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Viruses are submicroscopic, obligate intracellular parasites that carry either

DNA or RNA as their genome, protected by a capsid. Viruses are genetic entities

that propagate by using the metabolic and biosynthetic machinery of their

hosts and many of them cause sickness in the host. The ability of viruses to

adapt to different hosts and settings mainly relies on their ability to create de

novo variety in a short interval of time. The size and chemical composition of

the viral genome have been recognized as important factors affecting the rate

of mutations. Coronavirus disease 2019 (Covid-19) is a novel viral disease that

has quickly become one of the world’s leading causes of mortality, making it

one of the most serious public health problems in recent decades. The

discovery of new medications to cope with Covid-19 is a difficult and time-

consuming procedure, as new mutations represent a serious threat to the

efficacy of recently developed vaccines. The current article discusses viral

mutations and their impact on the pathogenicity of newly developed variants

with a special emphasis on Covid-19. The biology of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), its mutations, pathogenesis, and

treatment strategies are discussed in detail along with the statistical data.

KEYWORDS

mutation in viruses, virulence, SAR-CoV-2, COVID-19, phylogenomics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034444/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034444/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034444/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034444/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1034444&domain=pdf&date_stamp=2022-11-28
mailto:Jshah6@pride.hofstra.edu
mailto:Asadfarooq601@yahoo.com
mailto:wzjiang@bio.ecnu.edu.cn
https://doi.org/10.3389/fimmu.2022.1034444
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1034444
https://www.frontiersin.org/journals/immunology


Khan et al. 10.3389/fimmu.2022.1034444
GRAPHICAL ABSTRACT
1 Introduction

Mutations are reported in many species of living organisms

and are mainly considered as a building block of evolution.

Mutations cause changes in the living organism which may be

beneficial or harmful for the organism itself and other organisms

(1). Normally every organism tries to be stable and adapt itself to

the surrounding environment to avoid mutation. Various

contributing factors compel an organism to adapt accordingly

but the majority of the mutations occur due to the biochemical

process occurring inside the living organism such as errors in

replication, editing, or damage to a nucleic acid. Similarly,

mutation rate and adaptation theory are other contributing

factors that determine the rate of molecular evolution. The

association between evolution and mutation is resolute but it

is quite challenging to find out how much they are
Frontiers in Immunology 02
interdependent. It is because the evolutionary process is

directly affected by ecological, selective, and demographical

factors (2, 3). Evolution is relatively faster in viruses as

compared to other living organisms, thus changes can be

easily reported in a timescale of years if matched with the

collected isolates of the same virus species (4, 5). The high

speed of virus mutation is a constant threat in different

magnitudes such as the development of drug resistance,

pathogenesis, the success of antiviral treatment, vaccine

efficacy, and the likelihood of the emergence of new disease or

increasing the virulence of the existing disease (6, 7). Mutations

are not usually induced due to replication but can also result

from editing or continuous damage to genetic material (nucleic

acid). Normally, viruses with an increased rate of mutations can

efficiently evade immunity. We have many examples of viruses

with high mutation rates causing chronic infections such as
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hepatitis B virus (HBV), hepatitis C virus (HCV) and human

immunodeficiency virus-1 (HIV-1) (8).
2 Virulence

Traditionally, one of two methods has generally been used to

study viral virulence: theoretically or empirically. Even though

both theory and empiricism have produced substantial and

comparable insights, however, they can only portray a

percentage of pathogenic evolution. Several efforts have been

taken so far to overcome this barrier (9, 10). In a range of

circumstances, a long-standing evolutionary theory addresses

the level of virulence that improves pathogen viability. Different

transmission strategies, co-infection rates, selection pressures

inside and between hosts are all examples of such scenarios (11).

On the other hand, empirical research uses laboratory-based

techniques to uncover the virulence determinants (genetic

variations that alter virulence) by employing a blend of cell

culture, animal models and reverse genetics (12, 13). However,

mutations discovered in experimental investigations aren’t

evaluated from an evolutionary perspective hence, their

significance is largely neglected for basic assumptions of

virulence evolution. Additionally, in vitro methods may not

truly depict the genuine genetic changes hence, little

consideration may be given to understand how virulence

alteration influence inter-host transmission and animal models

usually vary from those infected in the field. Following the

appearance of the virus in the host is, arguably, the most

intriguing element of virulence evolution (14, 15).

The subject of how virulence will develop is frequently

discussed following the advent of a novel virus or the the entry of

an old virus with a modified host range. To derive extraordinary

insight, investigators must compare pathogenicity in both donor

and novel (receiver) host species. Although this may appear to be

simple andmanageable in certain circumstances, it is actually full of

challenges (16). In many cases, such as hepatitis C virus and

emerging infectious illnesses like Zika virus (ZIKV), the host

species is dubious or uncertain (17). Even when a reservoir

species is recognized, there is still a lot of work to be done as

nothing is known about its virulence, and there is likely to be a

parameter estimation predisposition toward the most virulent

circumstances. Better sampling, which is generally inadequate in

animals, may also change the identification of host species. For

instance, the canine parvovirus (CPV), which initially infected dogs

in the late 1970s, was long thought to be the result of a virus that

hopped from cats (18). However, subsequent rigorous screening of

wild predatory species has revealed that this is incorrect, and the

real CPV repository species is unknown. As a result, it’s critical to

think about pathological conditions in reservoir hosts in natural

settings, especially virulence, which will require more in-depth

animal ecological studies. However, less is documented about

virulence in host species, statistical information suggests that less
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virulent viruses aremore likely than highly virulent viruses to create

transmission cycles in humans (19). This greater probability is

assumed to be attributable to the fact that high pathogenicity

demands a larger availability of vulnerable hosts during

infection’s early phases.
3 Mutations rates in RNA and
DNA viruses

Among all biological systems, viruses exhibit the most varied

rates and patterns of mutation. Similarly, great variations of

mutations are observed between RNA and DNA viruses.

However several forms of estimating error and distortion impair

the credibility of some of these rates (20). Considering these

limitations, it may be predicted that viral alteration rates vary

between 10-8 and 10-4 variations per nucleotide per cell infection (s/

n/c), with DNA viruses lying between 10-8 and 10-6, and RNA

viruses falling between 10-6 and 10-4. There are several different

processes that might account for these variations. Firstly, a

significant proportion of RNA viral polymerases miss a 3′
exonuclease sequencing function, making them more error-prone

than DNA virus polymerases (21, 22). Coronaviruses are an

exception to this rule, as they encode a complex RNA-dependent

RNA polymerase with a 3 exonuclease domain (23). Due to the

absence of the 3 exonuclease domain in reverse transcriptases

(RTs), retroviruses (viruses with RNA-containing virions and a

cellular DNA stage) and para-retroviruses (viruses with DNA-

containing virions and a cellular RNA stage) evolve and grow at

rates that are comparable to those non-reverse transcribing RNA

viruses (24, 25). The difference between DNA viruses and RNA/RT

viruses is widely understood from both a genetic and a mechanistic

point of view, although distinctions in biological evolution are less

evident (26). African swine fever virus (ASFV), tomato yellow leaf

curl geminivirus, human parvovirus, beak-and-feather disease

circovirus, and canine parvovirus strains have all been found to

mutate at comparable rates to RNA viruses (27). This underlines

the fact that evolution is impacted by various factors other than

mutation rate, and that many DNA viral genetic alterations are

undiscovered andmay be more frequent than commonly assumed.

