 29
(2):589–96. doi: 10.1096/fj.14-262048

17. Kapogiannis D, Mustapic M, Shardell MD, Berkowitz ST, Diehl TC,
Spangler RD, et al. Association of extracellular vesicle biomarkers with
Alzheimer disease in the Baltimore longitudinal study of aging. JAMA Neurol
(2019) 76(11):1340–51. doi: 10.1001/jamaneurol.2019.2462

18. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles,
and friends. J Cell Biol (2013) 200(4):373–83. doi: 10.1083/jcb.201211138
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