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Efficacy evaluation of multi-
immunotherapy in ovarian
cancer: From bench to bed

Xiaoyi Hu, Ce Bian, Xia Zhao and Tao Yi*

Department of Gynecology and Obstetrics, Development and Related Disease of Women and
Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases
of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University,
Chengdu, China
Ovarian cancer, one of the most common gynecological malignancies, is

characterized by high mortality and poor prognosis. Cytoreductive surgery

and chemotherapy remain the mainstay of ovarian cancer treatment, and most

women experience recurrence after standard care therapies. There is

compelling evidence that ovarian cancer is an immunogenic tumor. For

example, the accumulation of tumor-infiltrating lymphocytes is associated

with increased survival, while increases in immunosuppressive regulatory T

cells are correlated with poor clinical outcomes. Therefore, immunotherapies

targeting components of the tumor microenvironment have been gradually

integrated into the existing treatment options, including immune checkpoint

blockade, adoptive cell therapy, and cancer vaccines. Immunotherapies have

changed guidelines for maintenance treatment and established a new

paradigm in ovarian cancer treatment. Despite single immunotherapies

targeting DNA repair mechanisms, immune checkpoints, and angiogenesis

bringing inspiring efficacy, only a subset of patients can benefit much from it.

Thus, the multi-immunotherapy investigation remains an active area for

ovarian cancer treatment. The current review provides an overview of various

clinically oriented forms of multi-immunotherapy and explores potentially

effective combinational therapies for ovarian cancer.

KEYWORDS
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1 Introduction

Ovarian cancer is the most lethal gynecological malignancy, of which epithelial ovarian

cancer (EOC) is the most prevalent subtype. Most EOC patients are diagnosed with

advanced stage accompanied with tumor spread to the peritoneal cavity. Current frontline

treatments include debulking surgery, platinum-taxane maintenance chemotherapy, and

recently developed targeted agents and immunotherapy. Despite aggressive treatment, the
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5-year survival rate for women diagnosed with stage III or IV

disease is still less than 25% (1). Most patients would suffer a

recurrence after the initial response to therapy and almost all of

them resistance to chemotherapy and leading to the death.

Growing evidence suggests that ovarian cancer is

immunogenic cancer. There has been a significant increase in

understanding of molecular and genetic changes in the ovarian

cancer microenvironment. Thus, various immunotherapies target

the tumor microenvironment (TME) and attempt to address the

challenges posed by the highly immunosuppressive TME (2).

Current immunotherapy for ovarian cancer includes immune

checkpoint blockade, adoptive cell therapy, cancer vaccine,

oncolytic virus and so on (Figure 1). Despite several of them

achieving inspiring efficacy in the clinic, such as PARP inhibitors.

Only a tiny fraction of patients benefited from them, and most of

them would eventually suffer a recurrence or progression. With

the limited efficacy brought by studies testing single-agent

immunotherapy in recurrent ovarian cancer, optimism has

resurfaced around the possibility that combinational therapy

would deliver the better outcome expected by the community.

In this review, we summarize the progress of clinical developments

in multi-immunotherapies for ovarian cancer and briefly discuss

the future directions of combinational therapies in ovarian cancer.
2 Tumor microenvironment in
ovarian cancer

The TME comprises the extracellular matrix (ECM) and

stromal cells. The ECM consists of water, proteoglycans,

minerals, and fibrous proteins secreted by resident cells in an
Frontiers in Immunology 02
interlocking network (3). The ECM plays a critical role during

tumorigenesis, affecting cell migration, invasion, and metastasis.

Besides, stromal rearrangement plays a supportive role during

the malignancy progresses and eventually, the tumoral and

stromal changes aggravate each other and promote a dynamic

reciprocity cycle (4). The matrix-centric, stromal-targeted

cancer therapies developed as the ECM is altered at the

biochemical, architectural, biomechanical, and topographical

levels (5). Stromal cells in the TME include cancer-associated

adipocytes, mesothelial cells, fibroblasts, and immune cells.

Immune cells include tumor-infiltrating lymphocytes (TILs),

Tregs, neutrophils, macrophages, dendritic cells (DCs), natural

killer (NK) cells, myeloid-derived suppressor cells (MDSCs),

polymorphonuclear neutrophils (PMNs), and so on (6, 7)

(Figure 2). The tumor-permissive TME is achieved by

reprogramming host cells to support tumor phenotypes and

functions (6). The metastatic tropism of cancer cells to the

omentum, characterized by highly vascularized immune cell

structures called milky spots, plays a critical role in the

generation of the metastatic TME in the intraperitoneal cavity

(6). In addition, not only components in the TME communicate

and impact each other, but also ovarian cancer cells

communicate with TME through various signaling pathways,

such as STATs family pathway, IL-6 pathway, and NF-KB

pathway (1). Several factors are associated with response to

immunotherapy, including T cell exhaustion, PD-L1 status,

microsatellite instability, mismatch repair deficiency, Tumor

mutation burden (TMB), CD8+ positivity, T cell infiltration

and so on (8). Thus, immunotherapies target TME developed,

current immunotherapies target ovarian cancer TME including

CAFs targeting therapy, anti-angiogenesis therapy, immune
FIGURE 1

Immunotherapies in ovarian cancer. Created with BioRender.com.
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checkpoint inhibitors (ICIs), oncolytic virus and so on (9).

Tumors responsive to ICIs are usually called hot tumors,

which depends on T cells’ infiltration. On the contrary, cold

tumors usually do not respond to ICIs, which is characterized by

poor T cell infiltration (10). Besides, the effectiveness of

immunotherapy is associated with baseline immune responses

and unleashing of pre-existing immunity. Thus, combinational

immunotherapies may boost weak antitumor immunity,

enhance tumor antigens cross-presentation, and promotes T

cell priming and infiltration (11).
3 Targeting DNA repair-based
combination immunotherapies

There are at least five recognized pathways that exist for

DNA repair: direct repair, mismatch repair (MMR), nucleotide

excision repair (NER), base excision repair (BER), and double-

strand break (DSB) recombinational repair. DSB occurs by non-

homologous end-joining and high-fidelity homologous

recombination repair, which is much more error prone (12).

Besides, germline aberrations in critical DNA repair and DNA-

damage response (DDR) genes contribute to cancer

susceptibility syndromes, including BRCA1, BRCA2, BLM,

FANCA, TP53, RAD51C, and MSH2. After exposure to

carcinogens, the generation of DNA damage increases the risk

of cancer. Therefore, genomic instability is a recognized

hallmark of cancer (13). Various agents are developed to target

different processes during DNA repair, including PARP

inhibitors, NER inhibitors, BER inhibitors, DDR kinases

inhibitors, inhibitors targeting termini recognition, end

bridging, DNA-end processing, and DNA ligation, inhibitors

targeting homology directed repair and Rad51 (14). We will
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focus on PARPi-based combinational therapies, as it is most

widely studied in ovarian cancer.
3.1 PARPi-based combination
immunotherapies

The poly (ADP-ribose) polymerase (PARP) is a recognized

sensor of DNA damage, which is known for its role in DNA BER

and DNA single-strand breaks (SSB) repair. The role of PARP in

DSB repair is less elucidated (13). PARP inhibitors have been a

new targeted treatment for ovarian cancer, particularly in

women with BRCA1 and BRCA2 mutation or patients without

a functional homologous recombination repair pathway (15).