Although this estimation was preliminary, current findings with

human cytomegalovirus has an average genome-wide s/n/c of 2 10-

7, which is somewhat different from the results assumed for a huge

double-strand DNA virus. Given the fact that nearly all DNA and

RNA viruses have similar life cycles and face similar experimental

conditions, it’s unknown why these two types of genetic alterations

have grown so significantly (28).

Mutation rates are predicted to balance various factors such

as detrimental impacts of most new mutations, the adaptive

effects of a small number, and the costs of mutagenesis

management. A random mutation rate of 0.003 per genome

per replication has emerged in microbial species that retain their

genomes in DNA (20, 29). RNA viruses are said to have
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substantially higher rates of spontaneous mutation. However,

rather than mutation rates themselves, this assumption is based

almost entirely on assessments of mutant frequencies and

evolution rates. There are several factors, the most crucial of

which are population history, selection, replication mechanism,

and mutability at each replication phase which are connected to

mutation rates in natural and experimental populations. Mutant

frequencies can therefore differ greatly from mutation rates. The

highest permissible harmful mutation rate cannot be

substantially higher than 1 per genome per replication with or

without modifying variables like high fecundity, huge

populations, and recombination (30, 31).
4 Virus phylogenomics

Phylogenetics is a field of molecular epidemiology that

presumes information about taxonomy and microorganism

evolution (32). It is a potent method that has already been

employed in the study of rapidly developing RNA viruses and

bacteria using phylogenetic analysis in nosocomial infection (33–

35). Phylogenetic analyses of viruses, especially those that include

entire genomes, are prevalent and are widely employed to explore

a variety of viral evolution-related aspects. A growing number of

studies use virus phylogenies to examine the advancement of

essential phenotypic traits like pathogenicity. Phylogenomics is a

useful tool for understanding virulence evolution since it generates

a series of assumptions that may be evaluated using appropriate

investigations (9, 10). Phylogenomics can be utilized to test

generic virulence evolution theories, using theoretical and

empirical methods to examine the virulence of nature. The

main component of this method is projecting changes onto

phylogenetic trees of viruses collected from reservoirs and new

hosts throughout and/or between epidemics. The phylogenetic

placement of such alternations that take place either alone or in

combination, on shallow or deep nodes (branches) allows

researchers to estimate the selection forces acting on virulence

mutations, and hence crucial features of virulence evolution. The

greater the fitness of a virulence determinant, the more quickly it

will propagate across the viral population and the further it will

fall on a phylogeny of viruses (i.e., nearer to the root of the tree),

also on the branch leading from the reservoir to the new hosts

(36). Multiple cross-species transmission events or the same

mutation occurring again on deep branches throughout

multiple outbreaks are particularly relevant since both parallel

and convergent evolution may be signs of adaptive evolution.

Additionally, it is expected that the amino acid sites linked to

repetitive parallel or convergent variation for certain virulence

mutations will show signs of positive selection. Purifying selection

is more likely to discard mutations in virus phylogenies that are on

shallow branches (i.e. nearer to the tips) due to the fact that they

are displayed in a smaller proportion of the population and are

thus more prone to be of lower fitness (37).
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Phylogenetic modeling of virulence mutations can be

performed in two methods, based on how much sufficient and

clear data is available. In a “top-down” paradigm, the phylogeny

of a virus is determined, mutations are plotted on this

phylogeny, and the factors that determine the pathogenicity of

mutations remain unclear. “Key branches” include elements like

interspecies transmission, geographic expansion, rises in

infection rates, spikes in morbidity and/or death, and apparent

instances of positive selection. The possible virulence

determinants found using this technique may be examined in

a laboratory setting (9). The ‘bottom-up’ method, makes use of

existing virulence determinants, such as those discovered in an

experimental investigation. The phylogenetic position of the

putative virulence determinant is then utilized to determine

whether it is connected to reciprocal changes that suggest

evolutionary trade-offs in order to calculate how it influences

virulence evolution. Phylogenomic approaches are increasingly

being utilized to identify virulence determinants, but it may also

be necessary to formulate generalizations regarding the nature of

virulence evolution. A virulence marker intermittently arises on

shallow branches and is vulnerable to the rigorous purifying

(negative) choice, on the other hand, virulence is not

immediately helpful, perhaps because it restricts some other

components of overall fitness (10). In such instances, each high-

virulence occurrence could be viewed as a separate and

temporary evolutionary event. The approach presented here

should also be viewed as idealistic, as it works better when a

small number of genetic alterations shape pathogenicity

independently. However, when there are more complicated

interactions between mutations, determining virulence factors

may become more difficult (38). Even though RNA viruses are

known to have epistasis, nothing is known about how virulence

variations behave epistatically. Since RNA viruses have bounded

genome sizes, there are likely a handful of virulence

determinants, increasing the probability of parallel and

convergent evolution, and recombination frequencies are often

low within species, hence this strategy may be nicely performed

for RNA viruses (39, 40).
5 Covid-19

Covid-19 is a new highly contagious viral disease that has

resulted in thousands of deaths worldwide and has infected

millions of people. The coronavirus commonly known as

SARS-CoV-2 is the causative agent of Covid-19. Nidovirales is a

huge order of viruses and contains different types of virus families

including the Coronaviridae, Roniviridae, and Arteriviridae

families. Genus coronavirus along with the genus torovirusvirus

and bafinivirus belongs to the family Coronaviridae. After Middle

East respiratory syndrome coronavirus (MERS) and severe acute

respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 is

the third coronavirus that spreads swiftly across the globe from
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one person to the next, and various mutations have already been

detected (41). AlthoughMERS and SAR-CoVwere controlled in a

limited time period but the SAR-CoV-2 is still a challenge for

healthcare workers in different countries. In some cases, people

infected by SARS-CoV-2 develop severe symptoms and even lead

to death while in other cases it may cause mild or no symptoms

(42). The major symptoms that develop in the affected people

include respiratory disorders and fluid accumulation in the lungs

resulting in difficulty of breathing. The infected people with or

without symptoms are the sources of virus carriers (43, 44).

According to observational studies, variables such as age,

demographic traits, patient treatment, and other potentially

undiscovered factors have a significant impact on clinical

outcomes (ranging from asymptotic to mortality) (45–47). A

nutritious diet is also acknowledged as an important
Frontiers in Immunology 05
component in preventing the emergence of severe symptoms by

boosting the immune system. Another factor determining the

likelihood of Covid-19 development and the prevalence of critical

conditions of the illness is the existence of certain underlying

medical conditions (e.g., diabetes) in a person (48). The life cycle

of SARS-CoV-2 viruses in human cells is shown in Figure 1.
6 Biology of SARS-CoV-2

SARS-CoV-2 virus genome consists of both structural and

non-structural proteins encoded in the open reading frame

(ORF) sequences. It possesses a single-stranded RNA genome

that has a diameter of 60–140 nm and a size of 29.8 to 29.9 kb.

