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neuroimmune interactions
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The idea that the nervous system communicates with the immune system to

regulate physiological and pathological processes is not new. However, there is

still much to learn about how these interactions occur under different

conditions. The carotid body (CB) is a sensory organ located in the neck,

classically known as the primary sensor of the oxygen (O2) levels in the

organism of mammals. When the partial pressure of O2 in the arterial blood

falls, the CB alerts the brain which coordinates cardiorespiratory responses to

ensure adequate O2 supply to all tissues and organs in the body. A growing

body of evidence, however, has demonstrated that the CB is much more than

an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary

ability to detect a wide diversity of circulating molecules in the arterial blood,

including inflammatory mediators. In this review, we introduce the literature

supporting the role of the CB as a critical component of neuroimmune

interactions. Based on ours and other studies, we propose a novel

neuroimmune pathway in which the CB acts as a sensor of circulating

inflammatory mediators and, in conditions of systemic inflammation, recruits

a sympathetic-mediated counteracting mechanism that appears to be a

protective response.
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Introduction

The nervous and immune systems interact to maintain

physiological functions and to regulate pathological processes.

These interactions occur in a bidirectional fashion – the nervous

system can modulate the immune system and the immune cells

and molecules can affect nervous system functions (1–7). Our

understanding of neuroimmune interactions has substantially

increased in the last years due to advancing technologies and

combined efforts from the neuroscience, immunology, and

physiology fields. It is currently known that local (i.e., within

organs) and systemic (i.e., inter-organs) neuroimmune

interactions govern many physiological functions as well as

contribute to the development and maintenance of several

diseases (8–11). Very illustrative examples of local

neuroimmune interactions are those occurring within the gut,

where its intrinsic nervous system (i.e., enteric nervous system)

continuously modulates the activity of gut-resident immune

cells to provide host defense against pathogens (12, 13).

Differently, systemic neuroimmune interactions involve

nervous and immune cells across different organs and can

depend on central nervous system processing. For example,

during acute systemic inflammation, the increased levels of

circulating inflammatory mediators activate brainstem areas

that are able to generate a counteracting protective response

through changes in autonomic (i.e., parasympathetic and

sympathetic) outflows that, in turn, modulate the function of

immune cells within different peripheral organs to resolve

inflammation (3, 7, 14–16).

In the latter example, because many immune cells and

inflammatory molecules cannot readily cross the blood-brain

barrier (17), some mechanisms have been identified to explain

how brainstem areas could be activated in response to acute

peripheral inflammation. In this context, the vagus nerve (X

cranial nerve), a major component of the parasympathetic

nervous system, was found to play an important role. The

vagus is a mixed nerve, constituted by both afferent (from the

body to the brain) and efferent (from the brain to the body)

fibers, in a proportion of approximately 80% and 20%,

respectively (18). Vagal afferent fibers carry important visceral

sensory information from most peripheral organs to the central

nervous system and, therefore, are essential players in the

communication between the body and the brain (19).

Regarding peripheral inflammation, several lines of evidence

have indicated that vagal afferents are excited by circulating

inflammatory mediators and relay this information to the central

nervous system (1, 14, 20, 21). Indeed, it has been extensively

reported that endogenous or exogenous stimulation of vagal

afferents suppresses inflammation, likely by activating

parasympathetic-related brainstem areas that generate a vagal

efferent outflow to modulate peripheral immune cells (2, 7,

22–25).
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Nevertheless, although the roles of vagal afferents as