Homologous recombination deficient cells are susceptible to

PARP inhibitors. BRCA1 and BRCA2 are tumor suppressor

genes. They are associated with fundamental roles in DNA

repair by forming a homologous recombination repair

complex (16). Several PARP inhibitors are approved by the US

Food and Drug Administration (FDA) or studied in clinical

trials, including olaparib, niraparib, rucaparib, veliparib, and

talazoparib (17). On March 27, 2017, niraparib was approved by

the US FDA. The approval is based on the results of NOVA

(NCT01847274) (18). On April 6, 2018, the US FDA approved

rucaparib for the maintenance treatment. The approval relies on

ARIEL3 (NCT01968213) (19, 20). Based on the results of SOLO-

1 (NCT01844986), on December 19, 2018, the US FDA

approved olaparib for the maintenance treatment of adult

patients with germline or somatic BRCA-mutated (gBRCAm

or sBRCAm) who exhibited either a complete or partial response

to first-line platinum-based chemotherapy (21). Nevertheless, a

recent clinical trial indicated that the efficacy of platinum-based

subsequent chemotherapy seems to be reduced in BRCA1/2-
FIGURE 2

Tumor microenvironment in ovarian cancer. Created with BioRender.com. TIL: Tumor-infiltrating lymphocytes (TILs), APC: Antigen-presenting
cell, MDSC: Myeloid-derived suppressor cells (MDSCs), Treg: Regulatory T, CSC: cancer stem cell.
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mutated patients with platinum-sensitive relapsed ovarian

cancer (PSROC) compared to patients who haven’t received

PARPi therapy (22). Despite the inspiring benefits PARPi

brought, lots of limits still exist. Future studies should focus

more on combinations that can enhance the effect of PARPi,

benefit patients with non-HRD tumors, mitigate toxicity, and

overcome PARPi resistance (23). Therefore, the combination of

PARPi and other immunotherapies are developed, especially

antiangiogenic agents and immune checkpoint inhibition.

3.1.1 PARPi combined with
antiangiogenic agents

Angiogenesis plays a vital role in normal ovarian physiology

as well as in ovarian cancer pathogenesis. Tumor progression

and growth largely depend on angiogenesis, as tumor could not

grow beyond 1-2 mm if the neovascularization cannot meet the

requirements of nutrients and oxygen. Thus, antiangiogenic

agents have been incorporated into the therapy regimen for

ovarian cancer. Vascular endothelial growth factor (VEGF) and

VEGF receptor (VEGFR) are primarily explored in clinical

settings, and this pathway contributes to malignant ascites and

tumor progression (24). Besides, it is also shown that

overexpressed VEGF is correlated with tumor staging and

prognosis (25). Plenty of angiogenesis inhibitors are being

investigated, including Bevacizumab, Aflibercept, Nintedanib,

Cediranib, Pazopanib, Sunitinib, Sorafenib, and Trebananib

(26). Approved by the FDA, Bevacizumab exhibited modest

efficacy, and most patients developed acquired resistance.

Therefore, the combination of PARPi and angiogenesis

inhibitors are reasonable and meaningful.

There are two purposes for combining PARPi and

angiogenesis inhibitors. Firstly, PARPi could decrease

angiogenesis (27). Secondly, both VEGF3 inhibitors and

hypoxia induce the downregulation of HRD proteins (28, 29).

On May 8, 2020, the indication of olaparib was expanded to

combination therapy with bevacizumab for first-line maintenance

treatment of HRD-positive advanced ovarian cancer (30). The

approval was based on the PAOLA-1 trial, which revealed that

combined therapy of bevacizumab and olaparib provided a

significant progression-free survival (PFS) benefit in HRD-

positive patients, regardless of whether the patient had the

BRCA mutation (31). More combinational strategies are being

studied. In a patient-derived ovarian cancer xenografts (OC-

PDXs) model, the combination of PARPi Olaparib and VEGFR

inhibitor cediranib reduced the growth of all OC-PDXs

independent of BRCA status (32). In 2014, a phase 2 study

revealed that Cediranib plus Olaparib could prolong PFS (33).

Later, a phase 3 clinical study NRG-GY004 showed that

combining Cediranib and Olaparib did not prolong PFS

compared with chemotherapy and resulted in reduced patient-

reported outcomes (PRO) (34). Besides, other combinational

strategies are being investigated too. Compared to monotherapy,

niraparib plus bevacizumab significantly increased the PFS of
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platinum-sensitive recurrent ovarian cancer, while a more

extensive scale phase 3 clinical trial is planned (35, 36). More

preclinical and clinical studies are needed to provide information

about the most appropriate combination strategy and which

subset of patients in what clinical setting benefit most.

3.1.2 PARPi combined with immune
checkpoint inhibitors

In addition to antiangiogenic agents, PARPi was combined with

other targeted immunotherapies, such as PD-1/PD-L1 inhibitors,

WEE-1 inhibitors, ataxia-telangiectasia-mutated-and-Rad3-related

kinase (ATR) inhibitors, MEK inhibitors, and so on (37). Plenty of

studies regarding PARPi and PD-1/PD-L1 combinational therapy

are completed or ongoing. Olaparib, niraparib, rucaparib, and

talazoparib are combined with anti-PD-1 antibodies (nivolumab,

pembrolizumab) and anti-PD-L1 antibodies (durvalumab,

atezolizumab, avelumab) (38). PARPi and PD-1/PD-L1

antibodies demonstrated synergistic antitumor activities in animal

models regardless of BRCA mutation status, which is achieved by

blockade of single-stranded DNA damage repair and activation of

the STING-dependent immune response. Moreover, PARPi

induces an immunostimulatory micromilieu in ovarian cancer,

thereby complementing the activity of PD-1/PD-L1 blockade (39,

40). A phase 2 clinical trial revealed that a combination of olaparib

and durvalumab showed modest efficacy whereas blockade of

VEGF/VEGFR would be necessary to improve the combination

(41). PARPi was also combined with many other ICB in ovarian

cancer, such as inhibitors target phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3K) (42, 43), V-akt murine thymoma

viral oncogene homolog (AKT) (44), ATR (45, 46), heat shock

protein 90 (HSP90) (47, 48), checkpoint kinase 1 (CHK1) (49),

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (50), salt-

inducible kinase 2 (SIK2) (51), insulin-like growth factor-1 receptor

(IGF-1R) (52). However, most of the combinations are still in

preclinical or phase 1 clinical studies, and a larger scale of clinical

studies is needed to further evaluate the efficacy. In addition, the

natural compound alantolactone (ALT) could inhibit the

thioredoxin reductase, thus inducing ROS accumulation and

oxidative DNA damage in cancer cells. A combination of pro-

oxidative agent ALT and Olaparib induced tumor regression, which

broadened the application of PARP inhibitors (53).

