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Molecular interactions of
adaptor protein PSTPIP2 control
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leading to autoinflammation
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Introduction: Autoinflammatory diseases are characterized by dysregulation of

innate immune system leading to spontaneous sterile inflammation. One of the

well-established animal models of this group of disorders is the mouse strain

Pstpip2cmo. In this strain, the loss of adaptor protein PSTPIP2 leads to the

autoinflammatory disease chronic multifocal osteomyelitis. It is manifested by

sterile inflammation of the bones and surrounding soft tissues of the hind limbs

and tail. The disease development is propelled by elevated production of IL-1b
and reactive oxygen species by neutrophil granulocytes. However, the

molecular mechanisms linking PSTPIP2 and these pathways have not been

established. Candidate proteins potentially involved in these mechanisms

include PSTPIP2 binding partners, PEST family phosphatases (PEST-PTPs) and

phosphoinositide phosphatase SHIP1.

Methods: To address the role of these proteins in PSTPIP2-mediated control of

inflammation, we have generated mouse strains in which PEST-PTP or SHIP1

binding sites in PSTPIP2 have been disrupted. In these mouse strains, we

followed disease symptoms and various inflammation markers.

Results: Our data show that mutation of the PEST-PTP binding site causes

symptomatic disease, whereas mice lacking the SHIP1 interaction site remain

asymptomatic. Importantly, both binding partners of PSTPIP2 contribute

equally to the control of IL-1b production, while PEST-PTPs have a dominant

role in the regulation of reactive oxygen species. In addition, the interaction of

PEST-PTPs with PSTPIP2 regulates the production of the chemokine CXCL2 by
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neutrophils. Its secretion likely creates a positive feedback loop that drives

neutrophil recruitment to the affected tissues.

Conclusions: We demonstrate that PSTPIP2-bound PEST-PTPs and SHIP1

together control the IL-1b pathway. In addition, PEST-PTPs have unique roles

in the control of reactive oxygen species and chemokine production, which in

the absence of PEST-PTP binding to PSTPIP2 shift the balance towards

symptomatic disease.
KEYWORDS

neutrophils, autoinflammation, chronic multifocal osteomyelitis, PSTPIP2, PEST-
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1 Introduction

Chronic recurrent multifocal osteomyelitis (CRMO) is an

autoinflammatory disease characterized by the development of

sterile inflammatory lesions in the bones. Treatment strategies

include various ways to suppress inflammation. However, they

often fail to induce long-term remission and in many patients

the disease relapses (1–3). In part, this is the consequence of the

fact that the molecular mechanisms and genetic causes of this

disease are poorly understood. To gain better insight into the

mechanisms driving CRMO development, several mouse models

have been generated. One of the best studied is chronic

multifocal osteomyelitis (CMO) mouse model Pstpip2cmo,

which develops sterile bone inflammation in the hind feet and

tail (4). The disease is caused by a point mutation in the Pstpip2

gene, which results in a complete loss of detectable expression of

the adaptor protein PSTPIP2 (proline-serine-threonine

phosphatase-interacting protein 2) (5, 6). The development of

osteomyelitis in the Pstpip2cmo mice is hematopoietically driven

and occurs in the absence of lymphocytes, consistent with an

autoinflammatory mechanism of the disease (6). However,

similar to human CRMO, the signaling and inflammatory

pathways critical for CMO in mice are incompletely

understood. Previous studies identified neutrophil granulocytes

as a crucial cell type critical for the disease development in

Pstpip2cmomice (7, 8). They display pathological hyperactivity of

the pathways regulating production of active IL-1b and reactive

oxygen species (ROS). While IL-1b triggers autoinflammation,

ROS production is critical for the bone damage (7–11). Little is

known about the molecular mechanisms connecting PSTPIP2 to

these pathways.

PSTPIP2 interacts with several regulators of signaling. The

most prominent include PEST-family protein tyrosine

phosphatases (PEST-PTPs) and Src homology 2-domain–

containing inositol 5-phosphatase 1 (SHIP1), binding of which
02
is dependent on W232 and phosphorylated C-terminal tyrosines

of PSTPIP2, respectively (12–14). These proteins are the best

candidates, through which PSTPIP2 could negatively regulate

pro-inflammatory signaling. The family of PEST-PTPs has three

members, PTPN12 (PTP-PEST), PTPN22 (LYP/PEP), and

PTPN18 (BDP1/PTP-HSCF), which all interact with PSTPIP2

(14, 15). While little is known about the roles of PTPN12 and

PTPN18 in neutrophils, deficiency in PTPN22 was shown to

impair neutrophil functions triggered by Fc receptor

st imulat ion, inc luding adhesion, ROS product ion,

degranulation, and development of K/B×N arthritis (16).

These results suggested that PTPN22 promotes, rather than

inhibits, neutrophil-driven inflammation. On the other hand,

the in vitro data from overexpression studies in cell lines

suggested that PSTPIP2-bound PEST-PTPs suppress pro-

inflammatory signaling (14). While the data from in vivo

models are general ly more re l iable than cel l l ine

overexpression studies, in this case the single deficiency in the

mouse model could have revealed only the unique role of

PTPN22, while the functions, where it is redundant with other

PEST-PTPs, could have remained hidden, leaving the overall

role of PEST-PTPs in neutrophil-mediated inflammatory

response unclear.