SARS-CoV-2 etiology and method of transmission among
FIGURE 1

The Covid-19 Life Cycle: The life cycle of Covid-19 in human cells may provide enlightenment for viral transmission and its potential therapeutic
targets. Mutations: Mutations in Covid-19 are reported over time as it’s spreading at a very high speed. Although the Covid-19 genome is more
stable than SARS-CoV or MERS-CoV, it has a relatively high dynamic mutation rate with respect to other RNA viruses.
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humans are currently unknown. Since the advent of the SAR-

CoV-2 virus, research has been conducted on a wide variety of

animal species in an effort to locate potential reservoirs or

intermediate hosts for the virus. Its genome is 80% similar to

SARS-CoV while 99% similar to that of the bat coronavirus

(BAT-CoV) (49). Each of these ORFs has the coding for 17

different structural and non-structural proteins that govern

various biological processes throughout the whole life cycle of

the virus, from the virus’s ability to survive to its ability to infect

other cells (50, 51). The SARS-CoV-2 virus genome begins with

the 5′ UTR, which contains a total of 6 to 11 ORF sequences.

These genes carry crucial information about virus assembly that

has been conserved through many generations. The biological

structure of SARS-CoV-2 with the minimal set of structural

proteins is shown in Figure 2.
6.1 Non-structural proteins

The initial step in the virus transition stage is marked by the

activation of ORF1ab and ORF1a genomic sequences, which

results in the production of two enormous polyproteins called

pp1ab and pp1a. The adaptive evolution in ORF1a is shown to

contribute to host shifts or immune evasion as a result of selection

pressure, and positive selection promotes the evolution of NSPs,

shift, and evade the immunological response (52, 53). These two

polyproteins are subsequently fragmented into 16 Nsps by two

protease enzymes called papain-like proteases, which are present

in each of the polypeptides (PLpro) (54). These Nsps are engaged
Frontiers in Immunology 06
in a wide array of activities, for example, the Nsp3 makes up the

coronavirus replication and transcription complex while

suppressing the host’s innate immune response. Nsp1 protein

plays its role in the inhibition of gene expression of the host cell by

binding to the ribosomal subunit thus hindering the entry channel

of the mRNA which in turn blocks the formation of mRNA

translation assembly (55). Coronavirus NSP 2 genome is

homologous to that of the bacterial DNA Topoisomerase I and

IV, both of which are necessary for the production of strand RNA.

This indicates that NSP 2 could serve as a possible target for the

development of pharmaceuticals and vaccinations (56). During

replication, 11 cleavage sites between NSP 4 and 16 are processed

by 3CL-PRO which is a cystine-like protease found in NSP 5. In

addition to that, it possesses a 3-domain structure that has been

preserved along with catalytic residues (57–59). RNA replication

and pathogenicity are mediated by NSP 9 in association with

NSP8 while capping viral mRNA transcripts for effective

translation are mediated by the NSP10-NSP16 complex (60–

63). The majority of the Nsp proteins that are encoded by

ORF1ab participate in the assembly of the replicase-

transcriptase complex that can be observed in double-

membrane vesicles. In a similar fashion, Nsp8 and Nsp12 are

examples of monomeric RdRps that play a role in the replication

of SARS-CoV-2. Nsp8, unlike Nsp12, possesses primase capacity,

which eliminates the need for primers to begin viral replication. In

addition to this, SARS-CoV-2 possesses a unique multimeric

RNA polymerase that is composed of the proteins Nsp7 and

Nsp8. This RNA polymerase is necessary for the initiation and

elongation of the newly created viral genome segment (50, 64).
FIGURE 2

Schematic structure of SARS-CoV-2 with the minimal set of structural proteins.
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Similarly, exonuclease activity is mediated by NSP 14 in

combination with its activator NSP10, while RNA TPase

activity is mediated by NSP13 and exoribonuclease activity is

mediated by NSP 14, NSP 11 and NSP 15 (65–69). NSP 6

participates in autophagy and produces autophagosomes from

the endoplasmic reticulum (70, 71). This study gives a

comprehensive assessment of the SARS-CoV-2 polyprotein’s

non-structural proteome as well as its unstructured protein

domains. This might be useful for comprehending the

structural basis of infection, developing structure based

therapies and figuring out how SARS-CoV-2 proteins interact

with host proteins under varied physiological circumstances (72).
6.2 Structural proteins

Spike (S), membrane (M), envelope (E), and nucleocapsid

(N) are the four structural protein-encoding genes found at the

3′ end of the SARS-CoV-2 genome which controls various viral

processes ranging from virus entry to virus particle production.

These proteins are briefly discussed below (54, 73).

6.2.1 S protein
The spike, or S glycoprotein, is a transmembrane protein with a

molecular weight of roughly 150 kDa that lies on the outermost

layer of the cell membrane. It consists of 1273 amino acid residues

split among three subunits (S1, S2, and S2’) that perform distinct

roles in cellular adhesion. S protein facilitates viral entrance by

interacting with the angiotensin-converting enzyme 2 (ACE2)

receptor and facilitating attachment to the plasma membrane of

the host cell (44, 74). It protrudes from viral surface in homo-

trimers thus determining the spectrumof activity andpathogenicity

of the virus (64, 73). The S protein is characterized by a series of

structural alterations as it travels through the procedure of entering

the host cell (75). It is essential to have an understanding of these

conformational changes because dynamic changes in the target

protein might alter immunological responses, which is critical for

the creation of vaccines (76). Many mutations have been devised in

the S protein and there is a high chance that these mutations might

alter the antigenicity of the virus (75, 77, 78).

The S2 subunit serves as a fusion protein which plays an

important role in the process of the virion and the mammalian

cell membrane fusing together. The S2 protein manifests in three

different conformational states throughout the fusion process

which helps in understanding how these dynamic conformation

states coordinate viral entrance into the host cell membrane (76).

The last part of the S protein i.e. S2’ functions as a fusion peptide

(79). Receptor binding domain (RBD) of the spike protein is the

most unstable component of SARS-CoV-2. The 90 amino acid

long binding motif of the RBD receptor assists in the virus’s

ability to connect to the recipient interface. This receptor
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binding motif has the slightest conservation, indicating that

many mechanisms are likely involved in pathogenesis (72).

In normal conditions, the S proteins of the coronaviruses

persist in an inactive state. Upon the entry of the virus into the

host cells, the S protein is activated by the host cell proteases and is

cleaved into S1 and S2 subunits which in turn activate the

membrane fusion domain (44, 80). All kinds of human

coronaviruses contain this protein and are responsible for the

entrance of viruses into the cells of their hosts. It contains

trimeric class I TM glycoprotein that is crucial for the attachment

and entry of the virus. During a viral infection, the S protein of

SARS-CoV-2 is responsible for facilitating receptor identification as

well as cell attachment and fusion (76; 81). Through theRBD region

of the S protein, the SARS-CoV-2 virus is able to recognize the

ACE2 that is present in the host cell and attach to it. ACE2 is

primarily expressed in the alveolar epithelial type II cells, while it is

also found in the lung, gut, heart, and kidney (82, 83).

