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Glycolipids constitute a major part of the cell envelope of Mycobacterium

tuberculosis (Mtb). They are potent immunomodulatory molecules recognized

by several immune receptors like pattern recognition receptors such as TLR2,

DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on

T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its

biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and

lipomannan (LM), as well as other Mtb glycolipids, such as phenolic

glycolipids and sulfoglycolipids have the ability to modulate the immune

response, stimulating or inhibiting a pro-inflammatory response. We explore

here the downmodulating effect of Mtb glycolipids. A great proportion of the

studies used in vitro approaches although in vivo infection with Mtb might also

lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids.

This dampened response has been explored ex vivo with immune cells from

peripheral blood from Mtb-infected individuals and in mouse models of

infection. In addition to the dampening of the immune response caused by

Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by

prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to

LAM has been observed in myeloid cells from individuals with active and latent

tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent

versus active TB. Since the immune response in individuals with latent TB

represents a more protective profile compared to the one in patients with

active TB, this suggests that downmodulation of myeloid cell functions by Mtb

glycolipids may be beneficial for the host and protect against active TB disease.
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The mechanisms of this downmodulation, including tolerance through

epigenetic modifications, are only partly explored.
KEYWORDS

glycolipid, Mycobacterium, tuberculosis, immunological tolerance, latency,
lipoarabinomannan
1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis

(Mtb), is a chronic disease, causing approximately 1.6 million

deaths per year. Morbidity is also significant with 10 million

people estimated to be affected by the disease each year and the

threat to global health is further amplified by the emergence of

approximately 600,000 cases of drug-resistant TB each year, as

well as by the effects of the Covid-19 pandemic, estimated to

have caused an increase of about 100,000 in the global number of

TB deaths between 2019 and 2020 (1, 2).

Exposure to Mtb may lead to active TB, latent TB, or

clearance of Mtb depending essentially on the host’s immune

response (3). The host immune system, when exposed to Mtb,

initiates the innate immune response (4, 5) that in turn activates

the adaptive immune cells (3). The adaptive immune response

resulting in protective immunity against Mtb has primarily been

ascribed to host resistance induced by CD4+ T helper type 1

(Th1) cells producing cytokines such as interferon (IFN)-g and
tumor necrosis factor (TNF) (6), in combination with the

cytotoxic activity of CD8+ T cells (7). However, although it is

clear that T cells, especially CD4+ T cells, are required for

restricting the progression of TB, their essential contributions

and their limitations are not completely defined (8, 9).

The consensus holds that a balanced immune response is

necessary for a protective immunity encompassing the

production of pro- and anti-inflammatory cytokines at the

adequate proportion, timing and combination. Pro-

inflammatory cytokines such as interleukin (IL)-1b and TNF

are critical in anti-mycobacterial immunity predominantly

during the early phase of Mtb infection. However, if the

production of these cytokines is excessive it might result in an

inefficient immune response and even considerable tissue

damage (10). Thus, limiting inflammation is essential to reach

a protective immune response and avoid tissue damage (11).

Upon infection with Mtb, about 90% of individuals are

estimated to raise a protective immune response avoiding the

progression to active TB (12). Due to our inability to discriminate

the ones that eliminate Mtb from the ones that sustain the

bacterial growth, individuals that are immunoreactive but with

no symptoms, are referred as having latent TB. Latent TB thus
02
represents a spectrum of outcomes ranging from clearance of the

pathogen to active subclinical disease (3, 13).

Glycolipids of the Mtb cell envelope play an important role in

the modulation of the innate immune response in Mtb infection

(14–17). Several of these glycolipids have been shown to

downmodulate the pro-inflammatory immune response. It is

commonly thought that this downmodulation is unfavorable to

the host. However, we have observed a hyporesponsive state of

myeloid cells to glycolipids of the Mtb cell envelope in latent TB as

compared to active TB (18). Since the pattern of immune response

in individuals with latent TB represents a more protective profile

compared to the one in patients with active TB, this suggests that

downmodulation of myeloid cell functions by specific Mtb

glycolipids may - in contrast to conventional thought - be

beneficial for the host and protect against active TB disease.

In this Review we discuss the effects of Mtb glycolipids in the

light of their role in the immunological hyporesponsiveness

following Mtb infection. We review data showing that they

play an important role in the downmodulation of the immune

response in individuals with Mtb infection, and in particular in

those with latent TB. We further discuss various mechanisms of

hyporesponsiveness induced by mycobacterial glycolipids on the

innate and adaptive compartments, and their potential

protective effect against active TB. On one hand the exposure

of immune cells to glycolipids renders them hyporesponsive to

other stimuli, such as LPS or IFN-g. On the other hand, infection

with mycobacteria may render the innate and acquired immune

cells less responsive to glycolipids (Figure 1).
2 Mycobacterial glycolipids and
their receptors

Glycolipids are important parts of the mycobacterial cell

envelope (14, 19), and are also potent immunomodulatory

molecules (17). The lipid-rich Mtb envelope has a unique

chemical structure (19–22) (Figure 2), comprising: (i) a

plasma or inner membrane, (ii) a cell wall core made of the

peptidoglycan-arabinogalactan complex (AGP) (iii) an outer

membrane (MOM), whose inner leaflet, made of mycolic acids,

is covalently linked to AGP, and (iv) an outermost capsule.
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The plasma membrane is composed of phospholipids and

phosphatidylinositol (PI)-derived glycolipids, namely

phosphatidylinositol mannosides (PIMs), lipomannan (LM)

and lipoarabinomannan (LAM). The inner leaflet of the outer

membrane is made of long-chain mycolic acids that esterify the

terminal arabinose residues of AGP. The outer leaflet is

composed of a large diversity of non-covalently attached

(glyco)lipids, that can be classified in different families (23),

i.e. PI-derived glycolipids, mycolic acids and conjugates,

multimethyl-branched and polyunsaturated fatty acid esters of

trehalose, and mycocerosate-containing lipids, detailed in the

following paragraphs.

The capsule is mostly made of proteins and polysaccharides

including a-glucan, arabinomannan (AM) and mannan, that

correspond to lipid-free forms of LAM and LM (24, 25).
2.1 Mycobacterium tuberculosis
glycolipid structural diversity

2.1.1 Phosphatidylinositol
(PI)-derived glycolipids

LAM, LM and PIM share a common lipid anchor, namely

Mannosyl-Phosphatidyl-myo-Inositol (MPI), which contains
Frontiers in Immunology 03
two acylation sites on the glycerol unit and two additional

potential ones, on the myo-inositol unit and on the mannose

unit linked at O-2 of the myo-inositol (22, 26). Palmitic and

tuberculostearic acids are the major fatty acids. The MPI anchor

can be glycosylated by one to five mannosyl units, yielding PIM,

phosphatidylinositol dimannosides (PIM2) and hexamannosides

(PIM6) being the most abundant glyco-forms. LM is made by

polymannosylation of tri-acylated PIM2 (bearing a fatty acid on

the mannose unit in addition to both positions of glycerol). LAM

corresponds to LM with an attached arabinan domain. In Mtb,

the non-reducing termini of the arabinosyl side chains of LAM

are modified by mono-, di- or tri-mannoside units, called

mannose caps (ManLAM). In the present review, unless

otherwise stated, the term LAM will refer to ManLAM.