Another known binding partner of PSTPIP2, SHIP1 (14) is a

multifunctional protein expressed predominantly by

hematopoietic cells and osteoblasts. SHIP1 removes the 5’

phosphate from the product of PI3-kinase, PtdIns(3,4,5)P3, to

generate PtdIns(3,4)P2 and this way partially antagonizes PI3-

kinase pathway (17). SHIP1 deficiency results in enhanced ROS

production and in reduced migration of neutrophils as a

consequence of increased cell adhesion (18). In vivo, SHIP1-

deficiency in mice causes inflammatory disease with myeloid

infiltrates to the lungs and other organs (19). These data are

generally consistent with anti-inflammatory function of SHIP1

and with connection to PSTPIP2. However, despite some
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1035226
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pavliuchenko et al. 10.3389/fimmu.2022.1035226
common features, there are also many differences between the

consequences of SHIP1 and PSTPIP2 deficiency and it has been

unclear which functions of SHIP1 depend on their interaction.

To understand the in vivo function of PSTPIP2 interactions

with PEST-PTPs or SHIP1, we have investigated the effects of

mutations in PSTPIP2 that prevent binding of PEST-PTPs or

SHIP1 in vivo. We have established the links between PSTPIP2

interactions, dysregulations of the pro-inflammatory pathways

and disease symptoms and identified the functions of PEST-

PTPs and SHIP1 in the context of their interactions with

PSTPIP2 and autoinflammation.
2 Materials and methods

2.1 Mice

Pstpip2cmo mice on C57Bl/6NCrl genetic background

carrying the c.293T!C mutation in the Pstpip2 gene, were

generated from C.Cg-Pstpip2cmo/J mouse strain on Balb/C

genetic background (4, 5) obtained from The Jackson

Laboratory (Bar Harbor, ME), by backcrossing for more than

10 generations to C57Bl/6J (7) and then for more than 5

generations to C57Bl/6NCrl. C57BL/6NCrl and C57BL/6J

inbred strains were obtained from the animal facility of

Institute of Molecular Genetics, Czech Academy of Sciences

(Prague, Czech Republic). To generate mouse strains carrying

mutations in the C-terminal part of the Pstpip2 gene

(Pstpip2Y323F, Pstpip2DC-term, and Pstpip2Y323*), specific guide

RNA recognizing exon 14 of Pstpip2 gene (5′-AGATG

ATCCTGATTACTCTG-3′) was designed and off-target

analysis was performed using the online software CRISPOR

Design Tool (http://crispor.tefor.net/). Cas9 protein and gRNAs

with corresponding ssDNA template (5′-CCAGGCAG

GTTAATGACTCTTACCACCTCTGACGTCACTGgaA

GAGCAAACTGaAATCTTCAACCACActaaaATCcGGAT

CATCTGCAAAGGGAAGGGCACAGGACAGAACTCAGC-

3′) were used for a zygote electroporation as described elsewhere

(20). Similarly, mouse strains Pstpip2W232A and Pstpip2-/- were

prepared by electroporation of gRNA recognizing exon 10 of

Pstpip2 (5′-ACTTCTTCCGGAATGCACTG-3′) together with a

corresponding ssDNA template (5´-CATTTGCGA

CACATTGTTGTGACAGCTGATTCAGATGCAAtgcCAaTG

CATTCCGGAAGAAGTTGATTCGTTCACATTCCTGAGC

C-3´) (Figure 1A). Each strain was then backcrossed to

C57BL/6NCrl background for more than 5 generations. Unless

indicated otherwise, age of animals ranged from 8 to 12 weeks.

Experiments in this work conducted on animals were approved

by the Expert Committee on the Welfare of Experimental

Animals of the Institute of Molecular Genetics and by the

Czech Academy of Sciences and were in accordance with local

legal requirements and ethical guidelines.
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2.2 Micro computed tomography

Hind paws of 3-5 mice per strain (16-25 weeks old) were

used for the micro-CT analysis. They were scanned in vivo in X-

ray micro-CT Skyscan 1176 (Bruker, Belgium) using the

following parameters: voltage: 50 kV, current: 250 µA, filter:

0.5 mm aluminium, voxel size: 8.67 µm, exposure time: 2 s,

rotation step: 0.3° for 180° total, object to source distance:

119.271 mm, and camera to source distance: 171.987 mm,

time of scanning: 26 min. Virtual sections were reconstructed

in NRecon software 1.7.1.0 (Bruker, Belgium) with following

parameters: smoothing = 3, ring artifact correction = 4, and

beam hardening correction = 36%. Intensities of interest for

reconstruction were in the range from 0.0045 to 0.0900

Attenuation units. Same orientation of virtual sections was

achieved with the use of the DataViewer 1.5.4 software

(Bruker, Belgium). Micro-CT data analysis was performed

using CT Analyser 1.18.4.0 (Bruker, Beelgium). Scans affected

by technical artifacts resulting from spontaneous movements of

animals were excluded from the analysis. Only distal half of the

paws (from the half of the length of the longest metatarsal bone

to fingertips) were analyzed. Bone damage (Figure 2D) is

represented by bone fragmentation, which is calculated as the

average number of bony objects (i.e. the bone with high density)