Other agents targeting DNA repair are much less

investigated in ovarian cancer. Some studies report their

application in other types of cancers as previously reviewed

(14). More data are needed on ovarian cancer.
4 Adoptive cell therapy-based
combination immunotherapies

Adoptive cell therapy (ACT) mainly refers to chimeric

antigen receptor (CAR)-modified T cells, T-cell receptor

(TCR)-engineered T cells, natural TILs, CAR-NK cells, and
frontiersin.org
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CAR-macrophages. ACT has achieved a remarkable revolution

in the hematological tumor. Nevertheless, for solid tumors,

including ovarian cancer, ACT seems insufficient to elicit

significant antitumor activity. In ovarian cancer, CAR-T cells

target folate-receptor alpha (FRa), mesothelin, MUC-1, and

HER2 have been widely investigated. However, no satisfactory

therapeutic efficacy has been observed so far. The low avidity

and heterogeneous expression of targetable membrane antigens

and difficulties in CAT-T cell infiltration and survival are the key

obstacles (54). Novel targets or combinational therapies are

expected to solve these problems. For instance, CAR-T cells

targeting the Mullerian inhibiting substance type 2 receptor

(MISIIR), B7-H3, Epithelial cell adhesion molecule (EpCAM),

C-X-C chemokine receptor 1 (CXCR1), or C-X-C chemokine

receptor 2 (CXCR2), 5T4 significantly controlled tumor growth

in vivo (55–59). Apart from CAR-T therapy, other ACT,

including TCR-T and CAR-NK, are also under investigation.

TCR-T therapy is MHC restricted and relies on the presentation

of the MHC complex. Unlike CAR-T therapy, whose target

antigens are only cell surface proteins, TCR-T could recognize

both intracellular antigen fragments and surface proteins as long

as MHC molecules present them. In ovarian cancer, TCR-T

targeting melanoma-associated antigen 4 (MAGE-A4) and New

York esophageal-1 (NY-ESO-1) are in early clinical trials (60).

CAR-NK targeting folate receptor alpha (aFR) (61), glypican-3
(GPC3) (62), human leukocyte antigen G (HLA-G) (63), CD44

(64), CD24 (65), CD133 (66), MSLN (67) have achieved

therapeutic efficacy in preclinical studies. More clinical data

are needed to verify their efficacy in ovarian cancer patients.
4.1 Bispecific CAR-T cells

As we mentioned, a common mechanism of tumor escape

from single-target CAR-T cells is the downregulation and

mutational loss of the targeted antigen. Thus, targeting

multiple antigens may improve the efficacy of CAR-T cells.

Several bispecific CAR-T products are under investigation. For

instance, Zhen et found that folate receptor 1 (FOLR1) and

mesothelin (MSLN) are specifically highly expressed in ovarian

cancer cells by screening the GEO database. Therefore, they

established tandem CAR-T cells target both FOLR1 and MSLN,

and the tandem CAR-T cells exhibited enhanced antitumor

activity and prolonged mouse survival compared to single-

target CAR-T cells (68). Besides, MSLN CAR-T-secreting anti-

CD40 antibody had a more powerful cytotoxic effect on ovarian

tumor (69). Dual targeting tumor-associated glycoprotein 72

(TAG-72) and CD47 are effective in ovarian cancer model (70).

CAR-T cells targeting PDL1 and MUC16 also demonstrated

more potent antitumor efficacy than single-target CAR-T cells

(71). Dual CAR-T cells targeting NKG2D and PD-1 ligands

exhibited inspiring efficacy in treating metastatic peritoneal

tumors (72). In the clinic, CAR-T cells targeting MSLN
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efficacy in one patient with refractory EOC (73). To summarize,

most bispecific CAR-T therapies in ovarian cancer are still in the

preclinical stages. Future studies should search for more specific

and practical targets in the clinic.
4.2 CAR-T combined with other
immunotherapies

According to the modest efficacy of CAR-T in ovarian cancer,

several agents are applied to enhance CAR-T cells’ efficacy. Firstly,

the efficacy of ICIs limited by a lack of a tumor-reactive

microenvironment. CAR-T cells may provide the necessary

tumor-targeting immune infiltrate. Conversely, ICIs counteract

the immunosuppressive environment that undermines optimal

CAR-T cell efficacy (74). Thus, combining ICI with CAR-T could

be a promising strategy. By loading anti-HER2 or anti-EGFR

bispecific antibodies, CD19-CAR-T and activated T cells showed

comparable specific cytotoxicity against ovarian cancer cells (75). In

addition, arm CAR-T cells with therapeutic cytokines. For instance,

IL-12 secreting 4H11-28z CAR-T cells showed enhanced

proliferation and antitumor ability compared to 4H11-28z CAR-T

cells only (76). Besides, pretreatment of ovarian cancer cells with

histone deacetylase inhibitor sodium valproate (VPA) could

upregulate NKG2DL expression in ovarian cancer cells expressing

low to moderate NKG2DL. Consequently, chimeric NKG2D CAR-

T cells exhibited better efficacy by enhanced immune recognition

(77). In some papers, upregulation or downregulation of certain

receptors could enhance CAR-T cells’ efficacy. Co-expressing of

CXCR2 enhanced homing and efficacy of CAR-T cells targeting the

integrin avb6 (78). Besides, adenosine 2A receptors (A2aRs)

disruption improved the efficacy of CAR-T cells targeting MSLN

(79). As we mentioned before, poor T cell infiltration contributes to

the failure of CAR-T therapy. Therefore, to improve T cell

infiltration in ovarian cancer, a vascular disrupting agent (VDA)

called combretastatin A-4 phosphate (CA4P) was combined with

CAR-T cells and results indicated that CA4P enhanced the efficacy

of CAR-T cells and could be an effective antitumor agent candidate

in treating solid tumor (80). In addition, a substantial body of work

suggests that the accumulation of adenosine in the TME contributed

to the failure of immunotherapies. As a result, adenosine deaminase

1 (ADA) overexpression improved CAR-T cells’ antitumor ability in

ovarian cancer (81). In summary, CAR-T-associated combinational

therapy is still preclinical studies, and more reasonable and effective

combinational strategies are being exploited.
4.3 Other ACT combinational therapies

CAR-NK, TCR-T and CAR-macrophage therapy are

alternate cell-based therapies. Cancer-testis antigens (CTA) are

developed as targets for TCR-T, including MAGE-A4 and
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NY-ES0-1 (60). CAR-NK offers some significant advantages

compared to CAR-T, such as better safety, multiple cytotoxic

mechanisms, and high feasibility for “off-the-shelf”

manufacturing (82). CAR-NK against human leukocyte

antigen G (HLA-G) inhibited tumor growth in vitro and in

vivo, and such efficacy was enhanced when combined with

chemotherapeutic agents (63). Besides, CXCR1 expression

could enhance the antitumor efficacy of NKG2D CAR-NK,

which provided a novel strategy for improving the therapeutic

efficacy of NK cells (83). CAR-Macrophage own unique

advantages. CAR-macrophage could significantly immerse in

the TME, and direct kill tumor cells as well as enhance T cell

function. In addition, CAR-macrophage has fewer non-tumor

toxicities compared to CAR-T (84). Most CAR-macrophage

therapies are in the preclinical stage, including CAR-

macrophage targeting CD19, CD22, HER2, CCR7 and so on.

Only several phase 1 clinical trials for solid tumors are ongoing

(85). In ovarian cancer, reports of CAR-NK, TCR-T, and CAR-

macrophage are rare. More data from preclinical and clinical

studies are needed to prove the safety and antitumor efficacy.
5 Cancer vaccine-based
combination immunotherapies

A single application of cancer vaccine in ovarian cancer is

under exploration, such as peptide vaccine, whole tumor cell

vaccine, cancer stem cells (CSCs), antigen-presenting cell (APC)

vaccine, DNA/RNA vaccine, bacteria vaccine and so on. Most of

them augment antitumor immunity in ovarian cancer patients.