2.1.2 Mycolic acids and conjugates
Mycolic acids (MAs) are 3-hydroxy-2-alkyl-branched

long-chain (60-90 carbon atoms) fatty acids bearing different

chemical functions, such as double bonds, cyclopropanes,

oxygenated functions at two distinct positions along the

meromycolic chain (27). MAs are found either covalently

attached to the AGP to form the inner leaflet of the MOM,

or as free lipid conjugates (esters) participating in the

composition of the outer leaflet of the MOM. Esters of
FIGURE 1

Mycobacterial glycolipids are associated with immune hyporesponse in distinct circumstances. Concurrent exposure – referred as the
hyporesponse to distinct stimuli due to concurrent exposure to mycobacterial glycolipids. Previous exposure - represents the hyporesponse to
glycolipids or other stimuli due to previous, repeated or continuous exposure to diverse Mtb antigens.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1035122
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Correia-Neves et al. 10.3389/fimmu.2022.1035122
mycolic acids include trehalose-6,6’-dimycolate (TDM; also

known as cord factor because of its association with the cording

morphology of Mtb), trehalose monomycolate (TMM), glucose

monomycola te (GMM) or g lycero l monomycola te

(GroMMs) (23).
2.1.3 Multimethyl-branched and
polyunsaturated fatty acid esters of trehalose

In addition to TDM and TMM mentioned above, trehalose

serves as a scaffold for esterification by a wide range of fatty acids

other than mycolic acids (21, 23). Di- (DAT), Tri- (TAT), and

Penta- (PAT) acyl trehaloses represent a second group of lipids

of this family. Trehalose is acylated with a simple palmitic or

stearic acid at position 2 of the sugar core and at other positions

with methyl-branched mycolipenic, mycolipodienoic,

mycolipanolic or mycosanoic acids. Sulfoglycolipids constitute

a third group of glycolipids in this family. Sulfoglycolipids are

trehalose 2’-sulfates acylated at position 2 by a straight-chain

palmitic or stearic acid, 3, 6, and 6’ with one to three

phthioceranic or hydroxyphthioceranic acids.
Frontiers in Immunology 04
2.1.4 Mycocerosate-containing lipids
They comprise phthiocerol dimycocerosates (PDIM) and

phenolic glycolipids (23). PDIM are characterized by a long-

chain b-diol esterified by two polymethyl-branched fatty acids,

named mycocerosic acids. In phenolic glycolipids, produced by a

few Mtb strains only, this lipid is w-terminated by an aromatic

nucleus and glycosylated by a trisaccharide.
2.2 Mycobacterium tuberculosis
glycolipids are ligands of Toll-like
Receptor 2 and C-type lectins

Most of the Mtb cell envelope lipids described above have

been demonstrated to possess immunomodulatory properties

which rely on their ability to (i) act as ligands (either agonists

or antagonists) of pattern recognition receptors (PRRs), mainly

Toll-like receptor 2 (TLR2) and C-type lectins, (ii) mask

pathogen-associated molecular patterns (PAMPs) at the surface

of the Mtb cell envelope and prevent their interaction with PRRs,

(iii) directly insert into the host cell membranes and thereby
FIGURE 2

Schematic representation of the Mycobacterium tuberculosis cell envelope. AG, arabinogalactan; DAT, di-acyltrehalose; GMM, glucose
monomycolate; GroMM, glycerol monomycolate; LAM, lipoarabinomannan; LM, lipomannan; PAT, penta-acyltrehalose; PIM,
phosphatidylinositol mannoside; PDIM, phthiocerol dimycocerosate; PGL, phenolic glycolipid; SGL, sulfoglycolipid; TAT, tetra-acyltrehalose;
TDM, trehalose-6,6’-dimycolate; TMM, trehalose monomycolate.
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interfere with cell functions, and/or (iv) to act as antigens

presented by CD1 molecules to unconventional T cells.

2.2.1 TLR2
TLRs are a family of PRRs expressed on innate immune cells

such as macrophages and dendritic cells (DCs) as well as

neutrophils (28), and that detect a wide range of PAMPs (29).

They trigger NF-kB-dependent and IFN regulatory factor (IRF)-

dependent signaling pathways. Of all TLRs, TLR2 is the one that

binds to the structurally broadest range of PAMPs, including

lipoproteins and lipopeptides, lipoteichoic acid, lipoglycans and

glycolipids. All the Mtb lipid families described above comprise

ligands of TLR2.

Among all the TLR2 agonists, the strongest is LM followed

by PIM6, while LAM and PIM2 are much weaker agonists (30–

32). Indeed, TLR2 agonist activity of PI-based glycolipids

increases with the length of the mannan chain, while it is

thought that the bulky arabinan domain of LAM prevents an

efficient interaction with the receptor (30, 33). Only tri- and

tetra-acylated forms of PI-based glycolipids are recognized by

TLR2, in cooperation with TLR1 and CD14 (34). TDM, DAT

and TAT also induce TLR2-dependent immune responses, while

requiring different accessory receptors (35, 36).

Sulfoglycolipids are also ligands of TLR2. In contrast to

previous lipids, they are competitive antagonists of TLR2,

blocking NF-kB activation and subsequent cytokine

production or costimulatory molecule expression (37). Both

tetra- and di-acylated sulfoglycolipids are TLR2 antagonists.

Fatty acids and the sulfate group are required for

sulfoglycolipids to compete for the binding of TLR2 agonists,

lipoproteins or LM (37).

Phenolic glycolipids have also been described to inhibit TLR2

activation, by a yet unclear mechanism that seems to involve

binding of the saccharidic part of the molecule to TLR2 (38).

Finally, PDIM have been proposed to mask in part TLR2

agonists at the bacterial cell surface, restricting their accessibility

to the receptor, thereby limiting Mtb recognition (39).
2.2.2 C-type lectin receptors
C-type lectins (CLRs) are a family of receptors that

characteristically interact with terminal mono- or oligosaccharide

units of large carbohydrates in a calcium-dependent manner (40).

CLRs such as the mannose receptor, Dendritic Cell-Specific

Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-

SIGN), Macrophage inducible Ca2+-dependent lectin receptor

(Mincle) and Dectin-2, are PRRs that specifically bind

carbohydrates present on pathogens (16, 40). Through interaction

with their specific PAMPs they induce signaling pathways, either by

directly inducing immune-related gene expression or by

modulating TLR signaling (16, 41).

DC-SIGN is expressed on the surface of DCs. It recognizes

and binds to high-mannose-containing glycans, a class of
Frontiers in Immunology 05
PAMPs found on various microorganisms including Mtb, as

well as Lewis-type structures with fucose units, and glucans (42,

43). The immunological outcome of DC-SIGN triggering varies

depending on the pathogen involved (44), and the structure of

the molecule bound by DC-SIGN determines DC-SIGN-

mediated uptake and trafficking (45).

Purified LAM (43, 46), LM (47) and PIM6, but not PIM2 (48)

are ligands of DC-SIGN. Binding is mediated via terminal

mannosyl units. Other Mtb non-lipid ligands of DC-SIGN

include AM, mannan, mannoproteins (such as Apa or the 19

kDa lipoprotein) (47), as well as a-glucan (49). However, the

molecular basis of Mtb recognition by DC-SIGN are not clearly

understood. Indeed, whereas most of the ligands mentioned

above are produced by all mycobacterial species, DC-SIGN

selectively recognizes Mtb complex species (47). In addition,

the study of several Mtb complex mutants indicate that none of

these ligands is dominant or essential, suggesting functional

redundancy (48, 50).

The mannose receptor is expressed primarily by

macrophages and DCs. In macrophages, engagement of the

mannose receptor by LAM during the phagocytic process

directs Mtb to its initial phagosomal niche, thereby enhancing

Mtb survival (51). As for DC-SIGN, LM and PIM6, but not PIM2

bind the mannose receptor via their terminal mannosyl units

(52, 53). Binding is modulated by acylation degree of the

molecules, most probably as a result of an impact on the

clustering effect that is important for multivalent high affinity

binding to C-type lectins (54).

The Dectin-2 family/cluster encompasses several C-type lectins

that recognize Mtb glycolipids, notably Dectin-2, Mincle, and

DCAR (16, 55). Dectin-2 is expressed by both DCs and

macrophages (56). In murine bone-marrow-derived dendritic

cells (BMDCs), Dectin-2 triggers the expression of pro-

inflammatory cytokines, such as TNF, IL-6, and IL-12p40, as well

as IL-10 (56). It also enhances the functions of antigen-presenting

cells (APCs) to promote T cell production of IL-17 (56). Dectin-2

has recently been found to play a role in the modulation of early

hyper- and late hypo-immunoreactivity in sepsis by a cell wall N-

glycan ofCandida albicans (57), indicating that Dectin-2 may play a

role in immunosuppression like other C-type lectins including DC-

SIGN. Dectin-2 is a receptor for LAM (56), which is the sole Mtb

ligand of Dectin-2 as demonstrated by the use of isogenic mutants

(58). Dimannoside caps andmultivalent interaction are required for

ligand binding to and signaling via Dectin-2 (58).