per one virtual section. Without bone damage, 4-5 bone

fragments (i.e. objects) per section are typically observed. With

bone damage, this number increases. To calculate the volume of

the soft tissue (Figure 2E), volumes of both high density and low

density (newly formed) bone were subtracted from the volume

of the entire paw (without background and noise).
2.3 Superoxide detection

Superoxide production in vitro was assessed by luminol-

based chemiluminescence assay (21, 22). BM cells in IMDM

supplemented with 0.2% FCS were plated at a density of 106 cells

per well into a black 96-well plate in duplicates (SPL Life

Sciences, Naechon-Myeon, Korea). Cells were rested for

10 min at 37˚C and 5% CO2. Then, luminol (123072, Sigma-

Aldrich) at final concentration 100 mM and silica (S5631,

Sigma-Aldrich) 50 mg/cm2 were added. Luminescence was

measured immediately on an EnVision plate reader (Perkin

Elmer, Waltham, MA); each well was scanned every minute

for 60 min.
2.4 Real-time quantitative PCR

RNA from neutrophils purified by negative selection was

isolated with Zymo Research Quick-RNA Miniprep Plus Kit.

The reverse transcription was performed with RevertAid First
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Strand cDNA Synthesis Kit (ThermoFisher Scientific). Real-time

quantitative PCR was carried out using LightCycler 480 SYBR

Green I Master mix (Roche) on Roche LightCycler 480 II

instrument. The following primers were used (5’-3’):

C x c l 2 A G T T T G C C T T G A C C C T G A A G C C ,

CCAGGTCAGTTAGCCTTGCCTTTG;

Actb (b - ac t in ) GATCTGGCACCACACCTTCT,

GGGGTGTTGAAGGTCTCAAA;

P s t p i p 2 C G G A C T T G C T C A T A C A T C T C ,

CTGGCAGAGTGAACACATTA.
2.5 Antibodies

Rabbit monoclonal antibodies to murine IL-1b (clone

D3H1Z), neutrophil elastase (clone E8U3X), PTP-PEST (clone

D4W7W), and rabbit polyclonal antibody to SHIP1 (D1163)

were from Cell Signaling Technology, rabbit polyclonal antibody

to GAPDH (#G9545) from Sigma-Aldrich. The monoclonal

antibodies to phosphotyrosine (clone 4G10) and PSTPIP2

(clones PSTPIP2-01 and PSTPIP2-03 (14)) were produced in-

house with the use of respective hybridomas. Flow cytometry

antibodies Ly6G-FITC (catalog # 127606, also used for Western

blot), Ly6C-PE-Cy7 (# 128018), CD11b-PE (# 101208) were

from Biolegend and CD62L-APC (# 177-0621-81) was from

eBioscience (ThermoFisher).
2.6 Cell isolation and activation

Hind paw leukocytes were isolated by crushing the tissue

using mortar and pestle in PBS with 2% FCS. The resulting

suspension was filtered over the cell strainer, followed by

centrifugation (500 x g, 5 min, 2°C) and erythrocyte lysis in

ACK buffer (150 mM NH4Cl, 0.1 mM EDTA (disodium salt), 1

mM KHCO3). Bone marrow cells were isolated by flushing

femurs (cut at extremities) with PBS supplemented with 2%

FCS, followed by red blood cell lysis with ACK buffer.

Neutrophils were isolated from bone marrow cells by negative

selection using mouse Neutrophil Isolation Kit (Miltenyi Biotec,

catalog # 130-097-658) and autoMACS Pro magnetic cell

separator (Miltenyi Biotec) according to manufacturer’s

instructions. For LPS activation, 2×106 cells in 700 µL IMDM

with 0.1% FCS were placed in low protein-binding

microcentr i fuge tubes (Thermo Fisher Sc ient ific) .

Subsequently, the cells were activated with 10 ng/ml LPS

(L4516, Sigma-Aldrich) for 3 hours at 37˚C, 5% CO2. For

pervanadate activation, pervanadate was prepared by mixing

10 mM sodium orthovanadate with 0.3% hydrogen peroxide

followed by 20 min incubation at room temperature. 100 µl of

the resulting mixture was used for activation of 1.2 × 107 cells in

1 ml media (20 min at 37°C).
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2.7 Cell lysis, and immunoprecipitation

For immunoblotting cell suspensions described above were

lysed by addition of an equal volume of a 2× concentrated SDS-

PAGE sample buffer (128 mM Tris [pH 6.8], 10% glycerol, 4%

SDS, 2% DTT), followed by the sonication and heating (99˚C for

2 min). For immunoprecipitation cells were lysed in lysis buffer

(50 mM TRIS-HCl pH 7.5; 150 mM NaCl; 1% n-dodecyl b-d-
maltoside; 1000× diluted Diisopropyl-fluorophosphate [Sigma,