6.2.2 M protein
The shape of the virus membrane is determined by the

membrane (M) protein. M proteins are structural proteins

having a length of 222 amino acids and work in conjunction

with E, N, and S proteins (84). The most prevalent viral

proteins in coronaviruses (CoVs) are the M proteins and

they play a crucial role in giving the virus its distinctive

form. It binds to other structural proteins by operating as a

tiny transmembrane protein. During virion assembly

development, the M protein helps in the wrapping of the

viral genome into a spiral ribonucleocapsid and plays a

crucial part in the RNA packing process (64). According to

the multiple sequence alignment (MSA) pattern of the M

protein, higher sequence conservation is observed in the

BAT-CoV, SARS-CoV, and SARS-CoV-2 (72).

6.2.3 N protein
The Nucleocapsid, also known as the N protein, is a major

element of SARS-CoV-2 that is attached to the virus’s RNA

genome. It also played a key function in wrapping up viral RNA

into ribonucleocapsids and is highly conserved among

coronaviruses. It participates in several viral genome-related

processes, including virus replication, viral genome signaling

and the host cell’s response to viral infections. (49, 54). N

proteins are therefore regarded as possible therapeutic targets.

The RNA-binding domain of the N proteins is around 140

amino acids long and acts as a “bead on a string” to bind viral

RNA (85). N protein sequence of SARS-CoV-2 showed high

similarity with the SAR-CoV and thus it is speculated that

antibodies developed against the former would be likely to

detect the latter. The MERS-CoV strain has shown a close

similarity, with regions of small sequence differences indicating

its dispersion in the process of evolution (72).
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6.2.4 E protein
The E protein is a small protein having 75 amino acids and

contributes significantly to viral morphogenesis and assembly

(86). E Protein is the N-amino terminus of the envelope that is

made up of a brief hydrophilic stretch ranging from 7 to 12 amino

acids in length. It is followed by the transmembrane domain,

which is a big hydrophobic region of 25 amino acids. The C-

terminus of this domain is lengthy and hydrophilic, and it makes

up the majority of protein. The E protein interacts with the host

cell membrane enzyme and is crucial in the virus’s generation and

maturation activities (49). E proteins of the SARS-CoV-2 are

being explored as a potential therapeutic target.
7 Mutations in SARS-CoV-2

SARS-CoV-2 is a single-stranded RNA virus in which

mutations occur at a rate of 10-4 replacements of bp each year.

As discussed above four structural proteins are encoded in the

genome of the SARS-CoV-2 i.e. spike protein (S), small protein

(E), matrix (M), and nucleocapsid (N) protein (87). The S

protein is a type I fusion protein made up of two subunits: S1

is responsible for attaching to receptor, while S2 is responsible

for membrane fusion that assembles into trimers on the virion’s

surface. SARS-CoV-2 binds with ACE2 receptors to enter the

target cells (88). The S protein determines the host’s

susceptibility towards infection from the virus and also

governs the transmissibility of the virus. Thus all vaccines in

development are focused on this protein as it is the primary

antigen that triggers the protective immune responses (76, 89).

RNA viruses are believed to mutate more often as compared

to DNA viruses. Mutations in the amino acid sequence of the

surface protein can have a significant impact on viral function

and antibody interactions (90, 91). Study finds that A226V of

Chikungunya virus E1 protein and A82V of Ebola virus GP

protein were the major contributing factors in viral

transmission, pathogenicity and fatality (92, 93). Given the fact

that SARS-CoV-2 was recently found in humans, mutations in

the gene that codes for the spike (S) protein have been

documented several times (94, 95). Glycosylation of viral

protein has a significant impact on the viral life cycle which

leads to viral mutations. Deactivation or removal of particular

glycosylation sites may reduce Env protein interaction with the

CD4 receptor, which results in a partial or complete entire

infectivity of viral components (96). It has been discovered

that alterations in the glycosylation area can have an effect on

the cleavage, replication, stability, and antigenicity of HA.

Similarly, it has also been discovered that removing certain

glycosylation sites from the H5N1 HA protein can have an

effect on HA cleavage, replication, stability, and antigenicity

(97). Although the S protein has 22 potential N-glycosylation

sites and is heavily glycosylated, it is unknown how these sites
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affect the virus’s ability to infect cells and be neutralized by

antibodies (98). Furthermore, changes may emerge with each

genome repl icat ion cycle . SNPs (s ingle-nucleot ide

polymorphisms) are used to compare DNA sequences (99). It

can be exploited for genetic studies, such as identifying

alterations in the coronavirus genome, where additional

mutations might potentially exist as a result of a RdRp

activating during the replication phase of the genome.

SARS-CoV-2 has dozens of different variations that are

reported all over the world. Health specialists closely observe

those variants that could pose a problem, often known as

“variants of concern.” Alpha variant (B.1.1.7), Beta variant

(B.1.351), Gamma variant (B.1.351), Delta variant (B.1.617.2),

and Omicron are the variants of concern among them. Although

the majority of SARS-CoV-2 sequence alterations are expected

to be harmful and quickly eliminated, a small number of

mutations are believed to impact functional characteristics,

rate of infection, severity of disease, or contact with the host

body’s immune system (100, 101).
7.1 Alpha variant (B.1.1.7)

The Alpha variant of SARS-CoV-2, also known as the B.1.1.7,

was identified in Kent, England, in September 2020. It possesses

the highest risk of transmission of any lineage, with a reproduction

rate of 50%–100% (102). When compared to other varieties, it is

40-80%more transmissible, andmortality is expected to be greater

than other variants. This variation has a 69/70 deletion and a

mutation at nucleotide501 and P681H, which changes the

structure of the SARS-CoV-2 spike protein’s receptor-binding

domain. At open-reading frame (ORF) 1 a/b, ORF8, spike (S),

and N gene areas, it exhibits 23 variations, including 14 amino

acids, 8 in the S protein, and three in-frame deletions. These

variations have biological consequences and have led to diagnostic

problems (103). Phylogenetic investigations revealed that B.1.1.7

has a distinctive accumulation of substitutions and is expanding at

a faster rate than other circulating lineages. Alpha variant possesses

a limited potential to escape from vaccine-induced immunity as a

result vaccines are highly effective toward this variant. It has been

reported that Novavax vaccine showed 86% protection for the

Alpha variant while PfizerBioNTech vaccine exhibited 92% and

97% effectiveness against asymptomatic and symptomatic

infections, respectively. AstraZeneca showed a 94% reduction in

hospitalizations (104).
7.2 Beta variant (B.1.351)

The first case of the Beta variant of SARS-CoV-2 was

reported in South Africa in October 2020. By the end of

November 2020, this variant had taken hold throughout
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Eastern andWestern South Africa. This lineage has 23 variations

with a total of 17 amino acid alterations in the S gene area, three

of which impact the spike protein’s RBD (SK417N, E484K, and

N501Y) while some other mutations are in the NTD domains.