Nevertheless, clinical data only revealed modest efficacy in most

patients. Therapeutic efficacy in more patients is testable (86–

92). Despite most cancer vaccines only achieving moderate

efficacy in other malignancies, combining cancer vaccines and

other immunotherapies may broaden its application and elevate

efficacy. For instance, murine ovarian cancer cell ID8 was spray

dried and made into a microparticulate vaccine. The

microparticulate ovarian cancer vaccine exhibited the most

efficacious in inhibiting tumor growth when administered with

interleukins (93). Adding immunomodulator agents such as

IL-12 may augment the efficacy of cell-based cancer vaccine

(94). In a phase 2 trial, a multiepitope FRa vaccine called

TPIV200 was combined with PD-L1 inhibitor durvalumab in

treating advanced platinum-resistant ovarian cancer. The

combination was safe and elicited robust FRa-specific immune

responses (95). Dual blockade of PD-1 and CTLA-4 enhanced

efficacy of the GVAX vaccine in ovarian cancer models through

activation of CD4 and CD8 T cells, secretion of cytokines, and

inhibition of Treg cells (96). Besides, immunostimulatory

adjuvant could elevate the efficacy of cancer vaccines. For

instance, cowpea mosaic virus (CPMV) co-delivered with

irradiated ovarian cancer cells elicited prophylactic efficacy and
Frontiers in Immunology 06
immunologic memory responses in mice models (97). 21

recurrent high-grade serous ovarian cancer (HGSOC) patients

were treated with a polyvalent antigen-KLH plus OPT-821

vaccine and bevacizumab. Results indicated that the

combinational therapy was well-tolerated. Although

immunogenic responses were not associated with improved

survival, researchers discovered that increased IL-18 correlated

with improved PFS while increased PDGF was associated with

worse OS (98). Gemogenovatucel-T (Vigil) is an autologous

whole tumor cell vaccine transfected with GM-CSF gene and

silenced of furin, the critical convertase responsible for activation

of TGFb-1 and TGFb-2. The vigil was well-tolerated, but the

primary endpoint was not met (99). A combination of vigil and a

PD-L1 blocking antibody atezolizumab was safe. Further clinical

exploration was justified (100). Apart from peptide and

irradiated tumor cell vaccine, DC vaccine was combined with

ex vivo-stimulated autologous T cells. Six patients were enrolled

in this study. They received bevacizumab plus autologous DC

pulsed with tumor lysate supernatants, followed by

lymphodepletion and adoptive transfer of autologous vaccine-

primed and CD3/CD28-stimulated T cells. Four patients benefit

from the therapy, including two partial responses (PR) and two

stable disease (SD) (101). Combining human monocytes and

IFN-a2a and IFN-g mediated potent antitumor effect in ovarian

cancer (102). Immuno-modulators, including anti-CD40Ab and

TLR3 ligand—poly(I:C), could enhance the antitumor effect of a

DNA vaccine encoding MSLN and antigen-specific connective

tissue growth factor (CTGF) (103). CPMV in situ vaccination

combined with CD47-blocking antibody promoted macrophage

activity and enhanced T cell function in ovarian cancer model

(104). To summarize, most cancer vaccines could not wholly

eradicate established tumors. They exhibit better therapeutic

effects when tumor volume is small and the vaccine is given in an

adjuvant setting (105).
6 ICI-based combination
immunotherapies

6.1 Bispecific ICIs

Dual inhibition of PD-1/PD-L1 exhibited better efficacy in

ovarian cancer compared to single-target. Bispecific targeting of

PD-1 and PD-L1 induced superior cellular changes in T and NK

cells compared to monospecific targeting (106). Besides, A

soluble form of the PD-1 receptor (sPD-1) neutralized both

PD-L1 and PD-L2 and achieved better efficacy. PD-L2 blockade

facilitates ICB resistance through incomplete blockade of the

PD-1 signaling pathway (107).

More inhibitors simultaneously target two signaling

pathways to enhance the antitumor effects. APCS-540, a newly

developed inhibitor targeting glycogen synthase kinase 3 beta
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(GSK3B) and histone deacetylases (HDACs), inhibited tumor

growth and prolonged survival in an ovarian cancer model

(108). Another inhibitor, Istiratumab, bispecific targets IGF-1R

and epidermal growth factor receptor 3 (ErbB3). Istiratumab

could be a candidate for treating chemotherapy-resistant ovarian

cancer (109). Besides, MSC2363318A is a newly developed

inhibitor targeting AKT1, AKT3, and P70S6K. Yes-associated

protein (YAP1) could be a marker that predicts ovarian tumors’

sensi t iv i ty to MSC2363318A (110) . HKMTI-1-005

simultaneously inhibited the histone methyltransferase G9A

and EZH2, which elicited antitumor efficacy in HGSOC (111).

Several papers focus on the pro-tumorigenic microenvironment

induced by chemotherapy. Tumor cell debris produced by

platinum- and taxane-based chemotherapy stimulates a

“surge” of macrophage-derived proinflammatory cytokines and

bioactive lipids. A dual cyclooxygenase-2 (COX-2) and soluble

epoxide hydrolase (sEH) inhibitor PTUPB decreased

proinflammatory cytokines and lipids in the TME and delayed

ovarian tumor growth (112).
6.2 Dual blockade

When certain ICI works, it is possible that a compensatory

signaling pathway was induced, providing an idea of the dual

blockade. As one of the most widely applicated inhibitors, PD-1/

PD-L1 inhibitors are combined with various inhibitors. Dual

blockade of CXCL12-CXCR4 and PD1-PDL1 enhanced

antitumor effects compared with the single blockade, which

was associated with increased effector T cells infiltration and

function, increased memory T cells, and decreased Treg cells in

the TME (113). Dual blockade of PD-1 and CTLA-4 elicited

antitumor efficacy in preclinical studies (114). A combination of

PD-1 inhibitor Nivolumab and CTLA-4 inhibitor Ipilimumab in

EOC patients resulted in superior responses and longer PFS

(115). PD-1 inhibitor LY3300054 and CHK1 inhibitor

prexasertib combinational therapy were tolerable and

demonstrated preliminary efficacy in HGSOC patients (116).

PD-L1 inhibitor atezolizumab and VEGF inhibitor bevacizumab

achieved durable responses and/or disease stabilization in some

platinum-resistant ovarian cancer patients (117). High

expression of CXCL13 predicted a more prolonged survival

and facilitated the maintenance of CXCR5+CD8+ T cells.

Besides, CXCL13, combined with anti-PD-1 therapy,

significantly retarded ovarian tumor growth (118). Combining

cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor

abemaciclib and anti-PD-1 therapy may have a better promise

for poorly immune-infiltrated ovarian cancer (119).

Despite that more than 60% of ovarian cancers are positive

for the estrogen receptor (ER), ER-targeted treatment in ovarian

cancer was disappointing. Src is also activated in most ovarian

cancers. It was found that estrogen could activate Src to

phosphorylate p27, thus promoting its degradation and
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increasing cell-cycle progression. Combinational ER and Src

blockade therapy by fulvestrant and saracatinib increased cell-

cycle arrest, induced autophagy, and inhibited ovarian cancer

growth in vivo (120, 121). Apart from Src inhibitor, MEK

inhibitor selumetinib could also reverse antiestrogen resistance

in ER-positive HGSOC. Besides, MAPK overexpression

predicted poor prognosis and may help identify MEK

inhibitor-responsive cancer (122).