Merck]; cOmplete EDTA-free protease inhibitor cocktail

(Roche), PhosStop phosphatase inhibitor cocktail (Roche) at

1.2 × 108 cells in 1.2 ml, for 30 min on ice. Post-nuclear

supernatants were then incubated for 1 h with PSTPIP2-03

antibody (4.5 mg), followed by 1.5 h of incubation with 40 µl

Protein A/G Plus agarose bead suspension (Santa Cruz

Biotechnology) at 4°C. After washing on spin columns (Micro

Bio-Spin columns, Bio-Rad Laboratories), immunoprecipitates

were eluted with 30 ml SDS-PAGE sample buffer.
2.8 Tissue homogenates

Hind paw tissue was cut into small pieces and homogenized

with Avans AHM1 Homogenizer (30 s, speed 25) in 1 ml RIPA

buffer (TRIS-HCl pH7.5, 150 mM NaCl, 1% NP-40, 1%

Deoxycholate, and 0.1% SDS, 5 mM iodoacetamide, 100×

diluted Protease Inhibitor Cocktail set III [Calbiochem]). After

two rounds of centrifugation (each 20,000 x g, 5 min, 2°C) the

lysates were snap-frozen in liquid nitrogen and stored in -80°C.
2.9 ELISA

Frozen tissue homogenates (from 12-25 weeks old mice)

described above were thawed, total protein concentration was

measured using Pierce BCA Protein Assay Kit (Thermo

Scientific #23227) and the samples were adjusted to equal

protein concentration. ELISA was performed according to

manufacturer’s instructions using IL-1 beta Mouse Uncoated

ELISA Kit, MIP-2/CXCL2 Mouse ELISA Kit, MIP-1a (CCL3)

Mouse Uncoated ELISA Kit (Invitrogen, ThermoFisher

Scientific, catalog numbers 88-7013-88, EMCXCL2, and 88-

56013-88), Mouse IL-17A/F Heterodimer DuoSet ELISA, and

Mouse CXCL1/KC DuoSet ELISA DY5390-05, and DuoSet

ELISA Ancillary Reagent Kit 2 (R&D Systems, catalog

numbers DY5390-05, DY453-05, DY008).
2.10 Flow cytometry

Single-cell suspensions were labeled with 100× - 200×

diluted antibodies and Hoechst 33342 dye (to detect dead
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cells) in PBS/2%FCS for 40 min on ice. Cells were then washed in

PBS/2% FCS and analyzed on a BD Symphony flow cytometer.

The data were analyzed with FlowJo software (BD Biosciences,

Franklin Lakes, NJ).
2.11 Statistical analysis

The p values were calculated in GraphPad Prism software

(GraphPad Software, La Jolla, CA) using one-way ANOVA with

post-hoc t-test for data in Figures 3B, E, F, 4B-G (with Welch’s

correction where variances were unequal) or Kruskal-Wallis test

with post-hoc Mann-Whitney test for data with non-normal

distribution (Figures 2D, E, 3C-D). For multiple comparisons,

significance threshold was adjusted with Holm-Bonferroni

method. The p values for disease-free curves (Figure 2A) were

calculated using the long-rank (Mantel-Cox) test.
3 Results

3.1 Generation of mouse strains with
mutations in Pstpip2

To investigate the role of the interactions between PSTPIP2

and PEST-PTPs or SHIP1, we employed CRISPR/Cas9

technology to generate mutant mouse strains harboring

mutations in PSTPIP2 that abrogate these interactions.

Binding to PEST-family phosphatases is known to require

W232, while binding to SHIP1 is dependent on C-terminal

tyrosines (Y323, Y329, Y333) (Figure 1A). First, we generated

mouse strain where W232 was replaced with alanine to prevent

interaction with PEST phosphatases (Pstpip2W232A)(Figure 1A

and Supplementary Figure 1A). In addition we attempted to

generate a strain where all three C-terminal tyrosines were

replaced with phenylalanines. Our targeting strategy was

expected to also result in various truncations in the PSTPIP2

C-terminus. While the attempt to generate triple tyrosine

mutant was unsuccessful, we obtained a strain, where a single

nucleotide insertion into the codon of the first C-terminal

tyrosine (Y323) created a stop codon resulting in the loss of

the last twelve amino-acids (323–334), including all three

targeted tyrosines (Pstpip2Y323*) (Supplementary Figure 1B). In

addition we also obtained a strain where a 17 bp deletion

resulted in a stop codon immediately after the first of the three

tyrosines, Y323 (Pstpip2DC-term) (Figure 1A and Supplementary

Figure 1C). In this strain, while Y323 is preserved, the absence of

the amino acids immediately following it was expected to result

in a loss of SHIP1 SH2 domain binding, because the amino acids

downstream of the phosphorylated tyrosine are critical for this

interaction (23–25). Thus, we expected that in this strain
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PSTPIP2 C-terminus including all the C-terminal tyrosines

was effectively non-functional. Finally, within this attempt we

obtained an additional strain where Y323 is replaced with

phenylalanine (Pstpip2Y323F) (Figure 1A and Supplementary

Figure 1C). In addition we generated mouse strain with 116

bp deletion encompassing part of the exon coding W232

together with a part of the preceding intron, resulting in the

complete loss of PSTPIP2 express ion (Pstp ip2 - / - )

(Supplementary Figure 1D). Alignments of mutant and wild-

type sequences are shown in Supplementary Figures 1A–D.

While PSTPIP2 protein levels were normal in Pstpip2Y323F

mouse strain (Figure 1B), other mutations we introduced

influenced its protein expression levels in neutrophil

granulocytes. This was most evident in Pstpip2Y323* mice

where we detected only very low amounts of PSTPIP2 protein,

ca 20 - 25% of wild-type levels (Supplementary Figure 1E).