Mincle is strongly expressed on macrophages but also on

DCs. It binds glycolipids containing glucose or mannose (59).

Ligand binding to Mincle leads to phosphorylation of the

immunoreceptor tyrosine activation motif (ITAM) of the FcRg
chain leading to activation of NF-kB via Syk-Card9–Bcl10–

Malt1 signaling (60).

Both human and mouse Mincle bind a large number of Mtb

glycolipids (59), TDM, TMM and GlcMM being the strongest

agonists (36). GroMM binds to human Mincle only (61),
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although with a lower efficiency than the mycolic acid esters

mentioned above. Free mycolic acids are also recognized by the

receptors (36). DAT and TAT are also agonists of both human

and mouse Mincle (36).

Dendritic cell immunoactivating receptor (DCAR) is found

on tissue inflammatory cells derived from circulating monocytes

in mice. No homolog has been found in humans so far. Like

Mincle, DCAR induces signaling through the ITAM motif of

FcRg (62), promoting Th1 responses during mycobacterial

Infection (63). DCAR recognizes PIMs by binding both their

saccharidic and lipid moieties (64).

The DAP12-associated triggering receptor expressed on

macrophage 2 (TREM2) is expressed on various myeloid cells,

including macrophages. It preferentially recognizes free mycolic

acids, rather than mycolic acid esters that are sensed by Mincle

(65). Triggering of TREM2 signaling by mycolic acids inhibits

Mincle-induced macrophage activation (65).

In summary, many glycolipids in the Mtb envelope are

potent modulators of the immune response through signaling

via receptors such as TLR2, CLRs, and TREM2 on monocytes/

macrophages and DCs. Some induce strong pro-inflammatory

responses, via TLR2 or CLRs, the most prominent example

being the action of TDM via Mincle. Others act through

receptors such as DC-SIGN or Trem2 to downmodulate a

pro-inflammatory response. However, it is important to note

that a given glycolipid, for instance LAM, may be recognized by

several receptors, triggering different responses (pro- vs anti-

inflammatory) according to the receptor engaged and potential

regulation of their signaling pathways.
3 Downmodulation of myeloid cell
function by Mtb glycolipids

Infection with Mtb is known to activate certain myeloid cell

functions while inhibiting others. The ability of Mtb glycolipids

to inhibit specific myeloid cell functions has been investigated

extensively using diverse in vitro myeloid cell models (Table 1).

In monocytes/macrophages, LAM has been shown to

downmodulate the production of IL-12 and/or of TNF

induced by lipopolysaccharide (LPS) (66–69). In vitro work

with DCs also revealed that LAM decreases the response to

LPS by these cells (42, 74, 78–80) by suppressing DC maturation

(42, 80) and reducing IL-12 secretion (74). Geijtenbeek et al.

found that LAM binding to DC-SIGN prevents mycobacteria- or

LPS-induced DC maturation (42), and TLR signaling is

modulated via the involvement of an intracellular signalosome

(44, 76). Nigou et al. showed that in human DCs LAM

suppressed IL-12 production induced by LPS by engagement

of the mannose receptor. As for DC-SIGN, the authors suggest

that engagement of the mannose receptor by LAM delivers a
Frontiers in Immunology 06
negative signal that interferes with the LPS-induced positive

signals delivered by TLR4 (74).

LAM’s effect on IL-10 production by DCs, when receiving a

simultaneous activation signal, like LPS, has been investigated by

several groups. In most situations the authors reported an

increased production of IL-10 (42, 80). This effect was ascribed

to its binding to C-type lectins such as the mannose receptor and

DC-SIGN (42, 44, 76). Accordingly, a-glucan, a polysaccharide

from the Mtb capsule induces a DC-SIGN-dependent production

of IL-10 by LPS-activated monocyte-derived DCs (49) (Table 1).

In contrast to the induction of hyporesponsiveness described

above, Gringhuis et al. later reported that LAM binding to DC-

SIGN enhanced both pro-inflammatory immune responses and

IL-10 production induced by LPS (44). Consistent with this,

Mazurek et al. found that LAM, but not PIM, from Mtb H37Rv

and bac i l lus Calmette-Guér in (BCG), when given

simultaneously with LPS, promoted LPS-induced DC

maturation and pro-inflammatory cytokine production (77).

Experiments on the effects of LAM alone on cytokine

production and DC maturation generated also some

controversial results; while Mazurek et al. reported that LAM

stimulated the production of TNF and IL-12p40 and drove DCs

maturation/activation (77), others observed no effect of LAM

alone in stimulating DCs (44). In neutrophils, LAM induced the

production of cytokines (IL-1Ra, IL-6, and IL-8) in a TLR2/1-

dependent manner , but did not e l ic i t p38 MAPK

phosphorylation (81), suggesting a different TLR2/1 signaling

pathway than in monocytes/DCs.

The reasons for these different observations remain unclear.

Comparing the protocols, the authors all use the same cell type

(human monocyte-derived DCs), although the cells may differ in

activation states (i.e. expression of receptors and activity of

signaling pathways). The fact that LAM alone upregulated

pro-inflammatory cytokines as reported by Mazurek et al. (77)

could indicate that in this study the upregulation of the LPS-

induced cytokines by LAM does not go through the DC-SIGN/

TLR signaling pathway, but e.g. via Dectin-2, which, in contrast

to the TLRs, activates macrophages and DCs through a Syk-

Card9 dependent signaling pathway (82). Indeed, it was later

reported that LAM binding to Dectin-2 induces both pro- and

anti-inflammatory cytokine production (56). Other contributing

factors, related to the potential induction of immune tolerance

(see further under the section "3.3 Primary stimulants may

induce tolerance or trained immunity in vitro depending on

experimental protocol") could be differences in the dose of LPS

(higher in Gringhuis et al. [10 ng/ml] and Mazurek et al. [100

ng/ml] compared to Nigou et al. [2 ng/ml]), the purity of LPS,

and/or incubation time. These factors are of importance in the

induction of tolerance to LPS. Chavez-Galan et al. (69) reported

that a minimum of 74 h of stimulation with LAM was necessary

to downmodulate LPS-induced TNF production, whereas other

studies observed a downmodulation after 18 h (75) or 48 h (74).
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TABLE 1 In vitro effect of Mtb glycolipids on the response of monocytes/macrophages and DCs to other stimuli.

Cell type Primary stimulation or
simultaneous

primary/secondary
stimulation

Secondary stimulation Cytokine
production and cell

maturation

Modulation
effect

Ref

Stimulant Incubation
time

Stimulant Incubation
time

Monocytes/Macrophages
Human monocytes
and human monocytic
cell line TPH-1

LAM
(2 mg/ml)

16 h LPS
(1 mg/ml)

15 min TNF ↓ IL-12 ↓
compared to no LAM

Downmodulation of LPS
effect induced by LAM

(66)

Mouse BMD
macrophages + IFN-g

LAM from BCG
(10 mg/mL) +
LPS (100 ng/mL)

24 h NA NA TNF ↓ IL-12 ↓
compared to no LAM

Downmodulation of LPS
effect induced by LAM

(67)

Mouse macrophage
cell line RAW264.7

LAM (5-20 mg/mL) 16 h LPS
(1 mg/mL)

24 h IL-12 ↓
compared to no LAM

Downmodulation of LPS
effect induced by LAM

(68)

Human monocytes LAM
(1 mg/ml)

24, 48, 72, 96,
120 h
(followed by 7
days resting)

LPS
(1 mg/ml)

24 h TNF ↓ after 72 h LAM
IFN-g !