peripheral sensors of inflammation and vagal efferents as

modulators of immune cells are well documented, much less is

known about alternative, vagal-independent mechanisms in the

context of systemic inflammation. An increasing body of new

evidence has shown that several neuroimmune mechanisms do

not depend on the vagus nerve or could compensate for its

absence (3, 5, 16, 26). For instance, the intravenous

administration of lipopolysaccharide (LPS) promoted systemic

inflammation and increased splanchnic sympathetic nerve

activity (3). This heightened sympathetic activity appears to be

an anti-inflammatory response since in animals subjected to

splanchnic sympathetic denervation, the LPS-induced

inflammation was exacerbated, as reflected by higher levels of

tumor necrosis factor-alpha (TNF-a) in the plasma (3). It is

important to note that, although this effect was attributed to the

lack of the inhibitory role played by splanchnic efferents on the

splenic production of TNF-a (3), the absence of splanchnic

afferents could have also contributed to exacerbating

inflammation. Afferent fibers within the splanchnic nerves

convey a great variety of sensory (mechanical, chemical, and

noxious) information from visceral organs to the brain and,

importantly, can be sensitized by inflammatory mediators (27,

28). Therefore, in the study of Martelli et al. (3), a contribution of

splanchnic afferents to body-brain communication during LPS-

induced systemic inflammation cannot be excluded. Another

remarkable finding of the study was that bilateral vagotomy did

not affect the LPS-induced increase in splanchnic sympathetic

nerve activity nor the LPS-induced increase in TNF-a levels (3).

Collectively, these findings support the existence of a

neuroimmune mechanism that detects systemic inflammation

and increases sympathetic outflow to modulate inflammation

independently of vagal afferents (as peripheral sensors of

inflammatory mediators) and vagal efferents (as neural

modulators of peripheral immune cells). These results (3) also

support a role of the sympathetic nervous system as a brain

output in controlling inflammation (5, 16, 29, 30). However, a

question remains: what could be the sensing mechanisms

responsible for detecting systemic inflammation and driving

the activation of brain circuits that increase sympathetic

outflow to modulate the function of peripheral immune cells

when the vagus nerves are absent?

Here, we review the literature supporting that the carotid

bodies, a pair of small sensory organs located in the neck, are

crucial players in body-brain communications in the context of

inflammation. The carotid body (CB) is classically known as the

primary sensor of the oxygen (O2) levels in the arterial blood, by

sensing hypoxemia and activating brainstem autonomic areas to

promote adequate cardiorespiratory adjustments to maintain

homeostasis (31–33). However, it is now clear that the CB is

much more than a hypoxemia/hypoxia sensor. Instead, the CB

can monitor the levels of several molecules in the arterial blood
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(34, 35). This multisensorial ability confers to the CB the

extraordinary capacity for integrating different systems,

including interactions between the nervous and the immune

systems. For instance, we recently found that the CB cells detect

increased levels of TNF-a in the circulation and drives a

sympathetic-mediated response to suppress systemic

inflammation (26). Based on this and other studies, we

propose that the CB is a key player in neuroimmune

interactions and might be involved in the pathophysiology of

inflammation-mediated diseases, representing a potential novel

target for the development of new therapies.
Carotid body anatomy
and physiology

Before going into details about the role of the CB in

neuroimmune interactions, a brief overview of CB anatomy

and function is provided in this and the following section. The

CB is a small paired organ located in the carotid bifurcations, the

point where the common carotid artery divides into external and

internal carotid arteries to supply blood to the brain (33, 34, 36,

37). This anatomical location is strategic: since the CB is the

main sensor of the O2 levels in the body, one of its primordial

tasks is monitoring the composition of the arterial blood flowing

into the brain, which functioning is critically dependent on

adequate O2 supply (35, 38). The CB is comprised by glomus

cells (type I) and sustentacular cells (type II). The glomus cells

are the most predominant and form clusters wrapped by

sustentacular cells (33, 39). The glomus cells are responsible

for detecting low levels of O2 in the arterial blood (hypoxemia),

transducing this chemical information into neural signals that

reach the central nervous system. In brief, when the partial

pressure of O2 in the arterial blood falls, the CB glomus cells

depolarize and release neurotransmitters that excite terminal

afferents of the carotid sinus nerve (CSN) (34, 37, 38, 40). The

CSN, which is a branch of the glossopharyngeal nerve (IX cranial

nerve), conveys the signals from the CB to the nucleus tractus

solitarius (NTS) in the brainstem (32, 37, 41). The NTS neurons,

in turn, sends projections to brainstem areas related to the

control of autonomic activity to promote cardiorespiratory

adjustments to counteract hypoxemia and ensure the adequate

delivery of O2 to the brain and body (32, 37, 42, 43).

