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The MHC-self immunopeptidome of professional antigen presenting cells is a

cognate ligand for the TCRs expressed on both conventional and thymic-

derived natural regulatory T cells. In regulatory T cells, the TCR signaling

associated with MHC-peptide recognition induces antigen specific as well as

bystander immunosuppression. On the other hand, TCR activation of

conventional T cells is associated with protective immunity. As such the

peripheral T cell repertoire is populated by a number of T cells with different

phenotypes and different TCRs, which can recognize the same MHC-self-

peptide complex, resulting in opposite immunological outcomes. This article

summarizes what is known about regulatory and conventional T cell

recognition of the MHC-self-immunopeptidome at steady state and in

inflammatory conditions associated with increased T and B cell self-

reactivity, discussing how changes in the MHC-ligandome including epitope

copy number and post-translational modifications can tilt the balance toward

the expansion of pro-inflammatory or regulatory T cells.

KEYWORDS

MHC class I, MHC class II, immune tolerance, regulatory T cells, antigen processing,
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Introduction

The main role of the thymus is to generate functionally competent T cells, which respond

to pathogens but are tolerant to self-antigens (1). During T cell development the T cell receptor

(TCR) of maturing T cells interacts with the MHC-self-peptides presented by different thymic

antigen presenting cells. The TCR-MHC-peptide interaction occurs within a great range of

affinities and the functional outcome of these interactions results in positive and negative T cell

selection of both conventional (Tconv) or regulatory (Treg) T cells (2–4). Overall a “weak” TCR

signal is conducive to positive selection, and themajority of Tconv cells are generated within this

domain of affinities (3, 4). On the other hand, murine models have established that Treg are

generated from a niche of T cells rescued from the negatively selected pool (5, 6).

Once they populate the periphery Tconv cells shape the immune responses from

immunity to pathogens, to the cytotoxic engagement of tumor cells (7, 8). Regulatory T
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cells (Treg) are pivotal to immune homeostasis, implementing

immune tolerance to self and symbiotic commensal, monitoring

immune responses, and maintaining tissue homeostasis (8–10).

Natural Treg (nTreg) are generated in the thymus and peripheral Treg
(pTreg) are generated in the periphery, following differentiation

from conventional naïve CD4+ T cells when exposed to suboptimal

antigen concentration and repeated stimulations, or the commensal

microbiome (11). nTreg are strategically located in the T and B cell

areas of secondary lymphatic organs where they can control both

adaptive arms of the immune response (8). To suppress/regulate

immune responses Treg rely on cell-surface inhibitors such as

CTLA4 and PD-1 as well as the secretion of inhibitory cytokines

including IL-10 and TGF-b (8, 12). Additionally, by sequestering

IL-2, they control Tconv proliferation and clonal expansion (13).

As for Tconv, the TCR engagement by the cognate MHC-

peptide ligand is also pivotal for Tregs differentiation in the

thymus, where the affinity of their TCR for MHC-self-peptides

rescues them from clonal deletion and set them apart from Tconv

(14). Similarly, in the periphery, the tonic signal of Treg-TCR

engagement is necessary to maintain their expansion and insure

their suppressor function (14).

In the last decade, diverse Treg sub-phenotypes as well as

their TCR repertoires have been investigated, giving insight into

Treg heterogenicity as well as contributing to the notion that the

Treg TCR repertoire is as broad as that of Tconv (9, 15–17).

However, an area that is very much under-investigated is the

fineantigen specificity and theMHC-restricted immunopeptidome

recognized by Treg and howmuch this overlap, or is set apart from

the MHC-restricted repertoire recognized by Tconv. More

importantly, further research is required to examine how the

balance between Tconv and Treg recognition of the same MHC-

self-peptide complex shape immune responses.

This review summarizes what is known about Treg self-

antigen recognition and the related MHC-immunopeptidome

and its interplay with the MHC-immunopeptidome recognized

by Tconv at steady state and in inflammatory acute and chronic

conditions associated with increased T and B cell autoreactivity.