Downmodulation of LPS
effect induced by LAM

(69,
70)

Mouse BMD
macrophages

di-acylated LM from BCG
(3 mg/ml) +
LPS (100 ng/ml)

24 h NA NA TNF ↓
compared to no LM

Downmodulation of LPS
effect induced by LM

(71)

Mouse BMD
macrophages
TLR-2 deficient and
wildtype

PIM2 and PIM6
(6.7 mg/ml)

30 min LPS
(100 ng/ml)

24 h TNF ↓ IL-12/IL-23 p40 ↓
IL-6 ↓ IL-10 ↓
compared to no PIM

Downmodulation of LPS
effect induced by PIM

(72)

BMD macrophages Phenolic glycolipid from
W-Beijing Mtb (2 mg/ml)
+ apolar lipids (1 mg/ml)

24 h NA NA TNF ↓ IL-6 ↓
compared to no PGL

Downmodulation of apolar
lipid effect induced by PGL

(73)

Human monocyte cell
line THP-1

SGLs (dose-response) +
Mtb lipoproteins (0.5 µg/
ml)

16 h NA NA NF-kB ↓ IL-8 ↓
CD40 expression ↓
compared to no SGLs

Downmodulation of Mtb
lipoprotein effect induced by
SGLs

(37)

Immature DCs
5 days with GM-CSF
+ IL-4

LAM from BCG (10-50
mg/mL) + LPS (2 ng/ml)

48 h NA NA IL-12 ↓ in a dose
dependent manner
compared to no LAM

Downmodulation of LPS
effect induced by LAM

(74)

Dendritic Cells
Immature DCs
5 days with GM-CSF
+ IL-4

LAM from BCG (10 mg/
mL) + LPS (20 ng/ml)

18 h NA NA TNF ↓
compared to no LAM

Downmodulation of LPS
effect induced by LAM

(75)

Immature DCs
24 h with GM-CSF +
IL-4

LAM (15 mg/mL) + LPS
(10 ug/mL)
+ GMCSF + IL-4

18 h NA NA IL-10 ↑
↓ maturation
compared to no LAM

Downmodulation of LPS
induced maturation by LAM
and increase of IL-10

(42)

Immature DCs
6-7 days with GMCSF
+ IL-4

LAM (10 µg/ml) +
LPS (10 ng/ml)

24 h NA NA IL-10 ↑
compared to no LAM

Increase of IL-10 by LAM in
LPS treated cells

(76)

Immature DCs
6-7 days with GMCSF
+ IL-4

LAM (10 µg/ml) +
LPS (10 ng/ml)

24 h NA NA IL-6 ↑ IL-10 ↑
IL-12p35 ↑ IL12p40 ↑
compared to no LAM

Upregulation of LPS effect by
LAM

(44)

Immature DCs
6 days with GMCSF +
IL-4

LAM (10 µg/ml) + LPS
(100 ng/ml)

12 h NA NA TNF ↑ IL-6 ↑ IL-12 ↑
activation/maturation
compared to no LAM

Upregulation of LPS effect by
LAM

(77)

Immature DCs
6 days with GMCSF +
IL-4

PIM (5 µg/ml) + LPS
(100 ng/ml)

12 h NA NA Dose dependent TNF ↓
IL-6 ↓ IL-12p40 ↓
compared to no PIM

Downmodulation of LPS
effect by PIM

(77)
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LM (33, 34, 67) and PIM (83) are TLR2 agonists that induce the

production of pro-inflammatory cytokines in macrophages and the

formation of granuloma (84, 85). Yet, both LM and PIM can also

inhibit the LPS-induced TLR4-mediated pro-inflammatory

cytokine production (TNF, IL-6, IL-12) by macrophages (67, 71,

72, 86) or human monocyte-derived DCs (77). In addition,

prolonged TLR2 signaling induced by Mtb lipoproteins and,

potentially, by other TLR2 agonists such as LM and PIM (87)

results in inhibition of MHC class II molecule expression and

antigen presentation by Mtb-infected macrophages (88).

Sulfoglycolipids inhibit NF-kB activation and subsequent

cytokine production (induced by Mtb lipoproteins) by acting

as competitive antagonists of TLR2 in human macrophages (37),

thereby inhibiting the recognition of Mtb by TLR2.

Phenolic glycolipids downmodulate the host innate immune

response (89). Phenolic glycolipids produced by a subset of Mtb

isolates decrease the production of pro-inflammatory cytokines

induced by apolar glycolipids in Mtb-infected monocytes or

monocyte-derived macrophages in a dose-dependent manner

(73) (Table 1). In agreement, infection with a modified strain of

Mtb that does not express phenolic glycolipids was found to

correlate with an increased release of pro-inflammatory

cytokines in vitro (73). The trisaccharide domain of the

phenolic glycolipids from Mtb and M. leprae share the

capacity to inhibit TLR2-triggered NF-kB activation, and thus

the production of pro-inflammatory cytokines (38).

TDM binding to Mincle activates macrophages and DCs to

produce pro-inflammatory cytokines and nitric oxide (36, 59,

60) and triggers the formation of granuloma (59, 90). Yet, TDM

exerts delayed inhibition of IFN-g-induced gene expression,

including pattern recognition receptors, MHC class II genes,

and IFN-g-induced GTPases, with antimicrobial function (91).

Moreover, beads coated with TDM induce a Mincle-dependent

anti-inflammatory IL-10 response that counter-regulates IL-12

production in macrophages (92). In addition, it interferes with

FcgR-mediated phagosome maturation through Mincle, SHP-1

and FcgRIIB signaling (93).

Mycolic acids induce a TREM2-dependant pathway that

leads to recruitment of inducible nitric oxide synthase (iNOS)-

negative mycobacterium-permissive macrophages and

counteracts Mincle-FcRg-CARD9-mediated inflammatory

cytokine production (65). TREM2 is responsible for blocking

the production of TNF, IL-1b, and Reactive oxygen species

(ROS), while enhancing the production of IFN-b and IL-10 (94).

DAT has been shown to induce tolerance in bone marrow-

derived (BMD) murine DCs that were activated with delipidated

BCG cell wall and TLR agonists, leading to decreased antigen

presentation and less production of IL-12 and increased levels of

IL-10 (95) (Table 1). DAT was previously shown to activate both

human and mouse Mincle and induce cytokine production (36).

Whether DAT-induced tolerance is mediated by Mincle remains

to be investigated.
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3.1 Mechanisms of induction of
hyporesponsiveness by Mtb glycolipids

Early studies of hyporesponsiveness mainly explored the

direct role of Mtb glycolipids in the immune response to

stimulation of myeloid cells (Table 1), where transcription of

genes takes place at the time of stimulation in response to a

ligand directly acting on the cell (66, 72, 96). In these studies,

LPS was frequently used as the trigger of macrophage-mediated

inflammation. Since the main receptor for LPS is TLR4, this

receptor has been extensively explored in this context (97, 98).

Two major signaling pathways have been described in the

activation of macrophages by LPS via TLR4 (Figure 3). These

pathways involve either the adaptor protein Myeloid

differentiation factor 88 (MyD88) or the Toll/IL-1-receptor

(TIR)-domain-containing adaptor-inducing IFN-b (TRIF)

(104). Both pathways converge in their activation of the

transcription factor NF-kB. Prolonged activation of TLR4 can

lead to reduced activation of downstream kinases, such as IL-1

receptor-associated kinase (IRAK) and MAPKs. Most TLRs,

including TLR2 and TLR4, are activated via the MyD88-

dependent signaling pathway, while TRIF is involved in TLR4

but not TLR2 signaling.

A major mechanism involved in the hyporesponsiveness

induced by Mtb glycolipids is the inhibition of the transcription

factor NF-kB, which has been shown for LAM (72), PIM (72),

phenolic glycolipids (38), sulfoglycolipids (49), and a-glucans
(49). The signaling pathways leading to the downmodulation of

NF-kB by Mtb glycolipids in most cases remain to be explored.

In macrophages, LAM downmodulates the IL-12 production

induced by LPS by interfering with MyD88, IRAK, and TNF

receptor-associated factor (TRAF) complexes (68) (Figure 3)

through IRAK-TRAF6 interaction, that attenuates nuclear

translocation and DNA binding of c-Rel and p50. LAM exerts

these effects by inducing the expression of IRAK-M, a negative

regulator of TLR signaling (105). Knockdown of IRAK-M

expression by RNA interference reinstated LPS-induced IL-12

production by LAM-pretreated cells (68) (Figure 3). LAM has

also been shown to activate PI3K and Akt, indicating another

pathway for LAM to downmodulate NF-kB (Figure 3).