The cardiorespiratory responses to hypoxemia include

increases in arterial blood pressure and pulmonary ventilation

and a decrease in heart rate (44, 45). The increase in arterial blood

pressure results from a rapid elevation in sympathetic activity,

driven mainly by a CB-mediated activation of NTS excitatory

projections to the rostral ventrolateral medulla (RVLM), where

most pre-sympathetic neurons are found (32, 46, 47). Notably,

CB-mediated sympathetic effects during hypoxia are mostly

excitatory, increasing lumbar, renal, and splanchnic
Frontiers in Immunology 03
sympathetic nerve activities (26, 48), only decreasing brown

adipose tissue sympathetic nerve activity (49). Interestingly, CB

stimulation by hypoxia also activates parasympathetic-

controlling brainstem areas such as the nucleus ambiguus (NA)

to increase parasympathetic activity resulting in bradycardia and,

possibly, other effects (50–52). These observations demonstrate

that the CB has a particular capacity for modulating both

sympathetic and parasympathetic arms of autonomic outflows,

impacting the function of different organs/systems. In the next

section, we introduce the current concept that the CB contributes

to regulating several body functions in a number of different

conditions rather than only during hypoxia.
Other functions of the carotid body:
Much more than an O2 sensor

Over the last 30 years, it has been increasingly discovered

that the sensory function of the CB is not limited to hypoxia –

besides those, the CB can detect an impressive variety of

molecules (or their absence) in the circulation. For example,

the CB is able to sense the plasma levels of angiotensin II (53),

endothelin (54), leptin (55), cytokines (26, 56–59), epinephrine

(60, 61), sodium chloride (62), glucose (63–65), insulin (66), and

glucagon like peptide-1 (67) in the arterial blood. This very

unique ability supports the current view that the CB is a

multimodal sensory organ that monitors blood composition

and informs the central nervous system on whether a given

molecule is at low or high levels in the circulation (Figure 1). The

central nervous system, in turn, organize the reflex adjustments,

mainly through changes in autonomic outflows to regulate

various body functions (34, 69).

One interesting example of a CB-mediated integrative

homeostatic mechanism can be observed during hypoglycemia.

Previous in vitro investigations have shown that CB glomus cells

are sensitive to low levels of glucose (63, 64) encouraging later in

vivo studies to explore the potential contribution of the CB in the

homeostatic responses to hypoglycemia (61, 70). One of these

studies, performed in humans, demonstrated that the

hypoglycemia-induced acute release of counter-regulatory

hormones that promote glycogenolysis and gluconeogenesis

such as epinephrine, norepinephrine, cortisol, and glucagon is

impaired by inhibition of the CB (70). The lower levels of

epinephrine and norepinephrine in the plasma reflect a

reduced sympathetic activation which, in turn, could have

partially accounted for the lower levels of cortisol and

glucagon when the CB is silenced (70). These findings

illustrate how the CB plays an essential role in integrating

different organs and systems. In this case, the CB acts as a

sensor of blood glucose levels and coordinates a homeostatic

response involving the sympathetic nervous and endocrine

systems (70). In the following sections of this review, we focus
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on previous and new evidence indicating that the CB cells are

also important for linking the nervous and the immune systems.
Carotid body and neuroimmune
interactions

In this section, we examine the growing body of evidence

supporting that the CB is a sensor of peripheral inflammation

and plays a pivotal role in recruiting a sympathetic-mediated

anti-inflammatory response. As a starting point, it should be

noted that the presence of receptors that allow for the

recognition of pathogen-associated molecular patterns

(PAMPs), damage-associated molecular patterns (DAMPs),

and inflammatory mediators was reported in CB glomus cells

and in PG neurons that provide CB sensory innervation. More

precisely, it has been demonstrated that the mammalian CB and

its innervating sensory neurons express toll-like receptors (TLR)