Recognition of the MHC-self-
peptidome: Conventional and
regulatory T cells

T cell recognition of cognate MHC-peptide ligands is not an

on-off binary switch, since the TCR can “sense” differences

between optimal and suboptimal ligands and signal accordingly

(18). Agonist peptides, even in low nanomolar concentrations, can

stimulate proliferation and effector functions (cytokine

production, cytotoxic responses) in CD4+ and CD8+ T cells.

Partial agonists require a higher concentration to induce the

same T cell responses and secretion of effector lymphokines,

antagonist peptides specifically inhibit the response(s) that can

be induced by an agonist via single amino acid substitutions of
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major TCR contacts (18). As such, the a/b T-cell receptor present

on CD4+ and CD8+ T cells can distinguish subtle structural

variations in the MHC-peptide conformation and translate the

affinity/avidity of cognate ligand recognition into distinct T cell

responses. The ability of the TCR to conduce distinct signals

following peptide-MHC engagement plays a pivotal role in

directing Tconv and Treg development. Indeed, in the last decade

it has become apparent that, in the thymus, the same MHC-

peptide complex can induce thymocyte deletion and generate

Tconv and nTreg (19).

During thymic selection TCRs with high MHC-peptide affinity

can generateTreg,which is selected for highly stringent recognition of

an agonist MHC-self-peptide. At the same time, T cells with low/

medium affinity for self-peptides undergo positive selection

generating Tconv. Similarly, in the periphery, the same MHC-

peptide complex can provide the tonic signal necessary to maintain

a peripheral T cell repertoire composed of conventional/effectors and

thymic-derived nTreg (20). On the other hand, repeated antigen

stimulations can induce the switching of naïve T cells and sub-

optimally stimulated pro-inflammatory T cells into pTreg (21).

The peripheral T cell repertoire is populated by a number of

T cells with different functional phenotypes (Tconv and Treg) and

different TCRs that can recognize the same MHC-self-peptide

complex with different affinities and generate pro-inflammatory

or regulatory immune responses (22, 23).

Treg directly controls around 30% of the autoreactive T cell

population from converting into pathogenic effectors (22, 24). At

steady state, pTreg by having a TCR with higher affinity for the

same MHC-peptide complex, as compared to Tconv, are likely to

require lower antigen concentration and by default, a lower

MHC-epitope copy number to be activated. As such, pTreg can

directly suppress the immune response of Tconv specific for the

same MHC-peptide (25). However, Treg and nTreg in particular,

can also effectively suppress Tconv specific for a different MHC-

peptide complex through secretion of anti-inflammatory

cytokines. However, for this non-cognate suppression to occur,

nTreg need to be activated by the recognition of their cognate

MHC-peptide ligand for TCR signaling and optimal activation

and function (26).

In pathological conditions, changes in the dendritic cell

MHC-antigen processing and presentation machinery can

affect the selection, affinity, composition, and epitope copy

number of the MHC-ligandome (27–30). This is associated

with up-regulation in the costimulatory molecule and

increased adjuvanticity of the tissue microenvironment, which

can tilt the Treg/Tconv balance and favor autoreactivity (30, 31).

We and others have observed and demonstrated that in

multiple chronic inflammatory and dysmetabolic conditions

there is increased T and B cell autoreactivity (29, 30, 32–37). For

example, in cardiovascular disorders elevated circulating levels of

autoantibodies targeting cardiac or vascular (29) proteins such as

troponin I3, cardiac type (TNNI3) (38), oxidized apolipoproteins

(39), aswell asubiquitous inflammation-associatedproteins suchas
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heat shock proteins (HSPs) (40) have been reported. Similarly,

autoreactive T cells and antibodies specific to several cytosolic self-

antigens including glutamate decarboxylase 1 (GAD1), islet cell

autoantigen 1 (ICA1), INSM transcriptional repressor 1 (INSM1)

and solute carrier family 30 member 8 (SLC30A8) have been

reported in the serum of patients with metabolic syndrome and

type 2 Diabetes (T2D) (41).