As discussed previously the effect of LAM on monocytes/

macrophages and DCs has been addressed in several instances.

In DCs the downmodulation of IL-10 production by LAM

occurs through binding to C-type lectins such as the mannose

receptor (74) and DC-SIGN (76). Gringhuis et al. showed that

the effect of LAM on LPS stimulation, through DC-SIGN,

triggers a molecular signaling pathway that modulates TLR

signaling at the level of NF-kB, by activating the serine and

threonine kinase Raf-1, which subsequently leads to

acetylation of the NF-kB subunit p65, but only after TLR-

induced activation of NF-kB. Acetylation of p65 both

prolonged and increased IL10 transcription (76). The same
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group earlier reported that LAM inhibited the maturation of

DCs, which was reversed by antibodies against DC-SIGN (42).

Interestingly, Quesniaux et al. found, using murine BMD

macrophages, that the inhibitory effect of BCG LM on LPS-

induced IL-12p40 production was independent of TLR2 and

MyD88, suggesting that the inhibitory effect was independent of

TLR-signaling (67).

Rajaram et al. found that TNF biosynthesis was blocked in

human macrophages by LM by regulating macrophage MAPK-
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activated protein kinase 2 (MK2) and microRNA miR-125b

(106) (Figure 3). Doz et al. found that in murine BMD

macrophages, PIM inhibited LPS-induced functional responses

(in vitro as well as in vivo), through both the MyD88 and TRIF

signaling pathways (72) (Figure 3). PIM inhibited TLR4 and

MyD88-mediated release of pro-inflammatory cytokines and of

IL-10. PIM also reduced the MyD88-independent, TRIF-

mediated expression of co-stimulatory receptors and inhibited

LPS/TLR4-induced NF-kB translocation (72). Phenolic
FIGURE 3

Some of the signaling pathways in the context of hyporesponsiveness in monocytes/macrophages and DCs. The TLR signaling pathways induced by
PAMPs, such as LPS and Mtb glycolipids activate NF-kB and MAPK cascades in macrophages and DCs, leading to the production of pro-inflammatory
cytokines. Most TLRs bind the adaptor protein MyD88, initiating signaling through the serine/threonine kinase IRAK, which then associates with the
adaptor protein TRAF6. After the activation of the IKK complex, IkB, an inhibitor of NF-kB, becomes phosphorylated and then degraded. This leads to
the activation of NF-kB and its translocation to the nucleus with subsequent production of immunostimulatory cytokines and DC maturation.
Interaction with DC-SIGN, which is mainly expressed on the surface of DCs, activates the small GTPase, Ras, leading to the activation of NF-kB by
phosphorylation of the p65 subunit at Ser276 and its subsequent acetylation, thereby enhancing the production of the immunosuppressive cytokine IL-
10 (44, 76, 99, 100). The negative regulator of TLR signaling, IRAK-M, is induced in macrophages and DCs in response to the first activation of the TLRs
and functions as a negative regulator in the second or continuous stimulation by TLR agonists. The IRAK family includes two active kinases, IRAK and
IRAK-4, and two inactive kinases, IRAK-2 and IRAK-M. IRAK-M inhibits further downstream activation of NF-kB by preventing the dissociation of IRAK
and IRAK-4 from MyD88 and the formation of IRAK-TRAF6 complexes (101). Another negative regulator of TLR signaling is PI3K, which is constitutively
expressed in innate immune cells, such as DCs and macrophages. Unlike IRAK-M, PI3K functions at the early phase of TLR signaling in response to the
first encounter with the pathogens. PI3K activates AKT (also known as PKB), which inhibits both NF-kB and the MAPK pathway, leading to reduced
inflammatory cytokine production (102). In addition to the activation of NF-kB, TLR ligation also activates the MAPK pathway. MK2, is a kinase that is
downstream of p38 and regulates the synthesis of pro-inflammatory cytokines. Downmodulation of MK2 therefore results in reduced cytokine
production. TLR4 ligation can in addition to MyD88 also signal via TRIF to IRF3 leading to production of type 1 IFNs (103). DCs, dendritic cells; TLR, Toll-
like receptor; PAMP, pathogen associated molecular patterns; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; IRAK, iIL-1 receptor-
associated kinase; TRAF6, TNF-receptor-associated factor 6; IKK, inhibitor of NF-kB kinase; LAM, lipoarabinomannan; DC-SIGN, DC-specific intracellular
adhesion molecule-grabbing non- integrin; IRAK-M, IL-1 associated kinase-M; PGL, phenolic glycolipid; SGL, sulfoglycolipid.
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glycolipids from BCG selectively disable TRIF-dependent TLR4

signaling in macrophages (107).

Results from in vitro studies on the hyporesponse to LPS and

other stimuli, induced by co-stimulation with LAM and PIM are

in line with studies of cells from individuals with Mtb infection

(Table 2). Whole blood cells from patients with active TB and

contacts stimulated with LAM showed reduced production of

TNF and IFN-g compared to healthy controls, and lower

production of IL-10 in contacts compared to patients with TB

(108). We found that stimulation of peripheral blood

mononuclear cells (PBMCs) with LAM and PIM induced a

greater response in cells from healthy controls compared with

cells from individuals with active or latent TB. The cytokines IL-

1a, IL-10 and IL-18, and VEGF were secreted at lower levels

from PBMCs from those with active and latent TB compared

with healthy controls, indicating a hyporesponsive state in active

and latent TB (18). For myeloid cells, a reduction of cytokine-

producing cells was observed in individuals with latent TB upon

stimulation with LAM and PIM. This effect was mainly observed

for IL-10 and IL-6 (18).
3.2 Myeloid cell tolerance and
trained immunity

More recently, the hyporesponsiveness described above is

discussed in the context of innate immune memory. Epigenetic

changes of innate immune cells are central to this process and may

result in a long-term adaptation of innate immune cells leading
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either to enhanced responsiveness (trained immunity) or a

weakened response (innate tolerance) to a subsequent challenge

(113–115) (Figure 4A). The magnitude and duration of stimulation

induce specific adaptations in innate immune cells that either

enhance or attenuate the immune responses (Figure 4B).

The BCG vaccine was the first stimulus to be identified to

induce trained immunity, and its effect has been extensively

studied both in vivo (113) and in vitro (116, 117). Monocytes/

macrophages infected with BCG in vitro develop trained

immunity, with increased cytokine production upon a

secondary stimulus (116, 117).

Although the phenomenon of trained immunity has been

extensively studied, innate immune tolerance has received less

attention in the context of infectious diseases (97). Innate

tolerance as a concept has been observed for many decades

(118), yet the mechanisms behind the effect remain largely

unclear and likely differ between diseases (119). The endotoxin

tolerance induced by the TLR4 agonist LPS remains the

prototypical model of innate immune tolerance (98, 120).

While a single exposure to LPS induces a pro-inflammatory

response, repeated or persistent exposure to high doses of LPS

epigenetically induces a state of tolerance resulting in reduced

pro-inflammatory cytokine production (121, 122).

While specific pathways and markers differ between the

various programs in innate immune memory, they all display

the same basic mechanisms (epigenetic, transcriptional, and

metabolic). Mechanisms of epigenetic programming involve

miRNAs, chromatin structure, DNA methylation (123, 124)

and histone modification (125) and are central to this process
TABLE 2 Effect of ex vivo stimulation of immune cells with Mtb antigens/glycolipids in clinical manifestations of Mtb infection.

Cell type Stimulant Active TB Latent TB
(*or contacts)

Additional information Ref

Whole blood LAM TNF ↓ IFN-g ↓ IL-10 ↑ TNF ↓ IFN-g ↓ IL-10 ↓ * Individuals included as contacts were
living in the same house as smear
positive pulmonary TB patients for 1
week or more.