These three mutations have been reported to possess higher

transmissibility as well as conformational changes that could

make vaccinations less effective (105, 106). The rest of the

mutations are found in viral proteins ORF1a [K1655N],

envelope € [P71L], and N [T205I]. Decreased vaccination

sensitivity is caused by the mutation E484K in this variant,

which arbitrates antibody escape. Several investigations have

found that a combination of RBD and NTD alterations in the

Beta spike protein has a significant impact on neutralizing

activity in vaccine recipients (107, 108). Trials done by

Novavax, Janssen, and Astra-Zeneca revealed that the

vaccination efficacy was decreased when compared to other

versions in which this strain was not prevalent (109).

Generally, vaccines have demonstrated high efficacy against

the Beta variant of SARS-CoV-2. Pfizer-BioNTech vaccine

demonstrated 97.4% effectiveness against severe infections

caused by this variant. Janssen’s vaccine exhibited 65%–66%

protection against hospitalization while a 91%–95% reduction in

mortality rates was notified. AstraZeneca was effective up to 60%

toward Beta variant of SARS-CoV-2 (104).

7.3 Gamma Variant (P1)

It is also known as the B.1.1.28.1. variant and was recovered

on January 2, 2021, from four tourists who landed in Tokyo

traveling from Amazonas, Brazil. The sudden rise in the number

of hospitalization cases was a primary issue associated with this

variation. It was discovered that this variety is 2.2 times more

transmissible, resulting in a few cases of contracting the disease in

Covid-19 survivors and that infection rates are nearly identical in

younger and elderly individuals (110, 111). This variant has 17

non-synonymous mutations in S protein, [S1188L, K1795Q, and

E5665D] in ORF1ab, [E92K] in ORF8, and [P80K] in N protein; 1

deletion: [SGF 3675-3677del] in ORF1ab; and four synonymous

alterations. P1 variant of Covid-19 acquires a maximum genetic

variation of 12 mutations in the S protein (112–114).

The N501Ymutation is common in three forms, but the Beta

versions have L18F, K417T, E484K, and D614G mutations. This

subset of S variants has significant implications for the

attenuation of antibody-mediated protection. Both vaccination

and convalescent sera had lower serum neutralization

effectiveness against E484K mutation (115–117). Since the

receptor binding alterations in B.1.351 and P.1 are similar,

immunization efficacy against P.1 should be comparable to

B.1.351. Sinovac Biotech has conducted clinical trials in Brazil,

which have shown that the CoronoVac vaccine is 50% effective

in combating the P.1 variant infection (118, 119).
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7.4 Delta variant (B.1.617.2)

The B.1.617.2 (Delta) variant is a prepotent SARS-COV-2

variant across the globe which replicates and transmits very

quickly resulting in a higher viral burden and severity of

infection (120). This variant was first discovered in

Maharashtra at the end of 2020 and quickly expanded across

India by outnumbering pre-existing lineages such as B.1.617.1

(Kappa) and B.1.1.7 (121). When compared to wild-type

Wuhan-1 carrying D614G, B.1.617.2 is six times less

susceptible to serum neutralizing antibodies from recovered

persons and eight times less susceptible to vaccine-produced

antibodies in vitro. In the S glycoprotein of this variant, the viral

sequences isolated in India exhibited two significant amino acid

changes (L452R and E484Q). B.1.617 has three sublineages:

B.1.617.1, B.1.617.2, and B.1.617.3, with B.1.617.2 being the

most recent variants of concern, the Delta variation (122, 123).

Currently, there is no evidence of whether the transmission

routes of B.1.617.2 variant are different from those of the actual

SARS-CoV-2. However, it has been noticed that B.1.617.2

transmits more quickly in comparison to the original SARS-

CoV-2 (124). Initially, preliminary research suggests that

B.1.617.2/Delta cases may have a higher risk of hospitalization

than B.1.1.7 cases but the virological characteristics including

infectivity and pathogenicity are still unknown (125, 126). There

are 17 mutations in the Delta genome, four of which are alarming

(127, 128). B.1.617.2 contains sevenmutations on its spike proteins

including D157-158, L452R, T19R, T478K, D950N, P681R, and
D614G. In the case of SARS-CoV-2, the junctions of spike proteins

contain an amino acid chain composed of proline, arginine,

arginine, alanine, and arginine which is termed as furin cleavage

site. This site is mutated in B.1.617.2 variant where proline is

substituted with arginine (P681R) which decreases the acidity

of this sequence. Subsequently, furin host enzymes can

efficiently identify and cut the spike proteins on replicated

viruses before leaving the host cell, enabling the invasion of

more spike proteins to human cells while promoting the fusion

between the host cell membrane and viral envelope resulting in

severe infection. It has been revealed that approximately 50% of

the spike proteins on SARS-CoV-2 interact with human cells

while 75% of the spike proteins on B.1.617.2 are available for

invasion (124, 128, 129). Furthermore, even though recent reports

have indicated that the B.1.617.2/Delta variation is relatively

resistant to the neutralizing antibodies (Nabs) induced by

vaccination, the mutation(s) responsible for this variant are still

unknown (127, 128). Before the outbreak of Delta variant,

vaccination potentially reduced the transmission and viral

burden in SARS-CoV-2 infected individuals. However, Eyre

et al., revealed that vaccination was less efficient to reduce the

transmission of Delta variant in comparison to Alpha variant

while the effectiveness of vaccination also lessened over time (130).
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TABLE 1 Variant lineage and designation of Covid-19.

WHO
Nomenclature

Lineage Designation Status Country of
detection

Mutation location

Alpha B.1.1.7 VOC-20DEC-
01

VOC UK RBD

Beta B.1.351 VOC-20DEC-
02

VOC South Africa RBD

Gamma P.1 VOC-21JAN-02 VOC Japan ex Brazil RBD

– B.1.1.7 with E484K VOC-21FEB-02 VOC (non-
UK)

UK Spike N-terminal domain

Delta B.1.617.2 VOC-21APR-
02

VOC India –

Zeta P.2 VUI-21JAN-01 VUI Brazil –

Eta B.1.525 VUI-21FEB-03 VUI UK –

B.1.1.318 VUI-21FEB-04 VUI UK –

Theta P.3 P.3 VUI-21MAR-
02

VUI Philippines –

Kappa B.1.617.1 VUI-21APR-01 VUI India E484Q and L452R

– B.1.617.3 VUI-21APR-03 VUI India –

– AV.1 VUI-21MAY-
01

VUI UK –

– C.36.3 VUI-21MAY-
02

VUI Thailand ex Egypt –

Epsilon B.1.427/B.1.429 – Monitoring – –

– B.1.1.7 with S494P – Monitoring – –

– A.27 – Monitoring – –

Iota B.1.526 – Monitoring – E484K and S477N

– B.1.1.7 with Q677H – Monitoring – –

– B.1.620 – Monitoring – –

– B.1.214.2 – Monitoring – –

– B.1.1.1 with L452Q and
F490S

– Monitoring – –

– R.1 – Monitoring – –

– B.1.1.28 with N501T and
E484Q

– Monitoring Brazil –

– B.1.621 – Monitoring – –

– B.1 with 214insQAS – Monitoring – –

– AT.1 – Monitoring – –

Mu B.1.621, B.1.621.1 – VBM – –

Omicron B.1.1.529, BA – VOC South Africa –

– B.1.618 (Triple mutant
variant)