1 and 4, and receptors for inflammatory ligands such as TNF-a,
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interleukin 1-beta (IL-1b), interleukin 6 (IL-6), and

lysophosphatidic acid (LPA) (26, 56, 71–75). Additional

supportive evidence comes from studies showing that the CB

is intrinsically responsive to several inflammatory mediators

(56–58). For instance, whole-cell patch-clamp and calcium

imaging experiments in cultured glomus cells demonstrated

that IL-1b depolarizes the CB, inhibiting outward potassium

currents and promoting calcium influx (58). In a recent study, it

was shown that various pro-inflammatory cytokines (IL-4, IL-5,

IL-13, IL-1b, IL-6, and TNF-a) and other inflammatory

mediators (eotaxin and LPA) increase CSN activity in an

isolated CB/CSN preparation (57). Notably, the same research

group previously demonstrated that the LPA-induced CB

activation stimulates phrenic and vagus nerve activities in an

in situ decerebrated rat preparation (56), confirming that

inflammatory mediators can directly activate the CB that, in

turn, stimulates motor/autonomic outflows.

While these essential studies demonstrated that the CB has

the machinery to intrinsically detect and respond to
FIGURE 1

The carotid body (CB) is a sensory organ located at the carotid bifurcation (33, 34, 36). The carotid sinus nerve (CSN), a branch of the IX nerve
(glossopharyngeal nerve), provides the sensory innervation to the CB (34, 36). Pseudo-unipolar neurons with cell bodies located within the
petrosal ganglion (PG) convey the sensory information from the CB to the central nervous system (32, 34, 36, 37). This sensory information is
multimodal, since the CB is responsive not only to changes in the partial pressure of oxygen in the arterial blood, but also to changes in the
levels of several circulating molecules (epinephrine, angiotensin II, cytokines, endothelin, glucagon like peptide-1, glucose, insulin, leptin, and
sodium chloride) (26, 53–55, 57–59, 61–64, 66, 67). Once depolarized, CB glomus cells release neurotransmitters, primarily ATP (39, 68). ATP
binds to P2X2/P2X3 receptors in the afferent terminals of the CSN, generating action potentials which are propagated to the central nervous
system (33, 38, 39, 68). Some of the ATP released by glomus cells is converted into adenosine by extracellular enzymes (NTPDase2,3 and ecto-
5-nucleotidase) (38). Adenosine acts on A2a receptors on CSN afferent terminals, generating action potentials, and contributing to CB signaling
to the central nervous system (38–40). Other neurotransmitters (Others) such as acetylcholine, dopamine, and serotonin, have been also found
to modulate CSN activity (33, 37, 39). CB, carotid body; CSN, carotid sinus nerve; IX nerve, glossopharyngeal nerve; PG, petrosal ganglion.
Created with BioRender.com.
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inflammatory mediators, other studies provided indirect but

equally important evidence about the role of the CB in

neuroimmune interactions, specifically in the context of

systemic inflammation (71, 76, 77). In cats, the intravenous

administration of LPS, resulting in systemic inflammation with

high levels of various circulating pro-inflammatory cytokines,

potently increased CSN discharge and caused tachypnea,

tachycardia, and hypotension (71). Interestingly, the bilateral

CSN section abolished the LPS-induced increase in respiratory

frequency, indicating that the CB activates central respiratory

pathways and stimulates breathing during systemic

inflammation (71). A subsequent study provided further

evidence that the CB is involved in brain-body communication

during LPS-induced sepsis (76). The authors demonstrated that

the intravenous administration of LPS in rats activates neurons

in the NTS, the first relay site for CB afferents (76). Remarkably,

LPS-induced NTS activation was profoundly suppressed in

animals with bilateral CB denervation, strongly indicating that

the CB is a crucial player in central nervous system activation

during systemic inflammation (76). Furthermore, a later study

from the same research group, suggested that the CB has a

protective role during LPS-induced sepsis since bilateral CB

denervation resulted in exacerbated plasma TNF-a, blunted
plasma corticosterone, and faster progression to multiple

organs dysfunction in comparison to rats with intact CBs (77).