(108)

PBMC LAM ! ! (18)

PBMC PIM IL-1a ↓ IL-10 ↓ IL-18 ↓ IL-1a ↓ IL-10 ↓ IL-18 ↓ (18)

Myeloid cells LAM IL-10 ↓ IL-6 ↓ IL-10 ↓ IL-6 ↓ (18)

Myeloid cells PIM ! IL-10 ↓ IL-6 ↓ (18)

T cells PIM (PIM2/PIM6) IL-10 ↓ IL-17A ↓ IL-6 ↓ IL-10 ↓ TNF ↓ IL-17A ↑ IL-6 ↑ Lack of expansion of naïve CD8+ T
cells expressing GMCSF in latent TB
vs healthy controls.

(18)

CD1+CD4+ T cells Mtb lipids IFN-g !
Proliferation !

IFN-g ↑
Proliferation ↑

IFN-g and proliferation increased in
latent TB but not active TB.

(109)

CD1+CD8+ T cells LAM IFN-g !
(post-TB patients)

IFN-g ↑ (110)

CD1+ T cells Glycerol monomycolate/
mycolic acids

IFN-g ! IFN-g ↑ (111)

CD1+ T cells Sulfoglycolipids IFN-g ↑ IFN-g ↑ No difference between active TB and
latent TB.

(112)
frontiersi
LAM, Lipoarabinomannan; PIM, Phosphatidylinositol mannoside.
Symbols used: ↑ Increased production; ↓ Decreased production; ! No difference detected; all in relation to healthy controls.
n.org

https://doi.org/10.3389/fimmu.2022.1035122
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Correia-Neves et al. 10.3389/fimmu.2022.1035122
(126, 127). There is a strong association between epigenetic

changes and changes in gene expression patterns (123, 125).

There are reports on the association between DNA hyper- or

hypomethylation and signaling pathways. Thus Kong et al.

observed that multiple genes of the IL-12/IFN-g signaling

pathway (IL12B, IL12RB2, TYK2, IFNGR1, JAK1, and JAK2)

were hypermethylated in patients with active TB, with decreased

IFN-g–induced gene expression and decreased IL-12–inducible

upregulation of IFN-g (124). Pacis et al. found a strong

association between hypomethylated regions and transcription

factors (TFs) from the NF-kB/Rel or the interferon regulatory

factors (IRF) families (123). In Mtb-infected human DCs, TF

binding motifs associated with NF-kB/Rel, AP-1, and IRF

families were all significantly enriched within hypomethylated

regions. Moorlag et al. found an association between trained

immunity responses and enrichment for genes involved in the

PI3K-Akt signaling pathway (125).

However, the molecular pathways linking chromatin

remodeling to cellular signaling networks switching a transient

signaling event into a long-lasting change and whether

epigenetic changes are the cause of the modulation of

signaling pathways or the other way around remain to a great

extent to be explored. Pacis et al. observed that changes in gene

expression in Mtb infected human DCs tend to occur prior to

detectable changes in DNA methylation, supporting a model in

which TF binding to enhancers leads to gene up-regulation

followed by active demethylation, rather than vice versa (123).
3.3 Primary stimulants may induce
tolerance or trained immunity in vitro
depending on the experimental protocol

In vitro, innate immune memory can be established as either

trained immunity with a heightened response to stimulation or
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tolerance with reduced ability to respond. This fate decision

depends on factors such as activation state of the cells at the

primary stimulation (113), antigen structure and conformation

of the primary stimulus, delivery method, and receptor

specificity of the stimulating microbial product.

Since experimental differences in the conditions for the

stimulation and testing leads to great variation on the level of

immune memory, several protocols have been established.

For b-glucan, BCG, and oxLDL, Bekkering et al. determined

that the optimal experimental conditions for induction of

trained immunity in macrophages are a training interval of

24 h followed by a resting time of 6 days (117, 128). Primary

stimulation for 2 h, 4 h, or 24 h induced training but it was

stronger after 24 h of training time. The trained phenotype then

developed only after at least 3 days of resting, with a maximum

occurring after 6 days (128). Interestingly, stimulation with b-
glucan and BCG instead induced tolerance when cells were only

briefly (24 h) left to rest before re-challenge (128). Likewise in a

study by Yoshida et al., the expression of TNF was decreased 3

days after primary stimulation with LPS, while TNF expression

was increased after 3 weeks of resting upon a secondary

stimulation with LPS (129). An illustration of the importance

of time for inducing innate tolerance is a study by Chavez-Galan

et al. (69), where it took a minimum of 74 h of stimulation with

LAM until LPS-induced TNF production was downmodulated.

In addition to stimulation and resting time, the

concentration of the primary stimulation plays a role in

inducing trained immunity or tolerance, with higher

concentrations inducing tolerance while relatively lower

concentrations leading to trained immunity. Thus,

stimulation of human monocytes with a dose of 100 mg/ml of

PAM3CSK4, a TLR2 agonist, tolerized the cells to respond with

less IL-6 and TNF production upon restimulation with

PAM3CSK4, while primary stimulation at lower doses, in the

range of 1 mg/ml and below, induced a pattern of trained
A B

FIGURE 4

Schematic presentation of induction of innate training vs tolerance. (A) Innate training or tolerance can be achieved in vitro by using different
times of primary stimulation and resting of immune cells, different concentrations of the stimuli, and different secondary stimuli. (B) In vivo
innate training and tolerance can potentially be achieved by infection (primary stimulation) for varying times and doses and expressed ex vivo
upon secondary stimulation of immune cells from the infected individual.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1035122
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Correia-Neves et al. 10.3389/fimmu.2022.1035122
immunity with increased cytokine production upon

restimulation (130). Even LPS, the prototype inducer of

tolerance, may induce trained immunity when given at low

doses (130–132). Thus, a high dose (100 ng/ml) of LPS induced

tolerance upon restimulation with LPS, while a lower dose (10

ng/ml and below) induced trained immunity (130).
4 T cell hyporesponsiveness and
Mtb glycolipids

T cell hyporesponsiveness, defined as decreased production

of pro-inflammatory cytokines and/or increased production of

IL-10, has been associated to Mtb glycolipids in a quite diverse

set of situations. On the one hand this has been reported as a

direct effect of Mtb glycolipids on T cells leading to a

hyporesponse to other concurrent stimuli (133–135). On the

other hand, this hyporesponse has been associated with a

previous repeated and/or sustained immune stimulation in

chronic infection or using in vitro models. The T cell

hyporesponsiveness associated with prolonged/repeated

stimulation may be caused by excessive stimulation of T cells

with Mtb antigens or indirectly by tolerized APCs influencing
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adaptive immune responses (99, 100, 136–139), (Figure 1

and Table 3).
4.1 T cell hyporesponsiveness induced
by concomitant T cell exposure
to glycolipids

Direct exposure of CD4+ T cells, polyclonal and antigen-

specific, to LAM during in vitro stimulation, has been shown to

occur through insertion of LAM in the T cell membrane via lipid

rafts (134, 142, 143). This insertion abrogates T cell receptor

(TCR) signaling by blocking Zeta-chain-associated protein

kinase 70 (ZAP-70) phosphorylation (134) and inhibiting the

phosphorylation of both lymphocyte-specific protein tyrosine

kinase (Lck), an Src family kinase, upstream of ZAP-70 and of

the adaptor molecule linker of activation of T cells (LAT),

downstream of ZAP-70, indicating that LAM blocks the

proximal TCR signaling pathway (133, 134). Mahon et al.

suggested that the insertion of LAM in the T cell membrane

allows other components of the LAM molecule, such as the

mannose cap, to interfere with the TCR complex perturbing its

function (134). Athman et al. proposed an additional
TABLE 3 Induction of PBMC and T cell hyporesponsiveness by Mtb glycolipids.