Although the EGFR signaling pathway is usually activated

and associated with a poor prognosis, clinical results of EGFR

inhibition in recurrent ovarian cancer patients are

disappointing. An article revealed that STAT3 activation might

contribute to resistance to EGFR inhibition. Therefore,

combined inhibition of EGFR and JAK/STAT3 had synergistic

antitumor effects, whereas combinational inhibition of other

pathways, including AKT/mTOR, MEK, and SRC, was relatively

less effective (123). 12 patients received intraperitoneal cisplatin,

intraperitoneal TLR3 ligand rintatolimad, and oral COX-2

blocker celecoxib. The study revealed that the combination

was safe and tolerable. A phase 2 clinical trial would be tested

(124). The insulin growth factor 1 (IGF-1) expression was

elevated in two ovarian cancer models treated with

bevacizumab. Dual blockade of IGF-1 and VEGF resulted in

increased tumor growth inhibition (125). Delta-like ligand 4

(Dll4), one of the Notch ligands, is overexpressed in ovarian

cancer. Dual blockade of Dll4 and VEGF markedly reduced

ovarian cancer cell growth (126). Overexpression of BCL2L1 was

associated with platinum resistance to multiple anti-cancer

agents in ovarian cancer. Dual inhibition of FGFR4 and

BCL-xL demonstrated potent efficacy and tolerable toxicity

(127). Forkhead domain inhibitor-6 (FDI-6) is a forkhead box

protein M1 (FOXM1). FDI-6 inhibition elicited the upregulation

of N-Ras, phosphoprotein kinase Cd (p-PKCd), and HER3.

Combination FDI-6 with tipifarnib (N-Ras inhibitor), rottlerin

(p-PKCd inhibitor), or sapitinib (HER3 inhibitor) decreased the

survival of cancer cells (128). Src and MAPK are activated in

HGSOC. Dual blockade of Src and MAPK by saracatinib and

selumetinib inhibited ovarian tumor growth and targeted tumor

initiating stem-like cells (129). Dual inhibition of DNA

methylation and histone H3 lysine 9 dimethylation by 5-aza-

CdR and G9Ai increased viral mimicry and served as a basis for

this combination strategy (130). Combined inhibition of MEK

and BCL-2/XL had therapeutic efficacy in HGSOC models, and

BIM protein was a biomarker of responsiveness (131). Dual

inhibition of PI3K/mTOR and RAS/ERK by PF-04691502 and

PD-0325901 showed robust synergistic antitumor efficacy (132).

Targeting agents participating in cancer cell metabolism are

being explored. Dual inhibition of glycolysis and glutaminolysis

could be a promising therapeutic strategy in ovarian cancer

(133). Similarly, A triphenylphosphonium-modified terpyridine

platinum (II) complex (TTP) inhibited multiple mitochondrial

and glycolytic bioenergetics, thus inducing a hypometabolic state

in several cancers, including ovarian cancer (134).
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Besides EOC, research on other types of ovarian cancer was

much less. The PI3K and murine double minute 2 (MDM2)

upregulation predict a worse outcome in clear cell ovarian

carcinoma (CCOC). Dual inhibition of PI3K and MDM2 by

DS-7423 and RG7112 significantly reduced CCOC growth (135).
6.3 ICIs combined with other
immunotherapies

Although ICIs have changed the practice of cancer treatment

and prognosis, the application of ICIs for ovarian cancer is

limited. Adding cytotoxic cytokines or neutralizing

immunosuppressive cytokines may augment the efficacy. IL-10

in the TME sustained the immunosuppression in ovarian cancer.

Therefore, IL-10 neutralization enhanced the antitumor efficacy of

PD-1 blockade, and the combinational therapy prolonged survival

and decreased tumor burden through T cell and B cell immunity

in mice (136). Besides, active immunotherapy precedes

administrated of ICI. Thus, promoting T cell maturation and

resistance to the cytotoxic effects of the Bcl-2 inhibitor (137).
7 Oncolytic virus-based
combination immunotherapies

Oncolytic viruses are gene-modified or naturally occurring

viruses that selectively replicate and destroy cancer cells without

harming the normal tissues (138). Adenovirus, herpes simplex virus

(HSV), poxvirus, and measles virus are the most well-known

oncolytic viruses in cancer therapy (105, 139). The oncolytic virus

is combined chiefly with ICB in ovarian cancer. For example,

oncolytic Maraba virus and PD-1 blockade combination mediated

heterogeneous radiologic patterns through non-invasive MRI

scanning (140). Plant virus CPMV nanoparticles conjugated with

anti-PD-1 peptide had superior efficacy against metastatic ovarian

cancer compared to adding free anti-PD-1 peptide (141). Oncolytic

vaccinia virus therapy in ovarian cancer induced expression of PD-

L1 in cancer cells and immune cells. Therefore, combining therapy

of oncolytic vaccinia virus and PD-L1 blockade could synergistically

enhance therapeutic efficacy (142).

Moreover, oncolytic viruses could be genetically modified to

express exogenous cytokines or proteins. A modified Vaccinia

Ankara vaccine expressing wild-type human p53 (p53MVA)

promoted T cell responses, and combination with gemcitabine or

other agents was expected to exhibit superior clinical responses (143).

In addition, the oncolytic vaccinia virus (VV) engineered to express a

fusion protein of IL-15 and IL-15Ralpha was named vvDD-IL15-Ra.
A combination of vvDD-IL15-Ra and PD-1 blockade exhibited a

dramatic tumor regression (144). Mice were pretreated with three

homologous thrombospondin type 1 repeat domains (3TSR) alone

or followed by combination with a fusogenic oncolytic Newcastle
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disease virus (NDV). 3TSR could normalize tumor vasculature, thus

enhancing NDV delivery and trafficking of immune cells to the

tumor core. The combinational therapy resulted in amost significant

reduction in tumor volume and ascites accumulation (145).

Oncolytic viruses are also combined with other

immunogenic agents. The oncolytic vaccinia virus (OVV) was

enhanced by MEK inhibitor PD0325901 and trametinib in

doxorubicin-resistant ovarian cancer (146). Microtubule

destabilizing agents (MDAs) could sensitize tumors to

oncolytic virus therapy. The combination of trastuzumab

emtansine and oncolytic vesicular stomatitis virus (VSVD51)
demonstrated that a viral-sensitizing molecule could enhance

oncolytic virus efficacy (147). Infection of RNA virus induced

upregulation of heat shock protein 70 (HSP70). HSP70 increased

measles virus cytotoxicity. HSP90 inhibitors could upregulate

HSP70, therefore increasing the efficacy of measles virotherapy

(148). Furthermore, modulating interferon modulators by JAK1/

2 inhibitor ruxolitinib could overcome partial resistance of an

oncolytic vesicular stomatitis virus variant pseudotyped with the

nonneurotropic glycoprotein (VSV-GP) (149).