Although the presented evidence seems sufficient to

acknowledge the involvement of the CB in neuroimmune

interactions, several questions still remain. Since intravenous

administration of LPS increases the circulating levels of several

inflammatorymediators such as TNF-a, IL1b, and IL-6 (78), what
molecule (s) is (are) actually acting on the CB in vivo? What are

the connections of the NTS neurons activated by CB afferents

during inflammation? Is the CB-mediated activation of NTS

neurons a counteracting response to systemic inflammation?

Therefore, in a recent study, we sought to further dissect the

role of the CB in neuroimmune interactions (26). More

specifically, we investigated if the CB could detect increased

levels of TNF-a in the circulation and activate central

autonomic pathways to potentially modulate inflammation. We

decided to focus on TNF-a because its type I receptor (TNFR1)

was already reported to be found in CB glomus cells of several

mammalian species (including rats) (71, 73, 79) and, also, because

TNF-a is a well-known critical mediator of inflammation (80).

We first examined and confirmed that the TNF-a receptor type I

is expressed in the CB glomus cells of rats at mRNA and protein

levels (26). Next, we found that the intravenous administration of

TNF-a increased CSN afferent discharge (26), suggesting that the

CB can detect increased levels of TNF-a in the circulation. Since

the first central synapse of CB afferents occurs in the NTS (32, 81),

and because CB stimulation by hypoxia activates monosynaptic

excitatory projections from NTS to RVLM, increasing

sympathetic outflow (32, 46), we hypothesized that the observed

TNF-a-induced increase in CSN afferent activity could stimulate
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this pathway (26). We found that intravenous TNF-a activated a

high number of RVLM-projecting NTS glutamatergic neurons

and that this activation was dependent on CB input since the

number of activated neurons was drastically reduced in rats

previously subjected to bilateral CB ablation (26). These results

suggest that the CB detects circulating TNF-a and activates a

central sympathoexcitatory pathway. Consistent with the

observation that circulating TNF-a activates the CB to recruit a

NTS-RVLM sympathoexcitatory pathway, we found that systemic

TNF-a increased splanchnic sympathetic nerve activity, and

importantly, CB ablation strongly attenuated this response (26).

This observation further supports the role of the CB as a sensor of

circulating TNF-a and a key player in body-brain communication

in this model. Finally, because the splanchnic sympathetic nerve

was shown to exert an anti-inflammatory and protective role

during systemic inflammation (3, 15, 16), we hypothesized that

the TNF-a-induced activation of the sympathetic circuits and

splanchnic sympathetic nerve activity would counteract

inflammation. Confirming this assumption, the levels of

cytokines measured in the plasma and in the spleen 2 hours

after the TNF-a administration were significantly increased in

animals previously subjected to CB removal or splanchnic

sympathetic denervation compared to sham animals (26). In

summary, our results suggest a novel neuroimmune mechanism

in which the CB acts as a sensor of peripheral inflammation,

detecting increased levels of circulating TNF-a and

communicating with the brain to activate a counteracting anti-

inflammatory reflex mediated by the splanchnic sympathetic

nerve. A schematic illustration of the novel mechanism is

presented in Figure 2.

The discovery of this novel neuroimmune mechanism raises

numerous possibilities and questions. As well pointed out by a recent

report (82): could other sympathetic nerves (besides the splanchnic)

and/or premotor sympathetic areas (besides the RVLM) also

contribute to regulating inflammation? In addition, we also add

the following questions: What is the role of this mechanism in

chronic inflammatory conditions? Are CB-mediated activation of

NTS projections to brainstem parasympathetic nuclei (DMV and

NA) activated during inflammation? Does the parasympathetic

nervous system also play a role in this neuroimmune mechanism?