– Monitoring India S Protein

– A.EU1/ S:A222V – Monitoring Spain non-terminal domain (NTD)

– 20A.EU2 – Monitoring France S477N, E484K, and N501Y

– 20A/S:439K (S:N439K) – Monitoring Ireland deletions of amino acids at positions 69 and 70 of S proteins

– 20A/S:98F – Monitoring Belgium,
Netherland

S:98F mutation

– 20C/S:80Y – Monitoring – 18 nucleotide mutations

– 20B/S:626S – Monitoring Norway, UK S:626S mutation

– 20B/S:1122L – Monitoring Sweden, Denmark S:V1122L mutation

– N440K – Monitoring India S protein

(Continued)
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7.5 Omicron variant (B.1.1.529)

During the last phase of 2021, another highly transmissible

omicron (B.1.1.529) variant appeared in Africa and quickly

became the most prevalent virus across the globe (131). On

November 24, 2021, the World Health Organization (WHO)

received the first sample of a novel SARS-CoV-2 variant with a

significantly altered Spike protein from South Africa, with the

first sample collected on November 9, 2021. The Technical

Advisory Panel on SARS-CoV-2 virus mutation assessed the

variant quickly, and WHO classified Omicron as a variant of

concern within 48 hours, allowing for prompt control and

prevention. Omicron has been discovered in six continents of

the world since its discovery (132–134). Omicron strain is the

most distinct variant seen in substantial numbers so far during

the outbreak, raising concerns that it may be linked to higher

infection rates, lower vaccination efficiency, and a higher risk of

reinfection. Omicron version is more communicable than the

Delta variant, however, several clinical research studies had
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showed that omicron infections are less severe than delta

infections (133, 135, 136). The Omicron variant employs a

unique approach for invading the host and can acquire cell

access without any assistance of transmembrane serine protease

2 (TMPRSS2). Omicron enters and reproduces in the host cell by

using the endocytic pathway in contrast to Delta variant which

uses TMPRSS2. As TMPRS22 is abundantly expressed in

alveolar lung cells, hence, lung involvement after host invasion

may be absent in the case Omicron variant. Moreover, the fusion

potential of Omicron variant is very less in comparison to Delta

variant. Hence, the formation of syncytia (a structure generated

by the fusion of various cells) becomes quite challenging leading

to the emergence of mild clinical symptoms (137). As compared

to 4 alarming mutations in Delta, Omicron variant possesses

more than 50 mutations, with more than 30 mutations in the

spike protein, which enables it to escape from neutralizing

potential of antibodies induced by vaccination or earlier

infection caused by a non-omicron variant. The omicron

lineage is further distributed into subvariants including BA.1,
TABLE 1 Continued

WHO
Nomenclature

Lineage Designation Status Country of
detection

Mutation location

– CAL.20C – Monitoring USA ORF1a: I4205V, ORF1b: D1183Y, S: S13I; W152C and L452R

– 20C-US or COH.20G/501Y) – Monitoring USA S protein (Q677H), M protein (A85S) and on the N protein
(D377Y)
WHO, World Health Organization; VOC, Variant of Concern; VUI, Monitoring, Variant under Monitoring.
FIGURE 3

Postulated pathogenesis of SARS-CoV-2 infection. Virus enters through nasal cavity, binds with ACE2 receptors, moves from upper respiratory
tract to lower respiratory tract. Virus undergoes replication triggers cytokine syndrome and cause ADRS as well as multiple organ failure.
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BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. Neutralizing antibody

titers against BA.5 are reduced up to 3-fold in comparison to the

titers against BA.1 and BA.2 (81, 131, 138).
7.6 Other SARS-CoV-2 variants

SARS-CoV-2 has developed into several variants since its

recognition in November 2019. Different mutations at the

genome level have been observed in various parts of the world as

new infectious variants emerge. Some of the known variants that

have been discovered so far since its emergence are given in Table 1.
8 Pathogenesis of Covid-19

Individuals infected with SARS-COV-2 exhibit a higher

leukocyte count, abnormal respiratory findings, and a higher

amount of plasma pro-inflammatory cytokines (139). Currently,

the pathogenesis of Covid-19 is not known to a great extent. In-

depth studies are still needed to investigate the innate immune

response of lung cells. Herein, we have summarized pathogenesis

depending on the availability of published information. The

pathogenesis of Covid-19 is also described in Figure 3. Multiple

issues regarding the pathogenesis of Covid-19 are still needed to

be explored.
Phase I. Upper respiratory tract infection

SARS-CoV-2 mainly spreads through respiratory droplets and

predominantly replicates in the mucosal epithelium of upper

respiratory tract while further multiplication occurs in the lower

respiratory tract and gastrointestinal mucosa (140). The inhaled

virus initially binds to epithelial cells in the nasal cavity due to the

interaction of SARS-COV-2 spike proteins to ACE2 receptors (141,

142). ACE2 receptors are present in the nasal mucosa, bronchus,

lung, bladder, stomach, esophagus, heart, kidney, and ileum.

However, lung tissues are considered as primary invasion site of

SARS-CoV-2 due to a high expression of ACE2 (139, 143–145).

Subsequently, cellular protease priming by TMPRSS2 enables S1/

S2 subunit breakdown of spike protein while the S2 subunit

permits the viral fusion with cell membranes (44). Hence, the

entrance of SARS-CoV-2 into cells is mainly facilitated by the

direct membrane fusion between the virus and plasma membrane.

Moreover, clathrin-dependent and -independent endocytosis also

promotes viral invasion (143, 146). After virus infiltrates into the

cells, viral RNA genome liberates into the cytoplasm which is

translated into two polyproteins and structural proteins, leading to

the replication of viral genome (147). Freshly formed glycoproteins

penetrate the membrane of the endoplasmic reticulum or Golgi,

and the nucleocapsid generates by the amalgamation of genomic
Frontiers in Immunology 12
RNA and nucleocapsid protein. Subsequently, viral particles

germinate into the endoplasmic reticulum-Golgi intermediate

compartment (ERGIC). Ultimately, vesicles holding the virus

particles merge with plasma membranes to liberate the virus

(148, 149). It is believed that viral replication mainly takes place

in the mucosal epithelium of the upper respiratory tract (150).

During this phase, viral burden is usually low which triggers a

limited innate immune response however, virus can be detected by

nasal swabs (145). Usually, viral infection is eradicated at this phase

by the secretion of type I or type III interferon, and generation of B

and T cell responses. Although in a few cases, virus can disseminate

to the lower respiratory tract (151).
Phase II. Lower respiratory tract infection

SARS-CoV-2 can move into the lungs through the

inhalation of virus particles from the upper respiratory tract.