Interestingly, in Pstpip2DC-term mice, where the stop codon was

only one position downstream, PSTPIP2 expression was

comparable to wild-type (WT) mice. Since it was not possible

to distinguish the effects of reduced PSTPIP2 expression on

disease development from the effects of the mutation, we

excluded Pstpip2Y323* from subsequent analysis. Expression

levels of W232A mutant were also somewhat reduced.

However, they were comparable to PSTPIP2 expression in

Pstpip2+/- heterozygotes (Figure 1B). Hence, we included

Pstpip2+/- mice in subsequent analysis to control for the

effects of reduced PSTPIP2 expression on the phenotype

of Pstpip2W232A mice. PSTPIP2 protein was not detected in

Pstpip2cmo and Pstpip2-/- neutrophils (Figure 1B). Interestingly,

Pstpip2 mRNA levels were normal in Pstpip2cmo neutrophils,

while only traces of Pstpip2 mRNA could be detected in

Pstpip2-/- cells (Supplementary Figure 1F).
3.2 Pstpip2 mutations abolish binding to
PTP-PEST and SHIP1

To verify that the mutations had the intended effect and

abolished interactions with major PSTPIP2 binding partners, we

immunoprecipitated PSTPIP2 from bone marrow cells isolated

from the individual mouse strains, followed by detection of PTP-

PEST, SHIP1 and (phospho-)PSTPIP2 by immunoblotting.

W232A mutation resulted in the loss of PTP-PEST binding

without affecting PSTPIP2 phosphorylation, suggesting that

PEST-PTPs bound to PSTPIP2 do not control i ts

phosphorylation (Figure 1C). Conversely, the deletion of PSTPIP2

C-terminus resulted in the loss of PSTPIP2 phosphorylation, but it

did not affect binding to PTP-PEST (Figure 1C). As expected,

deletion of PSTPIP2 C-terminus also resulted in the loss of SHIP1

binding. Interestingly, mutation of a single C-terminal tyrosine

Y323 did not have any effect on SHIP1 binding (Figure 1D).
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3.3 Mutation of W232 results in
symptomatic disease, while mutations of
the PSTPIP2 C-terminus do not cause
disease symptoms

Each mutant mouse strain was monitored for the

development of chronic multifocal osteomyelitis symptoms

(Figure 2A). Pstpip2-/- and Pstpip2cmo mice developed the first

visually observable symptoms within 8 weeks after birth. In

Pstpip2W232A strain the first symptom occurrence was delayed

till 14-16 weeks of age. Only hind paws were affected in this

strain. Visible kinks or swelling in the tails were not detected. In

addition, the disease was much milder and not 100% penetrant

since part of the animals remained asymptomatic throughout

the entire 42 weeks of observation. The mutations of the

PSTPIP2 C-terminus did not result in any visually detectable

symptoms. The same was true for heterozygous Pstpip2+/- mice

(Figures 2A, B).

In agreement with these results, micro-CT data (Figure 2C)

showed significantly elevated bone damage in Pstpip2cmo,

Pstpip2-/-, and Pstpip2W232A mice, while in the animals

carrying mutations in the C-terminus (Pstpip2DC-term,

Pstpip2Y323F), no bone damage was detected (Figure 2D).

Compared to Pstpip2cmo and Pstpip2-/-, the bone damage in

Pstpip2W232A animals was very mild, though still significantly

increased. Soft tissue volume, a measure of swelling, was

significantly higher only in Pstpip2cmo and Pstpip2-/- mice

(Figure 2E). No significant increase of soft tissue swelling was

detected in Pstpip2W232A animals. Taken together, the

interaction with PEST-PTPs abrogated by W232A mutation
Frontiers in Immunology 06
plays more important role in the control of inflammation than

binding of SHIP1, the loss of which does not contribute to the

development of visible symptoms.
3.4 Differential control of ROS and IL-1b
production by PSTPIP2 binding partners