Type of cells Primary stimulation or simultaneous
primary/secondary stimulation

Secondary stimulation Effect Modulatory effect Ref

Stimulant Incubation
time

Stimulant Incubation
time

PBMC LAM (3 and 30 mg/ml) or AM
or D-arabino-D-galactan
+ PPD (1 mg/ml)

3 and 6 days NA NA Proliferation !
Proliferation ↓
Proliferation ↓↓
compared to no
glycolipid

Downmodulation of PPD
effect was induced by LAM
and AM

(140)

T cell clones LAM (3 and 30 mg/ml) +
Influenza virus A

3 days NA NA T cell proliferation ↓
compared to no LAM

Downmodulation of T cell
proliferation was induced
by LAM

(140)

Mouse CD4+ T cells LAM (1 mM) 24 h fixed BMMs
pulsed with
Ag85B (1 mg/
ml)

48 h T cell proliferation ↓
IL-2 ↓
compared to no LAM

Downmodulation of T cell
proliferation was induced
by LAM

(135)

Human PBMC DAT 2 h MTA (1 mg/
ml)

5 days Cell proliferation ↓
IL-2 ↓ IL-12 ↓ TNF ↓
IL-10 ↓
compared to no DAT

Downmodulation of cell
proliferation and cytokine
production in PBMC was
induced by DAT

(141)

Human CD4+ or
CD8+ T cells

DAT 2 h MTA (1 mg/
ml)

6 days T cell proliferation ↓
CD25 ↓ CD69 ↓
compared to no DAT

Downmodulation of MTA
effect was induced by DAT

(141)

Mouse spleen T cells DAT (100 mM) +
Mtb proteins (5.0 mg/ml)

24 h NA NA T cell proliferation ↓
IFN-g ↓
compared to no DAT

Downmodulation of Mtb
protein effect was induced
by DAT

(139)

Mouse spleen T cells DAT (50 or 100 mM) 2 h ConA (1.0 m
g/ml)

24 h IL-2 ↓ IL-4 ↓ IFN-g ↓
compared to no DAT

Downmodulation of ConA
effect was induced by DAT

(139)
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mechanism based on in vitro and in vivo studies, where LAM is

transferred to T cells through membrane vesicles released from

infected macrophages, which induces GRAIL, leading to

inhibition of CD4+ T cell activation with reduced production

of IL-2 and of cell proliferation (144).
4.2 T cell hyporesponsiveness indirectly
induced through alteration of the APCs

The stimulation/activation of Mtb-specific T cells during the

immune response to Mtb depends on the presentation of Mtb-

antigens to T cells via classical MHC and CD1 molecules (145,

146). Using a mouse model of Mtb infection, Reiley et al. showed

data suggesting that during late stages of the chronic infection

APCs lose the ability to stimulate naive T cells (147). Studies in

vitro also revealed that exposure of DCs to BCG triggers DCs to

enhance IL-10 and diminish IL-12 production, inducing naive T

cells to develop into IL-10-producing T cells in a dose-

dependent manner (148). This suggests that BCG vaccination

might result in the development of IL-10-producing DCs and IL-

10-producing T cells that could contribute to restricting overt

inflammation (148).

One mechanism responsible for the delayed/reduced T cell

response through alteration on the APCs is by antigenic evasion.

Several pathways are involved in the inhibition/reduction of

Mtb-antigens presentation by APCs to T cells. These strategies

differentially affect peptide and lipid antigens as shown by Hava

et al. (149). Mtb infection causes rapid DC maturation and

consequently delays presentation of Mtb-antigenic peptides to T

cells via MHC II molecules. Interestingly, this antigenic evasion

was not detected for lipid antigens (149). Other strategies are

used by Mtb to delay/reduce the presentation of peptide antigens

by MHC II and consequently delay/reduce CD4+ T cell

activation; namely through the inhibition of the endosomal

sorting complex required for transport (ESCRT) machinery by

Mtb EsxH (150). In addition, Mtb glycolipids, in particular Mtb

19-kDa lipoprotein, were shown to inhibit MHC II expression

and antigen processing in murine macrophages, with a

subsequent decreased presentation of Mtb-antigenic peptides

to T cells (88, 151, 152). Noss et al. showed that this occurs via

binding of 19-kDa to TLR2 (151, 152).

Presentation of mycobacterial glycolipids by CD1b

molecules to T cells has been shown to occur for all

glycolipids studied so far, namely LAM, PIM and LM (110,

153–157), sulfoglycolipids (110, 112, 154), GroMM (110) (111),

GMM (158, 159), and mycolic acids (110, 160–163). GMM has

also been shown to be presented by CD1c in humans and

nonhuman primates (158).

Upon activation through the TCR, CD1-restricted T cells

were shown to secrete pro-inflammatory cytokines such as IFN-

g (112, 164), and to kill Mtb-infected APCs (112, 154, 165). This

contributes to reduced mycobacterial proliferation and survival.
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In several experiments, the role of CD1b was confirmed by

adding anti-CD1b blocking antibodies, which resulted in

substantial inhibition of the T cell response (109, 110, 164).

CD1-restricted T cells recognizing mycolic acids from patients

with active TB were shown to be expanded in TB patients at

diagnosis but were not detected in uninfected BCG-vaccinated

controls, similar to conventional MHC-restricted T cells (160).

GroMM was found to be presented by Mtb-infected DCs,

demonstrating that the antigen is available for presentation

during natural infection. In contrast, a tetramer study with

Peruvian subjects found no significant differences in the

numbers of T cells recognizing CD1b tetramers loaded with

mycolic acid or GMM between subjects with Mtb exposure,

latent Mtb infection or active TB (166). This potentially indicates

that some Mtb glycolipids are more likely than others to induce

T cell responses during infection.

Similar to the hyporesponsiveness to peptide antigens from

Mtb that are presented to TCRs in the context of MHC

molecules, one mechanism responsible for the induction of

hyporesponsiveness of CD1 restricted T cells may be through

alteration of the APCs and their presentation of Mtb glycolipids

by CD1b molecules to T cells. Virulent Mtb strains are able to

suppress the act ion of CD1 restr icted T cel ls , by

downmodulating CD1 expression on APCs (167). The Mtb

glycolipid DAT, that is recognized by CD1b (168), was shown

to reduce antigen-induced proliferation of CD4+ and CD8+ T-

cell subsets in vitro using PBMCs. The effect was associated with

decreased expression of the T-cell surface activation markers

CD25 and CD69, and reduced production of IL-2, IL-12, TNF

and IL-10 (141). This effect was also observed, by the same

group, for mouse T cells (138). Studies in vitro showed that DAT

has an inhibitory effect on proliferation and mRNA expression

of IL-2 and IFN-g in antigen-stimulated T cells from Mtb-

infected mice. This effect involved down-modulation of the di-

acyl glycerol-dependent activation of the MAPK-ERK1/2

pathway, one of the crucial signaling pathways leading to

adaptive cellular immune responses against Mtb infection (139).

Most studies analyzing the T cell response to glycolipids

using blood samples compared the response of cells from

individuals with active TB and healthy controls. A few studies

added to this data on the immune response of individuals that

are positive for PPD and/or IGRA but without signs of active

diseases. Ulrich et al. showed that when nonadherent PBMCs

were stimulated with Mtb total-lipid extract, the proliferative

response of PPD-positive individuals was enhanced compared to

the ones with active TB as well as healthy controls (Table 3). In

addition, the same authors presented data supporting the

involvement of CD1-restricted CD4+ T cells on this

proliferative response and IFN-g production (109). Likewise,

ex vivo T cell responses to the Mtb lipid antigen GroMM were

detected in the blood of latently infected individuals, as well as

BCG vaccinated, but not in patients with active TB potentially

indicating a functional rather than numeral enrichment (111).
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Recent data from our group showed that T cells from individuals

with latent TB or active TB present a distinct response profile to

LAM and PIM (18). The overall production of cytokines in

response to PIM was clearly reduced in individuals with active

TB compared to healthy controls, strengthening the notion of a

hyporesponse during the course of active disease. In contrast, T

cells from PPD/IGRA+ individuals responded to PIM with

increased production of several pro-inflammatory cytokines,

namely IL-6 and TNF (18).
4.3 T cell exhaustion

Although the mechanisms for downmodulation of restricted

T cells by Mtb glycolipids in individuals with Mtb infection have

not been explored in detail, available data suggest that they have

similarities to the T cell exhaustion caused by stimulation with

Mtb peptides/proteins (169). T cell exhaustion is a phenomenon

well known in human TB/Mtb infection (136, 137, 170, 171) and

experimental Mtb or BCG infection in mice (172–174).