Virus further propagates either by directly infecting the cells in

the lower respiratory tract or by invading the airway cells across

the tracheobronchial tree. It has been revealed that ciliated cells

in the lower respiratory tract serve as primary target sites for

SARS-CoV-2 (151, 152). Moreover, in a few cases, the virus may

interact with club cells as well. Viral invasion in ciliated cells

promotes the loss of ciliation of bronchial epithelial cells which

can impede the upward movement of mucus in airways. This

phenomenon promotes the spread of the virus into the alveoli

where it interacts with AT2 cells which express ACE2 receptors.

Subsequently, viral interaction with AT2 cells triggers type I and

type III interferon responses. In short, interferon release,

inflammation, apoptosis, the inability of surfactant production,

and AT2 identity are the manifestations of virus replication (151,

153). Viruses, as well as early markers of the innate immune

response, can be detected in nasal swabs or sputum. During this

stage, Covid-19 morbidity is clinically manifested (145).
Phase III. Cytokine storm

It is a well-known fact that cytokines play a vital role in the

development of viral infection. A robust and organized innate

immune response serves as the first line of defense against viral

infection. However, unregulated and extravagant immune

responses can cause immune damage to the human body.

Various shreds of evidence from severe conditions of Covid-19

refer that proinflammatory responses are involved in the

progression of this disease. The release of interferon (IFN)-I or

IFN-a/b is a primary immune defense response against viral

invasion, hence IFN-I is the main agent that copes with the early

stages of viral infection. It has been revealed that delayed

liberation of IFNs during the initial phases of SARS-CoV

invasion impedes the body’s antiviral response (154). As the
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virus reaches the lungs, immune system sends various immune

cells including pro-inflammatory cytokines as well as

chemokines to the lung tissue to combat the virus. Although,

immune cells attack indiscriminately as these are unable to

locate the virus and promote the recruitment of more immune

cells to combat the virus hence, generating a cytokine storm

(139, 155).

Cytokine storm is a robust immune response that triggers

the release of cytokines into the systemic circulation (140, 156).

During the initial phases of SARS-CoV-2 invasion, cytokines

and chemokines are released in a delayed manner inside the

respiratory epithelial cells, dendritic cells (DCs), and

macrophages which impedes the body’s antiviral response.

Subsequently, the cells release less amount of antiviral factors

i.e., IFNs, and a huge quantity of proinflammatory cytokines

including tumor necrosis factor (TNF), interleukin IL-6, IL-1b,
chemokines, chemokine ligand CCL-2, CCL-3 and CCL-5.

Furthermore, cytokines and chemokines attract various

inflammatory cells including monocytes and neutrophils

leading to extravagant permeation of the inflammatory cells

into lung tissue and promotes lung injury (154, 157, 158). Once a

cytokine storm is triggered, the immune system is unable to kill

the virus however, it also kills a wide range of normal lung cells

and affects the functioning of the lungs (139).

On the other hand, suppression of pulmonary ACE2

function causes impairment of renin-angiotensin system

(RAS), promotes inflammation and enhance vascular leakage

and ultimately leads to acute lung injury (140). Elevated levels of

cytokines and chemokines were observed in severe cases

including IL-7, IL-8, IL-9, IL-10, IL-1RA, and IL1-b (159).

Different markers of hyperinflammation including IL-6, IL-8,

IL-2R, IL-10 , inducib le prote in (IP10) , monocyte

chemoattractant protein-1 (MCP1), TNF-alpha are remarkably

higher in individuals who died as compared to survivors (160).

The Elevated level of IL-6 is an indicator of severe Covid-19

cases and a major component of cytokine storm (161).
Phase IV. Acute respiratory distress
syndrome (ARDS)

It has been noticed that in severe Covid-19 cases presence of

cytokine storm ultimately causes acute respiratory distress

syndrome (ARDS) (162). ARDS is a life-threatening state that

circumvents the entrance of oxygen into the lungs and

circulation resulting in mortality and acute lung injury (140).

Inflammatory action triggered by the release of excessive

cytokines cause alveolar cell damage and necrosis (163).

Enhanced endothelial and epithelial permeation facilitates the

development of alveolar edema. Subsequently, alveolar barrier

and osmotic gradient which promotes the clearance of alveolar

fluid are disturbed. Necrosis and edema mediate a more robust

immune response. Moreover, pulmonary edema prevents gas
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exchange and reduces carbon dioxide removal resulting in

hypoxemia and acute respiratory failure (164). Approximately

20% of the infected patients developed hypoxia and ARDS

leading to multiple organ failures (165). In fatal cases of

Covid-19, patients encounter severe respiratory distress and

need mechanical ventilation (140). Moreover, various studies

have explained the role of genetic susceptibility in the

development of ARDS. Up to 40 genes including ACE2, TNF,

and vascular endothelial growth factor (VEGF) are attributable

to the development of ARDS (140).
Phase V. Effects on other organs

ACE2 receptors are also present in other organs such as the

central nervous system, cardiovascular system, gastrointestinal

tract, and kidneys, hence all these organs are susceptible to viral

attack. Cytokine storm is not only attributable to lung tissue

damage and ARDS but also causes tissue damage in other organs

which results in multiple organ failures (159). Viral invasion

triggers the systemic inflammatory response which disturbs the

balance between procoagulant and anticoagulant homeostatic

mechanisms (144). It has been noticed that Covid-19 patients

have the potential risk of disseminated intravascular coagulation

(166 84). SARS-COV-2 adhesion to ACE2 activates renin-

angiotensin-aldosterone system (RAAS) which carries the risk

of platelet aggregation and causes pulmonary embolism as well

as fibrosis (167, 168). In severe cases, myocardial ACE2

pathways are extremely downregulated which causes

myocardial injury and leads to death (169, 170). Damage of

endothelial cells mediated by viral infection leads to excessive

thrombin formation and inhibition of fibrinolysis as a result

Covid-19 patients may exhibit hypercoagulability. Moreover, the

immobility of patients or inpatient treatment for prolonged time

intervals enhances the risk of venous thromboembolism in

Covid-19 patients (140, 167, 171).

SARS-COV-2 infection also affects the gastrointestinal tract

which is enriched with ACE2 receptors. Diarrhea has been

reported in approximately 20% of Covid-19 patients however,

the mechanism is not completely elucidated. Viral infection

changes intestinal permeability and promotes enterocyte

malabsorption (172). ACE2 is responsible for the uptake of

dietary amino acids and triggers the homeostasis of gut

microbiota. It has been revealed that SARS-CoV-2 can induce

ACE2 mutations and promote susceptibility to colitis, and

diarrhea (172, 173).

SARS-COV-2 may induce liver damage but the mechanism is

not fully known. It is proposed that liver enzymesmay be elevated

as a result of a cytokine storm. SARS-CoV-2 can interact with

endothelial cells in the bile duct and triggers inflammatory

damage to the liver. Furthermore, virus can interact with

kidneys either directly or induce kidney damage through

systemic effects including low blood pressure (165, 174, 175).
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Some Covid-19 patients also encounter encephalitis,

stroke, and epilepsy which depicts that virus also affects

nerve cells. Patients also lose their sense of smell as olfactory

nerve endings are affected. SARS-CoV-2 can trigger

neurological disorders by penetrating the nervous system
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either through olfactory nerve or neuronal pathways (144,

176). It is assumed that pathological changes affecting the

vital organs in Covid-19 patients can be caused either

directly by the cytopathic effect or indirectly due to the

harmful immune responses mediated by SARS-CoV-2.
TABLE 2 Vaccines approved for full use or in limited use against Covid-19.