Does chronic inflammation cause CB-mediated sympathetic

overactivation in disease states? Although further investigations are

needed to answer all the raised questions described above, in the next

section of this review, we briefly discuss the potential role of

inflammation in the pathological overactivation of the CB

observed in several diseases.
Targeting the CB as a therapeutic
approach for inflammatory diseases?

Because of its multisensory ability and integrative role, it is

somewhat expected that a CB dysfunction could impact the
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activity of different organs/systems and, thus, contribute to

various diseases. Numerous pre-clinical and clinical studies

have shown that CB dysfunction, usually characterized by its

overactivity, plays a role in hypertension (83–85), heart failure

(86, 87), apneas of prematurity (88, 89), and metabolic diseases

(90, 91). In hypertension and heart failure, for example, a

chronic CB overactivation has been associated with the

sustained activation of the sympathetic nervous system, which

contributes to the development and maintenance of these

conditions (83, 87, 92–95).

Over the last decade, the surgical removal of the CB has been

considered a therapeutic option to overcome this CB-mediated

sympathetic overactivation in hypertension (83, 85, 92, 96) and

heart failure (86, 95). Although the outcomes of these studies

were very promising, concerns about the safety of removing the

CBs were raised (45, 97). In spontaneously hypertensive rats, the

bilateral CB removal abolished the pressor responses to hypoxia

and exacerbated the pressor and respiratory responses to

hypercapnia, indicating an impaired capacity for regulating

cardiorespiratory functions in CB-ablated animals (45). In

addition, based on the supposed protective role of the CB
Frontiers in Immunology 06
during systemic inflammation and sepsis (26, 77), CB ablation

could result in catastrophic effects if the individual is exposed to

these conditions.

In this context, pharmacological approaches have been

described (93, 98) as promising options for reducing CB

overactivity. However, to the best of our knowledge, there are

no reports considering the targeting of inflammatory signaling

within the CB in diseases such as hypertension and heart failure.

Since a chronic state of inflammation is a common feature in

these conditions (99, 100) and because inflammation-related

molecules activate the CB (26, 57), we hypothesize that chronic

inflammation contributes to the excessive CB activation

observed in some diseases and thus, propose that targeting

inflammation within the CB might represent a new

therapeutic approach. However, studies are needed to test

this hypothesis.

If, on one side, a great effort has been made to suppress CB

activity in chronic conditions such as hypertension and heart

failure, on the other side, much less is known about strategies to

enhance CB activity that could be favorable in some situations

such as in acute systemic inflammation (26, 77, 101, 102).
FIGURE 2

The CB is a sensor of peripheral inflammation and initiates a sympathetic-mediated anti-inflammatory response (26). 1: Elevated levels of TNF-a
in the blood depolarizes CB glomus cells which widely express TNF-a receptors type I (26, 71–73). Depolarization of CB glomus cells by TNF-a
generates action potentials that propagate along axons within the CSN towards the brainstem (26). 2: The first central synapse of CB-originated
axons occurs in the NTS, a major integrative brainstem region that receives the sensory information from peripheral organs and projects to
several brainstem autonomic areas that control parasympathetic (DMV and NA) and sympathetic (RVLM) functions (32, 41, 46, 50, 52). 3: The
TNF-a-induced activation of the CB-NTS-RVLM circuit increases the activity of the splanchnic sympathetic nerve which innervates the celiac
ganglia, from where the splenic nerve originates and projects to the spleen, releasing norepinephrine (NE) (26). 4: The release of NE into the
spleen reduces both splenic and plasmatic levels of TNF-a (26). CB, carotid body; CSN, carotid sinus nerve; DMV, the dorsal motor nucleus of
the vagus; NA, nucleus ambiguus; NTS, nucleus tractus solitarius; NE, norepinephrine; RVLM, rostral ventrolateral medulla; TNF-a, tumor
necrosis factor-alpha. Created with BioRender.com.
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Preclinical studies conducted in rodents have provided exciting