The combination of two types of viruses demonstrated

enhanced efficacy. For example, infection with Semliki Forest

virus-ovalbumin (SFV-OVA) followed by infection with

vaccinia virus-ovalbumin (VV-OVA) induced an enhanced

antitumor efficacy through a combination of viral oncolysis

and antigen-specific immunity (150).

A limitation of recombinant oncolytic virus therapy is the viral

clearance by neutralizing antibodies. Therefore, a study found that

cyclooxygenase-2 (Cox-2) inhibitors may circumvent this

limitation. Cox-2 inhibitors successfully inhibited the generation

of neutralizing antibodies and exhibited more effective antitumor

efficacy when combined with the vaccinia virus in ovarian cancer

(151). Another obstacle to viral therapy is that oncolytic viruses are

large particles. Thus, it is difficult to efficient extravasation from

tumor blood vessels. A study proved that the oncolytic sindbis virus

target tumor cells by the laminin receptor. Therefore, modulating

vascular leakiness by VEGF or metronomic chemotherapy could

enhance specific targeting and delivery of sindbis viral vectors (152).

Combination of adeno-associated virus (AAV) expressing 3TSR

and Fc3TSR and bevacizumab extended mice survival, suggesting a

further investigation of such a combination (153). The application

of adenoviruses is limited by rapid, systemic cytokine release and

consequently inflammatory toxicity. To overcome this obstacle,

researchers used b3 integrin to significantly reduce toxicity without

compromising antitumor efficacy (154).
8 Chemotherapy-based
combination immunotherapies

Chemotherapy combined with cytoreductive surgery is the

mainstay treatment for ovarian cancer. Although the majority of
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people initially respond to platinum-based chemotherapy, most

patients would suffer a recurrence within 5 years. Currently,

most clinical studies regarding immunotherapies are applied to

patients who previously received chemotherapy, as we discussed

before (37). Resistance to platinum agents and PARP inhibitors

is one of the main obstacles to ovarian cancer therapy (155).

Thus, it’s urgent to explore novel targets or combinational

strategies. RNA sequencing and panel DNA sequencing

revealed that neoadjuvant chemotherapy induces genomic and

transcriptomic changes, and combined treatment of AP-1 or

SIK2 inhibitors with carboplatin or paclitaxel showed synergistic

effects (156). RNA sequencing analysis also suggested that stress

promoted chemoresistance, which provided targets to overcome

chemo resistance (157). In addition, targeting LRRC15 could

inhibit metastatic dissemination through b1-integrin/FAK
signaling (158). Apart from preclinical studies, several clinical

trials revealed that MEK inhibitor trametinib, Wee1 inhibitor

adavosertib, and CDK4/6 inhibitor ribociclib showed

preliminary efficacy in ovarian cancer (159–161). Overall, a

single application of immunotherapy is unlikely to have a

dramatically effect in ovarian cancer. Understanding the

interplay between signal pathways may provide a better

combined therapy of chemotherapy and immunotherapy.
9 Immunotherapy enhancement
strategy

9.1 Nanoparticles-based combination
immunotherapies

Poor aqueous solubilities limited the application of several

drugs. Nanoplatforms could help solve the barrier. Diblock

copolymer nanoplatforms were used to formulate micelles

through the solvent evaporation method. A dual drug loaded

micelles (DDM) containing chetomin and everolimus targeted

HIF and mTOR. The DDM significantly inhibited angiogenesis

and induced apoptosis compared to the individual micells (162).

Besides, ovarian tumor cells overexpress low-density lipoprotein

receptors (LDLr). Thus, LDL-encapsulated cholesterol-

conjugated heat shock protein 27 (HSP27) and human

epidermal growth factor receptor 2 (HER2) dual inhibitor

specifically targeted and inhibited ovarian cancer cells (163).
9.2 Radiotherapy-based
combination therapy

Radiotherapy was nearly abandoned in ovarian cancer due

to its modest efficacy and toxicity. However, recent studies

revealed that a low dose of radiotherapy might reprogram the

tumor microenvironment and reverse tumor immune
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desertification and resistance to immunotherapy (164). Low-

dose radiotherapy plays a role in immune modulation and

tumor microenvironment reprogramming rather than direct

tumor killing. Although radiotherapy could promote

antitumor immunity, including tumor antigen presentation

and T cell recruitment, immune suppressive cells, including

Tregs and MDSCs, are also activated. Therefore, radiotherapy

combined with immunotherapy may promote the activity of

favorable immune cells and elevate antitumor efficacies (164).

Low dose radiotherapy (LDRT) triggered T cell infiltration in an

IFN-dependent manner in ovarian cancer patients with

immune-desert tumors when combined with immune

checkpoint blockade (165). In a preclinical setting, radiation

therapy combined with immunostimulatory CPMV elicited

significant tumor retardation and increased TIL in the TME

(166). Radiotherapy combined with immunotherapy in other

types of cancers, including melanoma, lung cancer, and colon

cancer, is under plenty of preclinical and clinical studies,

providing a basis for application in ovarian cancer (164).
10 Conclusion and future
perspectives

Ovarian cancer, especially epithelial ovarian cancer, is

typically diagnosed at an advanced stage. Patients who

experience a recurrence within six months after the end of

platinum-based chemotherapy are characterized by poor

prognosis, which needs a novel and effective treatment

modality (167). Multi-immunotherapies are expected to

prolong the survival and improve the prognosis, plenty of

clinical trials are investigating their efficacy in ovarian cancer

(Table 1). Immunotherapy could be strengthened through

several points. Firstly, it is recommended that all women with

newly diagnosed ovarian cancer should be offered genetic

testing. Approximately 10%-20% of ovarian cancers are related

to germline mutations. Besides, relatives of women with genetic

mutations are recommended to have gene testing (168). In

addition, several preclinical and early clinical data suggested

that toll-like receptor 7 (TLR7) and TLR8 agonists could activate

DCs, monocytes, macrophages, and fibroblasts. TLR7/8 agonists

also promoted proinflammatory cytokines and chemokines

secretion, including IL-6. Thus, activation of TLR7/8 may be a

potential target (169). Moreover, RNA-associated therapy

aroused researchers’ attention. Long non-coding RNAs

(lncRNAs) are critical regulators in ovarian cancer occurrence

and progression (170). RNA-binding proteins (RBPs), a class of

endogenous proteins that bind to mRNA, regulate a series of

pathological processes in ovarian cancer (171). Therefore, both

lncRNAs and RBPs could be a potential therapeutic target (172–

178). Non-coding RNA miR-146b simultaneously inhibited

EGFR and IL6-STAT3 signal pathways, resulting in a more
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TABLE 1 Clinical trials of multi-immunotherapy in ovarian cancer.