S.No: Vaccine name Country Vaccine type Approved

1 Vaxine/CinnaGen Co.SpikoGen Australia Protein Subunit Approved in 1 country

2 Zydus CadilaZyCoV-D India DNA Approved in 1 country

3 Anhui Zhifei LongcomZF2001 China Protein Subunit Approved in 3 countries

4 Biological E LimitedCorbevax India Protein Subunit Approved in 1 country

5 CanSinoConvidecia China Non-replicating Viral
Vector

Approved in 10
countries

6 Center for Genetic Engineering and Biotechnology (CIGB)Abdala Cuba Protein Subunit Approved in 6 countries

7 Chumakov CenterKoviVac Russia Inactivated Approved in 3 countries

8 FBRIAurora-CoV Russia Protein Subunit Approved in 1 country

9 FBRIEpiVacCorona Russia Protein Subunit Approved in 4 countries

10 GamaleyaSputnik Light Russia Non-replicating Viral
Vector

Approved in 26
countries

11 GamaleyaSputnik V Russia Non-replicating Viral
Vector

Approved in 74
countries

12 Health Institutes of TurkeyTurkovac Turkey Inactivated Approved in 1 country

13 Instituto Finlay de Vacunas CubaSoberana 02 Cuba Protein Subunit Approved in 4 countries

14 Instituto Finlay de Vacunas CubaSoberana Plus Cuba Protein Subunit Approved in 1 country

15 Janssen (Johnson & Johnson)Ad26.COV2.S USA Non-replicating Viral
Vector

Approved in 106
countries

16 Kazakhstan RIBSPQazVac Kazakhstan Inactivated Approved in 2 countries

17 MedigenMVC-COV1901 Taiwan Protein Subunit Approved in 2 countries

18 Minhai Biotechnology CoKCONVAC China Inactivated Approved in 2 countries

19 ModernaSpikevax USA RNA Approved in 85
countries

20 National Vaccine and Serum InstituteRecombinant SARS-CoV-2 Vaccine (CHO
Cell)

China Protein Subunit Approved in 1 country

21 NovavaxNuvaxovid USA Protein Subunit Approved in 36
countries

22 Organization of Defensive Innovation and ResearchFAKHRAVAC (MIVAC) Iran Inactivated Approved in 1 country

23 Oxford/AstraZenecaVaxzevria UK Non-replicating Viral
Vector

Approved in 138
countries

24 Pfizer/BioNTechComirnaty USA/Germany RNA Approved in 137
countries

25 Razi Vaccine and Serum Research InstituteRazi Cov Pars Iran Protein Subunit Approved in 1 country

26 Serum Institute of IndiaCovishield (Oxford/ AstraZeneca formulation) India in
Collaboration

Non-replicating Viral
Vector

Approved in 47
countries

27 Serum Institute of IndiaCOVOVAX (Novavax formulation) India Protein Subunit Approved in 3 countries

28 Shifa Pharmed Industrial CoCOVIran Barekat Iran Inactivated Approved in 1 country

29 Sinopharm (Beijing)Covilo China Inactivated Approved in 89
countries

30 Sinopharm (Wuhan)Inactivated (Vero Cells) China Inactivated Approved in 2 countries

31 SinovacCoronaVac China Inactivated Approved in 53
countries

32 TakedaTAK-919 (Moderna formulation) Japan RNA Approved in 1 country

33 Bharat BiotechCovaxin India Inactivated Approved in 13
countries
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However, the estimation of the comparative significance of

each of these factors demands further investigation (86).
9 Vaccine strategies against
Covid-19

Serious and swift efforts have been made in the development

and production of vaccines against Covid-19. Many different

groups from all over the world have made laborious attempts to

produce an effective vaccine for Covid-19. Some of the efforts so

far are successful while some did not get the required results.

Various strategies are being used for the development of vaccines

against Covid-19. The main purpose of these strategies is to

develop immunity against the given virus and to protect precious

lives with minimum or no side effects (119, 177, 178). Different

vaccines target either whole virus or any fragment of its body

depending upon its method of development. Storage conditions

and socioeconomic factors are also considered important for

developing vaccines so that all people irrespective of color,

country and religion can get the vaccine. Different strategies

for the development of vaccines against viruses are discussed

below while the details of all vaccines are given in Table 2.

It is necessary to update the thorough study of Covid-19

vaccines, specifically during the Covid-19 pandemic produced

by SARS-CoV-2 Delta and Omicron variants (179). The

majority of research has been done to assess how well Covid-

19 vaccines, particularly mRNA vaccines, work in high-income

nations. They used information from trustworthy databases that

were connected together, but low-and middle-income nations

frequently lack access to such databases due to which, no similar

studies were conducted in these nations (180). One of the top

worldwide hazards to public health has been highlighted as

vaccine hesitancy, which has been a widespread issue in the

civilized world for years. There is still hesitation to receive

Covid-19 immunization despite the fact that the vaccine being

available for more than a year (181). The establishment of faith

in medical professionals and manufacturers of vaccines needs to

be a priority. In addition to this, the transmission of trustworthy

information on the Covid-19 vaccine through the internet and

other platforms is also very essential (182).
Conclusion

The likelihood of mutations increases as the virus spreads.

The genomes of SARS-CoV-2 isolates from various countries

across the world show a large number of mutations displayed in

different viral proteins. A wide range of point mutations and

deletions are constantly evolving genetically in the spike protein

which has resulted in the discovery of a large number of

mutations in SARS-CoV-2. The new mutations not only
Frontiers in Immunology 15
increase transmissibility, morbidity, and mortality, but they

can also elude identification by diagnostic techniques. These

variants have a lower susceptibility to treatment, such as

antivirals, monoclonal antibodies, and convalescent plasma,

and have the potential to reinfect the vaccinated people.

Individuals with compromised immune systems are at an

increased risk to develop severe inflammatory syndrome. To

tackle the Covid-19 threat, it is necessary to identify short-term

preventive options as well as long-term immunizations. Despite

substantial advancements and positive results from vaccine

candidate trials, various obstacles are still present including

the delivery of millions of doses to the global population in

order to stop the spread of the virus and minimize various

mutations. The emergence of SARS-CoV-2 variations is linked

to antibody escape from viral spike epitopes, which poses a

major risk of re-infection and endangers the effectiveness of all

vaccines. It’s also worth noting that new variants may further

increase the disease’s severity, transmission, and complexity,

therefore it is critical to limit the spread of the virus by

following all preventive measures. Effective therapeutic

interventions are likely to come from consistent research

efforts and a complete understanding of Covid-19

pathogenesis. Despite the rapid spread of virus around the

globe, the world has witnessed tremendous scientific

cooperation and collaboration, which will undoubtedly serve

as a model for future pandemic responses.
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