Two key pro-inflammatory pathways are known to be

dysregulated in Pstpip2cmo neutrophils, pathway leading to the

activation of NADPH oxidase and pathway stimulating

production of IL-1b. While IL-1b overproduction triggers

spontaneous inflammation, superoxide production by NADPH

oxidase is critical for the bone damage (8). Therefore, we aimed

to evaluate whether the interactions of PSTPIP2 with PEST-

PTPs and SHIP1 control these pathways and, consequently a

pathogenesis of CMO. Consistent with previously published

data, we observed substantially increased ROS production by

Pstpip2cmo and Pstpip2-/- cells upon silica stimulation. Strikingly,

in Pstpip2W232A cells ROS production was deregulated to a

similar extent as in Pstpip2cmo and Pstpip2-/- cells. On the

other hand, cells from mice that do not develop any visible

disease symptoms, including Pstpip2DC-term, Pstpip2Y323F and

Pstpip2+/- showed only minor elevation of ROS production

(Figures 3A, B). To test the activity of IL-1b pathway, we

measured the concentration of IL-1b in the lysates from hind

paws of WT and mutant mice. IL-1b levels measured by ELISA

were significantly increased in Pstpip2cmo, Pstpip2-/-,

Pstpip2W232A, and Pstpip2DC-term mice. However, in contrast to

the ROS production, IL-1b pathway dysregulation was milder in
B C D

A

FIGURE 1

PSTPIP2 mutations in mice and verification of their effects on the interactions with binding partners. (A) Schematic representation of mutant PSTPIP2
proteins and their interactions in the individual mouse strains. (B) Lysates of purified neutrophils from WT and PSTPIP2 mutant mice were subjected to
immunoblotting with the indicated antibodies to detect PSTPIP2 protein levels in the individual mouse strains. (C) PSTPIP2 was immunoprecipitated
from the lysates of bone marrow cells from the indicated mouse strains. Co-immunoprecipitated PTP-PEST and PSTPIP2 tyrosine phosphorylation were
detected by immunoblotting with PTP-PEST and phosphotyrosine antibodies, respectively. (D) Similar experiment as in (C) to detect interaction of
PSTPIP2 with SHIP1. To maximize PSTPIP2 phosphorylation, cells in (D) were treated with pervanadate.
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Pstpip2W232A and Pstpip2DC-term mice, when compared to the

strains completely lacking PSTPIP2 protein (Figure 3C). We

have also performed an analysis of active form IL-1b p17 in the

strains that had abrogated binding between PSTPIP2 and its

interacting partners. It showed similar results with the highest

increase in Pstpip2cmo mice and a small increase in Pstpip2W232A

and Pstpip2DC-term mice (Figure 3D). Next, we sought to evaluate

the in vitro ability of isolated bone marrow cells from these

mutants to produce pro-IL-1b upon LPS stimulation. Consistent

with the in vivo results, the highest pro-IL-1b production was

observed in Pstpip2cmo and Pstpip2-/- cells while Pstpip2W232A

and Pstpip2DC-term displayed only moderate increase (Figure 3E).

Similar results were also obtained with purified bone marrow

neutrophils, although in Pstpip2DC-term mice the increase in pro-

IL-1b production was not statistically significant (Figure 3F).

These observations suggest that PSTPIP2-bound PEST-PTPs

play dominant role in the control of the oxidative burst, while

the regulation of IL-1b production is more equally divided

between the both PSTPIP2 binding partners.
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3.5 PEST-PTPs regulate neutrophil
recruitment to the site of inflammation

Neutrophils, a critical cell type in osteomyelitis development

in Pstpip2cmo mice, were found to infiltrate the sites of

inflammation in these animals. To assess the extent of

neutrophil infiltration, we detected neutrophil markers

neutrophil elastase and Ly6G in the lysates prepared from

hind paws of WT and mutant animals. Increased presence of

these markers was detected in Pstpip2cmo, Pstpip2-/-, and

Pstpip2W232A tissues even in the absence of visible symptoms,

but not in Pstpip2DC-term (Figure 4A). These data confirm the

involvement of neutrophils in the development of sterile

inflammation. They also document the importance of

PSTPIP2 binding to PEST-PTPs, which prevents neutrophil

accumulation in the affected tissues. To further assess the

activation status of these neutrophils, we measured the levels

of CD62L on neutrophils isolated from hind paws of these

animals. CD62L is shed as a result of neutrophil activation
B

C

D E

A

FIGURE 2

Symptoms of osteomyelitis in mutant mouse strains. (A) Mice of the indicated mouse strains were monitored for the onset of disease
symptoms. The graph shows percentages of animals that were free of visible symptoms at the given time-point. Animal numbers and sexes in
this experiment were as follows: Pstpip2+/- [6 males (m), 6 females (f)], Pstpip2-/- [7 m, 9 f], Pstpip2cmo [3 m, 11 f], Pstpip2W232A [4 m, 10 f],
Pstpip2DC-term [5 m, 9 f], Pstpip2Y323F [2 m, 12 f]. (B) Photographs of hind paws of WT and mutant mice. 18-27 weeks old WT, Pstpip2cmo,
Pstpip2-/-, and Pstpip2W232A, are compared to more than 50 weeks old Pstpip2DC-term, Pstpip2Y323F, and Pstpip2+/- mice. (C) Micro-CT
reconstructions of hind paw bones of WT and mutant mice. Pseudocolors mark old (in yellow) and newly formed (in blue) bone mass.
(D) Quantification of bone damage measured as bone fragmentation in paw bones of multiple mice detected in micro-CT scans. (E) Calculation
of soft tissue volume from micro-CT scans as a measure of soft tissue swelling. Error bars represent median with interquartile range. Asterisks
describe p values for comparisons with Pstpip2+/- (A) or WT (D, E); **p ≤ 0.01, ***p ≤ 0.001. See Materials and Methods for further details on
statistical analysis.
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and lost from neutrophil surface (26). In Pstpip2cmo mice, the

proportion of activated (CD62L-) neutrophils was significantly

increased, when compared to the WT animals. Strikingly, group

that contained both symptomatic and asymptomatic

Pstpip2W232A mice also showed significantly increased levels of

neutrophil activation. No such increase was observed in

Pstpip2DC-term mice (Figure 4B). Thus, PEST-PTP binding to

PSTPIP2 is an important component of the mechanism

controlling neutrophil activation and infiltration to the site

of inflammation.