Human Mtb-specific CD8+ T cells display decreased

proliferation and production of IL-2, IFN-g, and TNF in

response to Mtb antigens such as CFP-10 and ESAT-6 in

active TB compared to latent TB (170). In mice, infection with

Mtb (172) or BCG (175) resulted in a gradual loss of TNF and

IL-2 production by individual T cells upon persistent antigen

exposure (172, 175), as well as a decreased proliferation of IFN-g
producing T cells (175). T cell exhaustion is more pronounced in

patients with active than with latent TB. In patients with active

TB, a hyporesponsive T cell phenotype with decreased immune

proliferation and decreased cytokine production induced by Mtb

ant igens and mitogens was assoc ia ted with DNA

hypermethylation of several immune genes and pathways,

including the IL-2/STAT5, TNF/NF-kB, and IFN-g signaling

pathways (137).

Negative regulatory pathways such as immunoregulatory

cytokines have been shown to be involved in the exhaustion of

T cells (176). Exhausted T cells have been described to express

immune checkpoint inhibitory receptors including programmed

death 1 (PD-1), the T cell immunoglobulin and mucin domain–

containing-3 (Tim-3) receptor, lymphocyte-activation gene 3

(Lag-3), and cytotoxic T-lymphocyte-associated protein 4

(CTLA-4), which interact with various ligands to activate

negative regulatory pathways (172, 176, 177). In Mtb-infected

mice, exhausted T cells (CD4+ as well as CD8+) express PD1, Tim-

3, and Lag-3, and show low production of IL-2, IFN-g, and TNF

but increased production of IL-10 (172). In humans, PD-1+ T cells

are increased in patients with active TB (178, 179) and T cell

stimulation with Mtb antigens increased PD-1+ T lymphocytes in

peripheral blood and pleural fluid from patients with active TB

(180). In individuals with active TB, Jean Bosco et al. observed that

stimulation ex vivo of CD4+ CXCR5+ T cells with Mtb antigen,

induced expression of Tim-3 and PD-1 (181). However, it is
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noteworthy that Sande et al. found that although LAM-treated

CD4+ T cells exhibited the expected decrease in proliferation,

there was no significant increase in the expression of the

exhaustion markers PD-1, CTLA-4, Lag-3, or Tim-3 compared

with nontreated T cells (135).

Reverting exhaustion by blocking inhibitory receptors such

as the main exhaustion markers PD-1 or Tim-3 would be

tempting to explore as a means to improve the protection

against disease (8). Indeed, reversal of T cell exhaustion can be

obtained in chronically Mtb infected mice by IL-2 treatment

(175) or Tim-3 blockade with anti-Tim-3 monoclonal antibody,

resulting in reduced bacterial load (172). Also, in individuals

with active TB, Jean Bosco et al. observed that blockade of Tim-3

and PD-1 restored the proliferation and cytokine secretion

potential of exhausted T cells (181).

However, Kauffman et al. recently described that Mtb

infected rhesus macaques treated with anti-PD-1 monoclonal

antibody developed a more severe disease and higher granuloma

bacterial load compared with isotype control-treated monkeys

(182). In granulomas of animals treated with anti-PD-1, pro-

inflammatory cytokines were increased, which also correlated

with elevated bacterial load. Therefore, it appears that negative

immune regulation of T cells is needed to control Mtb infection

by dampening detrimental immunopathology to counteract the

progression of the disease.
5 Discussion

There is increasing evidence that mycobacterial glycolipids

play a major role in the dampening of the immune response in

Mtb infection involving several mechanisms, especially in

myeloid cells such as macrophages and DCs, but also in T

cells. Depending on cell type, the downmodulation may be

manifested as impaired immune cell activation and

differentiation but may also show patterns of innate immune

tolerance. In myeloid cells, the downmodulation induced by

LAM/PIM on monocytes and macrophages mainly results in

reduced secretion of pro-inflammatory cytokines and of the

granulomatous inflammatory response, while the effect on DCs

also contributes to the tolerization of T cells.

In in vitro experiments several factors determine the

outcome of the encounter between Mtb glycolipids and host

cell receptors. For example, triggering murine or human TLR2

leads to divergent responses (183). Additionally, some C-type

lectins pathways, such as those of Mincle and Dectin-2 are

strongly active in murine BMDCs, but poorly active in human

monocyte-derived DCs (36). The cell type is also important; for

instance, murine BMDCs are strongly biased toward C-type

lectin signaling whereas murine BMDMs are biased towards

TLRs, although both types of receptors are expressed on these

cells (36). The preparation and purity of the cells and glycolipids

may also affect the experimental outcome (77, 184).
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There should also be caution in extrapolating data from in

vitro experiments to the outcome of the early encounter of the

whole bacterial organism in vivo, where we do not know the

importance of the combination of stimuli and the receptor

equipment of the cell(s) that are first encountered in the body

by the minute number of bacteria arriving in the lung. In

addition to the fact that Mtb exposes surface lipoglycans such

as LAM and LM at its cell envelope (185), Mtb glycolipids are

also released from the envelope of Mtb and are detected in the

endosomal compartments of infected cells or in extracellular

vesicles (144, 186, 187). Thus, the immunomodulatory

properties of LAM are not restricted to intact Mtb, but also

apply to circulating LAM released from infected APCs in

exosomes or apoptotic vesicles (188, 189). This might actually

be the main mechanism by which LAM exerts i ts

immunomodulatory properties on infected or bystander cells.

For example, the immunosuppressive effect by isolated LAM

observed in vitro could have its counterpart in vivo, with

extracellular LAM exerting the effect, while LAM on intact

bacteria may be presented in a way that does not allow the

induction of this hyporesponsiveness.

The dampened inflammatory response of myeloid cells in

individuals infected with Mtb could be caused by a tolerant state

of the cells, where the Mtb infection serves as the primary

stimulant, possibly by the presentation of Mtb glycolipids,

resulting in the downmodulation by a secondary stimulant

such as LAM or PIM seen in ex vivo experiments (18, 108).

The possibility of innate immune tolerance being involved in the

containment of Mtb during latency, where the immune system is

continuously exposed to Mtb antigens including glycolipids,

remains to be explored.

It has become increasingly clear that an immune response

balancing between activation and tolerance is key to

controlling Mtb infection (182). Both the adaptive and the

innate immune response to fight invading pathogens may result

in inflammation and tissue damage, with an overproduction of

pro-inflammatory cytokines. Innate immune tolerance results in

hyporesponsiveness to microbial components that induce

inflammation by various mechanisms (190). A balance between

the effects of inflammation and tolerance may thus result in a

steady-state, where the pathogen survives but remains under

control without damage to the host. Identifying the

mechanisms responsible for the containment of the Mtb

infection in latency, in whom the infection is controlled (191),

may be a means to elucidate factors of importance in this balance.

Recent data (18) indicate that downmodulation of pro-

inflammatory responses in myeloid cells may be stronger in

latent TB compared with active TB. In latent TB, the immune

profile is thought to represent a more protective pattern than in

active TB (191). A less pro-inflammatory myeloid immune

response has been associated with increased resistance to TB

in pre-adolescent children (192). The downmodulation may play
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a role in the protection from excessive production of pro-

inflammatory cytokines and tissue damage as part of the

control of the infection (119). Thus, the balance between

activation and inhibition of pro- and anti-inflammatory

cytokines by glycolipids may dictate the host response to Mtb

infection (67), from equilibrium in latent infection to the lung

injury in pulmonary TB to disseminated disease.

Further studies of tolerance to Mtb glycolipids may provide

relevant information to identify, among the individuals with

latent TB, those at higher risk to develop active disease. A

method that identifies individuals with latent TB that are at

high risk of developing active TB is urgently needed, for proper

treatment, and also to avoid unnecessary treatment of those at

low risk. It would be of particular value for immune-

compromised persons, including the increasing group of

patients receiving immune-modulating treatment. More

hypothetically, further studies of tolerance induced by Mtb

glycolipids may unravel mechanisms for the rational design of

personalized immunotherapy, as an add-on to existing

antimicrobial therapies , by dampening detrimental

immunopathology and counteracting progression of the disease.
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