evidence for considering the electrical stimulation of the CB to

counteract acute systemic inflammation (101, 102). One of these

studies employed a technique that allows the electrical stimulation

of the carotid sinus/CSN in unanesthetized rats (103) and found

that CB activation attenuates LPS-induced systemic inflammation

likely by recruiting parasympathetic- and sympathetic-mediated

mechanisms (101). Another study demonstrated that CSN

stimulation in mice efficiently reduced LPS-induced

inflammation by activating the hypothalamus-pituitary-adrenal

axis, promoting corticosterone release, which, in turn, suppressed

the activity of myeloid cells (102). Nevertheless, some questions

remain. First, which type(s) of fiber(s) in the CSN (A-fibers, C-

fibers, or both) mediate the observed anti-inflammatory effects

following CB/CSN electrical stimulation in the abovementioned

studies? Second, could different electrical stimulation parameters

selectively activate CSN A-fibers, C-fibers, or both? Last, would

the activation of specific CSN fiber types promote differential

effects on the control of inflammation? For example, studies

conducted on electrical stimulation of the vagus nerve have

demonstrated that specific stimulation parameters can recruit

different fiber types (104, 105). Moreover, it has been shown

that specific parameters for electrical stimulation of the vagus

nerve results in differential effects on circulating cytokines (24).

Therefore, although the outcomes of CB activation in rodents to

modulate inflammation seem encouraging, the translation of

electrical stimulation of the CB/CSN to the clinical scenario still

requires further investigation.
Challenges of CB stimulation as a
therapeutic strategy

Besides the need for more robust evidence on the

mechanisms underlying the electrical activation of the CB, as

discussed above, safety concerns are probably the main challenge

for implementing this approach in clinical settings. A surgical,

invasive approach is necessary to access the CB and the CSN.

Since the CB and surrounding areas are highly vascularized and

innervated (34, 106), potential inaccuracies during the surgical

procedure could result in serious consequences. In this context,

ultrasound-based neural stimulation could be explored as a non-

invasive alternative for activating the CB/CSN. Recent studies

have shown successful applications of ultrasound stimulation for

targeting neural pathways within specific organs, such as the

spleen and the liver, modulating inflammation and glucose

homeostasis, respectively (107, 108). A challenge for this,

however, may rely on the fact that the carotid baroreceptor

fibers and CB fibers are in close proximity and run together

within the CSN (34, 109), making it very difficult to specifically

target one and not the other.
Frontiers in Immunology 07
Conclusion
In this review, we highlight the CB as a unique organ with

extraordinary capacities for sensing a great variety of molecules

and integrating different organs/systems. We focus on the role of

the CB in mediating the integration between the nervous and the

immune systems. In this context, we introduce a novel

mechanism of neuroimmune interaction in which the CB acts

as a sensor of inflammatory ligands in the circulation and

recruits central sympathetic networks that counteract

inflammation. Furthermore, based on a growing body of

preclinical and clinical research, we propose new perspectives

on managing inflammatory diseases by targeting the CB.

It should be noted that although most of the studies

discussed in this review reported a sympathetic-mediated

suppression of immune responses (3, 5, 16, 26), the

sympathetic nervous system, in some conditions, can actually

activate the immune system (110–112). Therefore, despite the

potential therapeutic possibilities highlighted in the present

study seem promising, there is still a lot to explore regarding

the intricate interactions between the nervous and

immune systems.
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98. Langner-Hetmańczuk A, Tubek S, Niewiński P, Ponikowski P. The role of
pharmacological treatment in the chemoreflex modulation. Front Physiol (2022)
13:912616. doi: 10.3389/fphys.2022.912616

99. Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association
between inflammatory markers ( c-reactive protein , interleukin-6 , and TNF- a )
and essential hypertension. Journal of Human Hypertension (2005) 19, 149–54.
doi: 10.1038/sj.jhh.1001785

100. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C,
et al. Plasma cytokine parameters and mortality in patients with chronic heart
failure. Circulation (2000) 102:3060–7. doi: 10.1161/01.CIR.102.25.3060
Frontiers in Immunology 10
101. Santos-Almeida FM, Domingos-Souza G, Meschiari CA, Fávaro LC, Becari
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