Chemokines play a key role in the neutrophil recruitment to

the inflamed tissues (27). One of the factors able to control

chemokine production in these tissues is IL-17 (28). Indeed, IL-

17A/F levels were increased in the lysates prepared from

footpads of Pstpip2cmo mice (Figure 4C). However,

Pstpip2W232A and Pstpip2DC-term mice did not show any

alterations. Thus, while in Pstpip2cmo mice IL17A/F could be

contributing to the neutrophil recruitment to the inflammatory

lesions, in Pstpip2W232A mice this recruitment appears to be

IL17A/F independent. Next, we focused on the most prominent

chemokines known to attract neutrophils to the sites of

inflammation, including CCL3 (MIP-1a), CXCL1 (KC), and

CXCL2 (MIP-2). Concentration of all three chemokines

measured by ELISA in hind paw lysates was increased in

Pstpip2cmo mice (Figures 4D–F). Importantly, only the

concentration of CXCL2 was elevated in Pstpip2W232A mice
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and none in Pstpip2DC-term animals, suggesting that

dysregulation of CXCL2 is responsible for the early neutrophil

recruitment initiating the disease development. Production of

the other chemokines, as well as IL-17A/F, may be triggered later

on as a secondary effect of progressing inflammation. CXCL2 is

known to be secreted by tissue resident cells, such as epithelial

cells, fibroblasts, mast cells or macrophages (29–34). However,

the data of Immunological Genome Project Consortium (35)

showed a very high expression of CXCL2 in thioglycolate

induced peritoneal neutrophils, raising the possibility that in

the context of CMO, neutrophils could be a major source of this

chemokine. Strikingly, neutrophils purified from footpads of

Pstpip2cmo and Pstpip2W232A mice both showed similar

substantially increased levels of Cxcl2 mRNA. On the other

hand, Pstpip2D-term neutrophils displayed levels comparable to

their WT counterparts (Figure 4G). These results support the

hypothesis that during CMO disease development, neutrophils

are fueling their own recruitment via a positive feedback loop

driven by production of CXCL2, which is further assisted by

other chemokines in the later stages of the disease.
4 Discussion

During inflammatory response, neutrophils are capable of

producing substantial collateral damage. It is exemplified by the
B

C D E F

A

FIGURE 3

Production of superoxide and pro-IL-1b by neutrophils from WT and mutant mouse strains. (A) Superoxide production by silica-stimulated bone
marrow cells measured in 1-min intervals by luminol-based chemiluminescence assay. (B) Quantification of the area under the curve for
superoxide production measurements performed as in (A) on bone marrow cells from multiple mice. (C) IL-1b concentration in hind paw lysates
detected by ELISA. (D) Quantification of active IL-1b p17 in hind paw lysates detected by Western blot. (E, F) Pro-IL-1b production by bone
marrow cells (E) or purified neutrophils (F) activated with 10 ng/ml LPS detected by immunoblotting. Error bars represent mean ± SEM in
(B, E, F) and median with interquartile range in (C, D). Asterisks above individual columns describe p values for comparisons with WT, asterisks
above connecting lines describe p values for comparisons of the columns connected by these lines; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, n.s. not
significant. See Materials and Methods for further details on statistical analysis.
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development of autoinflammatory disease caused by the loss of

PSTPIP2 adaptor protein, where hyper-activated neutrophils are

the critical cell type required for inducing harm to the tissues (7,

8). Similar to other adaptor proteins, function of PSTPIP2 is

mediated by its interactions with other signaling molecules. The

most prominent include PEST-family PTPs and SHIP1 (12–14).

However, their particular roles in the suppression of

inflammation by PSTPIP2 have been unknown. Our data

demonstrate the importance of the interactions of PEST-PTPs

with PSTPIP2. The loss of their binding leads to the

development of autoinflammatory disease, which is milder but

otherwise similar to the disease that develops as a consequence

of the inactivation of PSTPIP2 gene. The loss of interaction with

SHIP1 does not result in visible disease symptoms. Nevertheless,

certain level of immune system dysregulation can still be

observed. These data suggest that both binding partners

contribute to the suppression of pro-inflammatory signaling

and autoinflammation. However, only the loss of PEST-PTP

binding results in the dysregulation strong enough to cause

visually observable disease symptoms.

Interestingly, PEST-PTPs play an important role in another

autoinflammatory disorder named PAPA syndrome (pyogenic

sterile arthritis, pyoderma gangrenosum, and acne) which is

caused by the loss of their binding to PSTPIP1, a homologue of

PSTPIP2. However the mechanism triggering the disease is very

likely different. In PSTPIP1, the loss of PEST-PTP binding
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results in PSTPIP1 hyperphoshorylation and consequent

hyperactivation of pyrin inflammasome (36). Here, we did not

observe any changes in PSTPIP2 phosphorylation after the loss

of PEST-PTP binding. Moreover, when we abrogated this

phosphorylation by the deletion of PSTPIP2 C-terminus, we

observed increase of pro-inflammatory markers, while if the

analogy with PSTPIP1 were valid, we would rather expect

the opposite.

Interestingly, the mouse strains, where interactions with

PEST-PTPs or SHIP1 were abolished, both displayed similar

level of dysregulation of IL-1b pathway. Thus, the observed

differences in disease manifestation cannot be explained by

differential IL-1b production. On the other hand, ROS

production in Pstpip2W232A mice lacking PSTPIP2 - PEST-PTP

interaction was deregulated to a similar extent as in mice entirely

lacking PSTPIP2 protein, while the loss of SHIP1 binding in

Pstpip2DC-term animals had only mild effect on ROS. These data

suggested that deregulated ROS production determines whether

the mice develop bone damage and visible disease symptoms.