Number Clinical trial
identifier

Targets Responsible party Status

1 NCT04024878 Nivolumab: PD-1 inhibitor
NeoVax: 20 peptides and Poly-ICLC

Dana-Farber Cancer Institute Recruiting

2 NCT05479045 Nivolumab: PD-1 inhibitor
NY-ESO-1 Peptide vaccine

Georgetown University Not yet recruiting

3 NCT02737787 Nivolumab: PD-1 inhibitor
WT1 Vaccine
NY-ESO-1 Vaccine

Memorial Sloan Kettering Cancer Center Active, not
recruiting

4 NCT05044871 Tislelizumab: PD-1 inhibitor
Pamiparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

Tongji Hospital Not yet recuiting

5 NCT03806049 Dostarlimab: PD-1 inhibitor
Niraparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

Nordic Society of Gynaecological Oncology - Clinical
Trials Unit

Withdrawn

6 NCT03602859 Dostarlimab: PD-1 inhibitor
Niraparib: PARP inhibitor

Tesaro, Inc. Active, not
recruiting

7 NCT03955471 Dostarlimab: PD-1 inhibitor
Niraparib: PARP inhibitor

Tesaro, Inc. Terminated

8 NCT05467670 Pembrolizumab: PD-1 inhibitor
ALX148: CD47 inhibitor

University of Pittsburgh Not yet recuiting

9 NCT03596281 Pembrolizumab: PD-1 inhibitor
Bevacizumab: Anti-VEGF antibody

Cancer Campus, Grand Paris Active, not
recuiting

10 NCT02537444 Pembrolizumab: PD-1 inhibitor
Acalabrutinib: Bruton tyrosine kinase inhibitor

Acerta Pharma BV Completed

11 NCT05188781 Pembrolizumab: PD-1 inhibitor
Anlotinib: TKI

The Affiliated Hospital of Qingdao University Completed

12 NCT03734692 Pembrolizumab: PD-1 inhibitor
Rintatolimod: TLR-3 agonist

University of Pittsburgh Recruiting

13 NCT03275506 Pembrolizumab: PD-1 inhibitor
Bevacizumab: Anti-VEGF antibody

ARCAGY/GINECO GROUP Active, not
recruiting

14 NCT04361370 Pembrolizumab: PD-1 inhibitor
Olaparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

Yonsei University Enrolling by
invitation

15 NCT05271318 Pembrolizumab: PD-1 inhibitor
TILT-123: oncolytic adenovirus

TILT Biotherapeutics Ltd. Recruiting

16 NCT04417192 Pembrolizumab: PD-1 inhibitor
Olaparib: PARP inhibitor

National Cancer Center Hospital East Recruiting

17 NCT05116189 Pembrolizumab: PD-1 inhibitor
Bevacizumab: Anti-VEGF antibody

Merck Sharp & Dohme LLC Recruiting

18 NCT04068974 Camrelizumab: PD-1 inhibitor
Apatinib: VEGFR inhibitor

Peking Union Medical College Hospital Recruiting

19 NCT05145218 TQB2450: PD-1 inhibitor
Anlotinib: TKI

Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Recruiting

20 NCT03574779 TSR-042: PD-1 inhibitor
Niraparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

Tesaro, Inc. Recruiting

21 NCT03294694 PDR001: PD-1 inhibitor
Ribociclib: CDK inhibitor
Fulvestrant: ER downregulator

Dana-Farber Cancer Institute Terminated

22 NCT02891824 Atezolizumab: PD-L1 inhibitor
Bevacizumab: Anti-VEGF antibody

ARCAGY/GINECO GROUP Active, not
recruiting

23 NCT03695380 Atezolizumab: PD-L1 inhibitor
Niraparib: PARP inhibitor
Cobimetinib: MEK inhibitor

Hoffmann-La Roche Recruiting

25 NCT03394885 Atezolizumab: PD-L1 inhibitor
Bevacizumab: Anti-VEGF antibody

Duke University Completed

(Continued)
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TABLE 1 Continued

Number Clinical trial
identifier

Targets Responsible party Status

26 NCT03353831 Atezolizumab: PD-L1 inhibitor
Bevacizumab: Anti-VEGF antibody

AGO Research GmbH Active, not
recruiting

27 NCT03292172 Atezolizumab: PD-L1 inhibitor
RO6870810: BET inhibitor

Hoffmann-La Roche Terminated

28 NCT02915523 Avelumab: PD-L1 inhibitor
Entinostat: HDAC inhibitor

Syndax Pharmaceuticals Completed

29 NCT03642132 Avelumab: PD-L1 inhibitor
Talazoparib: PARP inhibitor

Pfizer Completed

30 NCT03558139 Avelumab: PD-L1 inhibitor
Magrolimab: Anti-CD47 antibody

Gilead Sciences Completed

31 NCT02943317 Avelumab: PD-L1 inhibitor
Defactinib: PYK2 inhibitor

Verastem, Inc. Terminated

32 NCT03704467 Avelumab: PD-L1 inhibitor
M6620: ATR inhibitor

EMD Serono Research & Development Institute, Inc. Completed

33 NCT03737643 Durvalumab: PD-L1 inhibitor
Olaparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

AstraZeneca Recruiting

34 NCT04742075 Durvalumab: PD-L1 inhibitor
Olaparib: PARP inhibitor
UV1: Peptide vaccine

Nordic Society of Gynaecological Oncology - Clinical
Trials Unit

Recruiting

35 NCT02431559 Durvalumab: PD-L1 inhibitor
Motolimod: TLR8 agonist

Ludwig Institute for Cancer Research Completed

36 NCT02764333 Durvalumab: PD-L1 inhibitor
TPIV200: A Multi-Epitope Anti-Folate Receptor
Vaccine

Memorial Sloan Kettering Cancer Center Completed

37 NCT03899610 Durvalumab: PD-L1 inhibitor
Tremelimumab: CTLA-4 inhibitor

Yonsei University Recruiting

38 NCT03699449 Durvalumab: PD-L1 inhibitor
Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor
Tremelimumab: CTLA-4 inhibitor

Yonsei University Recruiting

39 NCT03249142 Durvalumab: PD-L1 inhibitor
Tremelimumab: CTLA-4 inhibitor

ARCAGY/GINECO GROUP Active, not
recruiting

40 NCT04015739 Durvalumab: PD-L1 inhibitor
Bevacizumab: Anti-VEGF antibody
Olaparib: PARP inhibitor

ARCAGY/GINECO GROUP Active, not
recruiting

41 NCT03430518 Durvalumab: PD-L1 inhibitor
Eribulin: microtubule-targeting agent

Icahn School of Medicine at Mount Sinai Completed

42 NCT04644289 durvalumab: PD-L1 inhibitor
Olaparib: PARP inhibitor

AGO Research GmbH Recruiting

43 NCT05422183 Envafolimab: PD-L1 inhibitor
Lenvatinib: TKI

Zhongda Hospital Not yet recruiting

44 NCT05130515 Niraparib: PARP inhibitor
Anlotinib: TKI

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen
University

Not yet recruiting

45 NCT03783949 Niraparib: PARP inhibitor
Ganetespib: Hsp90 inhibitor

Universitaire Ziekenhuizen Leuven Active, not
recruiting

46 NCT05198804 Niraparib: PARP inhibitor
ZN-c3: Wee1 inhibitor

K-Group Beta Recruiting

47 NCT05183984 Niraparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

ARCAGY/GINECO GROUP Recruiting

48 NCT03895788 Niraparib: PARP inhibitor
Brivanib: VEGFR and FGFR inhibitor

Hunan Cancer Hospital Unkonwn

49 NCT04826198 Niraparib: PARP inhibitor
AsiDNA: DNA Repair Inhibitor

Gustave Roussy, Cancer Campus, Grand Paris Recruiting

(Continued)
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TABLE 1 Continued

Number Clinical trial
identifier

Targets Responsible party Status

50 NCT04149145 Niraparib: PARP inhibitor
M4344: ATR inhibitor

University of Alabama at Birmingham Not yet recruiting

51 NCT03944902 Niraparib: PARP inhibitor
CB-839: Glutaminase inhibitor

University of Alabama at Birmingham Terminated

52 NCT04734665 Niraparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

Yonsei University Recruiting

53 NCT04376073 Niraparib: PARP inhibitor
Anlotinib: TKI

Sun Yat-sen University Recruiting

54 NCT04267939 Niraparib: PARP inhibitor
Elimusertib: ATR inhibitor

Bayer Recruiting

55 NCT03326193 Niraparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

Tesaro, Inc. Active, not
recruiting

56 NCT02354131 Niraparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

Nordic Society of Gynaecological Oncology - Clinical
Trials Unit

Completed

57 NCT05009082 Niraparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

AGO Study Group Not yet recruiting

58 NCT05170594 Fluzoparib: PARP inhibitor
Bevacizumab: Anti-VEGF antibody

The Second Affiliated Hospital of Shandong First
Medical University

Recruiting

59 NCT04517357 Fluzoparib: PARP inhibitor
Apatinib: VEGFR inhibitor

Jiangsu HengRui Medicine Co., Ltd. Recruiting

60 NCT05479487 Fluzoparib: PARP inhibitor
Apatinib: VEGFR inhibitor

Fudan University Not yet recruiting

61 NCT04229615 Fluzoparib: PARP inhibitor
Apatinib: VEGFR inhibitor

Jiangsu HengRui Medicine Co., Ltd. Active, not
recruiting

62 NCT04669002 Olaparib: PARP inhibitor
EP0057: NDC

Ellipses Pharma Recruiting

63 NCT02889900 Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor

AstraZeneca Completed

64 NCT03117933 Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor

University of Oxford Active, not
recruiting

65 NCT03278717 Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor

NCT03278717 Recruiting

66 NCT02681237 Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor

University Health Network, Toronto Completed

67 NCT04729387 Olaparib: PARP inhibitor
Alpelisib: PI3K inhibitor

Novartis Pharmaceuticals Recruiting

68 NCT02340611 Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor

University Health Network, Toronto Completed

69 NCT02855697 Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor

The Christie NHS Foundation Trust Completed

70 NCT03314740 Olaparib: PARP inhibitor
Cediranib: VEGFR inhibitor

Mario Negri Institute for Pharmacological Research Unkonwn

71 NCT01623349 Olaparib: PARP inhibitor
BKM120: PI3K inhibitor
BYL719: PI3K inhibitor

Dana-Farber Cancer Institute Completed

72 NCT02571725 Olaparib: PARP inhibitor
Tremelimumab: CTLA-4 inhibitor

New Mexico Cancer Care Alliance Active, not
recruiting

73 NCT05494580 Pamiparib: PARP inhibitor
Surufatinib: TKI

Sun Yat-sen University Not yet recruiting

74 NCT00130520 Bevacizumab: Anti-VEGF antibody
Erlotinib: EGFR inhibitor

University of Arizona Completed

75 NCT04938583 Bevacizumab: Anti-VEGF antibody
Oregovomab: Anti-CA125 antibody

Korean Cancer Study Group Recruiting

(Continued)
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excellent suppression of ovarian cancer cell migration (179).

Another non-coding RNA, HOTAIR, was overexpressed in

ovarian cancer stem cells (OCSCs). Inhibition of HOTAIR and

DNA methylation help eradicate OCSCs and block disease

recurrence (180). In addition, several natural agents could

target multiple signaling pathways. For instance, berberine was

proved to target both EGFR and ErbB2. Berberine inhibited

migration and invasion of ovarian cancer cells (181).

To conclude, multi-immunotherapies of ovarian cancer are

far from fully elucidated. Future studies should focus on fully

recognizing immunogenic characteristics, developing biomarkers,

and selecting eligible patients. Multi-immunotherapy is

supposed to combine immunotherapies rationally while

minimizing toxicities.
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TABLE 1 Continued

Number Clinical trial
identifier

Targets Responsible party Status

76 NCT01551745 Bevacizumab: Anti-VEGF antibody

Vigil™ Vaccine

Gradalis, Inc. Completed

77 NCT01202890 Bevacizumab: Anti-VEGF antibody
Lenalidomide: Immunomodulatory drug

New Mexico Cancer Care Alliance Terminated

78 NCT01091259 Bevacizumab: Anti-VEGF antibody
Irinotecan: Topoisomerase inhibitor

NYU Langone Health Completed

79 NCT05113368 Regorafenib: Multi-kinase inhibitor
Fulvestrant: ER degrader

Case Comprehensive Cancer Center Not yet recruiting

80 NCT04625270 VS-6766: Dual RAF/MEK Inhibitor
Defactinib: FAK Inhibitor

Verastem, Inc. Recruiting

81 NCT01936363 Pimasertib: MEK inhibitor
SAR245409: PI3K inhibitor

EMD Serono Completed

82 NCT04998760 ATG-008: mTORC1/2 inhibitor
ATG-010: Selective inhibitor of nuclear export
compound

Chongqing University Cancer Hospital Not yet recruiting

83 NCT05057715 VCN-01: Oncolytic adenovirus
huCART-meso Cells

University of Pennsylvania Recruiting

84 NCT02019524 E39: peptide vaccine
J65: peptide vaccine

San Antonio Military Medical Center Completed

85 NCT00003386 BCG vaccine
autologous tumor cell vaccine

Sidney Kimmel Cancer Center at Thomas Jefferson
University

Terminated

86 NCT02055690 Pazopanib: VEGFR inhibitor
Fosbretabulin: Microtubule-targeting agent

The Christie NHS Foundation Trust Terminated

87 NCT00408590 carcinoembryonic antigen-expressing measles virus
oncolytic measles virus encoding thyroidal sodium
iodide symporter

Mayo Clinic Completed

88 NCT00799110 Dendritic Cell/Tumor Fusion Vaccine
GM-CSF

Beth Israel Deaconess Medical Center Active, not
recruiting

89 NCT00181688 Iressa: EGFR inhibitor
Arimidex: Aromatase inhibitor

Massachusetts General Hospital Completed
PD-1, Programmed Cell Death Ligand 1; NY-ESO-1, New York esophageal squamous cell carcinoma-1; WT1, Wilms’ tumour 1; PARP, Poly (ADP-ribose) polymerase; VEGF,
Vascular endothelial growth factor; TKI, tyrosine kinase inhibitor; TLR, Toll-like receptors; ER, Estrogen receptor; CDK, Cyclin-dependent kinase; PD-L1, Programmed cell death ligand 1;
MEK, Mitogen-activated protein kinase; BET, Bromodomain and extraterminal domain; HDAC, Histone deacetylase; PYK2, Proline-rich tyrosine kinase 2; ATR, Ataxia-telangiectasia and
Rad3-related protein; CTLA-4, Cytotoxic T-lymphocyte-associated protein 4; Hsp90, Heat shock protein 90; Wee1, Wee1-like protein kinase; FGFR, Fibroblast growth factor receptor;
NDC, Nanoparticle-drug conjugate; PI3K, Phosphoinositide 3-kinase; EGFR, Epidermal Growth Factor Receptor; CA125, carbohydrate antigen 125; RAF, Rapidly accelerated fibrosarcoma;
FAK, Focal adhesion kinase; mTOR, Mechanistic target of rapamycin.
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