We have shown before that ROS production is critical for

damage to the bones in mice lacking PSTPIP2 but it is not

required for enhanced IL-1b production and soft tissue

inflammation (8). In line with this finding, our microCT

analysis did not detect any evidence of soft tissue swelling in

Pstpip2W232A mice. Our data suggest that in mild variants of

CMO disease, ROS production may decide between
B C D

E F

A

G

FIGURE 4

Neutrophil recruitment to the sites of inflammation. (A) Detection of neutrophil elastase and Ly6G in the hind paw lysates as a hallmark of
neutrophil presence. (B) Percentages of activated (CD62L-) neutrophils within total neutrophils isolated from hind paws of the mice of indicated
mouse strains measured by flow cytometry. (C-F) Concentrations of IL-17A/F (C), CCL3 (D), CXCL1 (E), and CXCL2 (F) in hind paw lysates
detected by ELISA. (G) Cxcl2 mRNA levels in neutrophils purified from hind paws of the mice of indicated mouse strains determined by
quantitative RT-PCR. Error bars represent mean ± SEM. Asterisks above individual columns describe p values for comparisons with WT, asterisks
above connecting lines describe p values for comparisons of the columns connected by these lines; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. See
Materials and Methods for further details on statistical analysis.
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symptomatic and asymptomatic outcome and could be

considered as a potential pharmacological target in treatment

strategies for similar diseases in humans.

The milder dysregulation of IL-1b production in

Pstpip2W232A than in Pstpip2-/- and Pstpip2cmo mice can

potentially explain the milder phenotype observed in these

mice. These data show that PEST-PTPs are not sufficient for

PSTPIP2-mediated control of inflammation and other factors

must play a role. Similar level of IL-1b dysregulation in

Pstpip2DC-term mice suggests that SHIP1 can to some extent

control IL-1b pathway and attenuate inflammatory response in

Pstpip2W232A mice. Analysis of a mouse model with

simultaneous loss of both binding sites in PSTPIP2 could help

clarify the role of SHIP1, since IL-1b deregulation there may

reach higher levels sufficient for the development of fully

expressed symptoms. However, at present, such a model is not

available. It is also possible that some other binding partners or

features of PSTPIP2 are contributing to the control of

inflammation in addition to PEST-PTPs and SHIP1.

The increased neutrophil infiltration in hind paws of

Pstpip2W232A and PSTPIP2-fully deficient mouse strains but

not in Pstpip2DC-term animals suggested that chemokine

production regulating neutrophil recruitment could also be

dysregulated and help explain differences in disease

manifestation between Pstpip2W232A and Pstpip2DC-term

animals. Indeed, we have observed increased amounts of

CXCL1, CXCL2, and CCL3 in the hind paws of PSTPIP2 fully

deficient mice. However only CXCL2 showed increased levels in

Pstpip2W232A mice. Moreover, we detected high increase of Cxcl2

mRNA expression in Pstpip2cmo and Pstpip2W232A neutrophils

purified from the site of inflammation. This increase appeared

higher (more than ten-fold) than overall increase in the inflamed

tissues (less than four-fold). These data suggested that

neutrophils are a major source of CXCL2 during CMO

development. Increased activation of transcription factor NF-

kB was demonstrated in Pstpip2cmo mice (37). Production of

pro-IL-1b, which is elevated in these mice, as well as production

of CXCL1, CXCL2 and CCL3 are driven by this transcription

factor (37–45). This suggests that there could be a common

pathway, which is dysregulated in Pstpip2cmo mice, leading to

enhanced NF-kB activity followed by increased production of

pro-IL-1b and the chemokines. In contrast to Cxcl1 and Ccl3,

Cxcl2 gene expression is not negatively regulated by a

transcription factor ATF3, which may explain increased

sensitivity of Cxcl2 gene expression to pro-inflammatory

signaling and selective upregulation in Pstpip2W232A mice (46–

48). CXCL2 production by neutrophils may represent an

additional critical step in disease progression. It is very likely

that activation of the positive feedback loops driven by

neutrophil-produced IL-1b and CXCL2 result in substantial

amplification of neutrophil response via further neutrophil

recruitment and secondary production of additional IL-1b,
CXCL2 and other chemokines, propelling the disease to its
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symptomatic stage. Our results also suggest that chemokine

networks together with IL-17 may represent potential

pharmacological targets/biomarkers in similar diseases in

humans. However, proper analysis of their role would require

further testing using mice double deficient in Pstpip2 and

receptors or other critical components of these pathways.

In summary, together with earlier published results, our data

demonstrate dysregulation of three major pathways, including

production of IL-b, reactive oxygen species, and neutrophil-

attracting chemokines, which jointly contribute to the

development of CMO disease in Pstpip2cmo mouse model.

Recruitment of PEST-PTPs and SHIP1 by PSTPIP2 have

differential regulatory effects on these pathways. PEST-PTPs

have a dominant role in the control of reactive oxygen species

and to some extent also in the control of chemokine production,

while they appear similarly important as SHIP1 in the control of

IL-1b pathway. Direct targets of these phosphatases that regulate

these pathways still remain unknown. However, the new mouse

models generated within this work will be instrumental for their

future identification.
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