Recently, we demonstrated that in Type 2 Diabetes (T2D),

the chronic inflammatory environment increased the MHC II

presentation of peptides derived from stress-associated proteins

by local dendritic cells, including protein disulfate isomerase-3

(PDIA3) (30). Stress-related responses also induced PDIA3

translocation at the plasma membrane, facilitating auto-Ab

recognition (30). Ultimately, the increased presence of the

MHC II-restricted PDIA3 peptide and increased titers of

IgG2b and IgG3 anti-PDIA3 antibodies with cytotoxic activity

aggravated liver tissue damage by tilting the balance from

tolerance to autoreactivity (30). The pathogenic connotation of

anti-PDIA3 immune responses was evident following the passive

transfer of cognate CD4+ T cells and antibodies that induced

hepatocyte cytotoxicity (30). Similarly, it was demonstrated that

an I-Ab-restricted Apolipoprotein B peptide (ApoB) could

induce in vivo Treg or Tconv inflammatory responses under

opposite environmental conditions (29, 42, 43).

Since both PDIA3 and ApoB peptides are recognized by

both Tconv and Treg the stoichiometry of their MHC presentation

contributed to tilt the balance towards tolerance or

inflammation. Under physiological conditions, around 0.4

femtomoles of PDIA3 peptide and 0.05 femtomoles of ApoB

peptide were presented by I-Ab, however in dysmetabolic

conditions, due to a high fat, high sucrose diet, a 40% increase

in I-Ab presentation of both PDIA3 and ApoB epitopes was

observed (29, 30). We reasoned that at steady state Treg requires

lower amounts of self-antigens, or MHC-epitope copy number

to be activated, due to their higher affinity TCR, as compared to

the Tconv TCR specific for the same MHC-peptide complex (9,

14, 25). However, during acute and chronic inflammatory

conditions associated with immunogenic cell death, increased

antigen availability and MHC-epitope copy number, associated

with an environment rich in pro-inflammatory cytokines and

damage-associated-molecular pattern (DAMPs) can activate

Tconv even if the same MHC-peptide complex is recognized by

Treg and overcome their suppression (29–31).

Translational therapeutic
applications: Conventional and
regulatory T cell balance

Different strategies in early clinical trials have been designed

to optimize Treg expansion to suppress autoreactive T cells and

autoimmunity even when the disease is in progress (44, 45).

Insulin-derived Treg-activating peptides have been mapped both
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in NOD mice and T1D humans (46, 47); both peptides have

been tested in pre-clinical studies. Initial results indicate that the

islet cell function was preserved in patients receiving the peptide

treatment, as compared to the no-treatment group (47). In

another study, Hsp70-derived peptides have been shown to

induce Treg cells in clinical studies of Type 1 Diabetes (T1D)

(48) and rheumatoid arthritis (RA) (49). Finally, early phase

clinical trials with autoantigen specific therapy in Multiple

Sclerosis have also shown promising results in inducing Treg-

mediated immune suppression (50–52).

When analyzed for anaphylactic reactions it appears that

both dosage, timing, and biophysical properties of MHC-peptide

binding play a role. For example, the development of the B9-23

insulin peptide for therapeutic purposes indicated that

prolonged administration of the peptide induced anaphylaxis

in NOD mice (53). Subsequent MHC-peptide binding studies

indicated that MHC-peptide affinity/stability favored Tconv

activation over Treg (54). On the other hand, self-peptides

administered to over 1000 lupus-prone mice did not indicate

any adverse reactions. As shown, histone peptides generated Treg

that induced TGF-b-mediated suppression without the Th2

skewing associated with the allergic reactions seen in other

autoimmune diseases, such as experimental autoimmune

encephalomyelitis (EAE), Multiple Sclerosis (MS) and T1D in

NOD mice (47, 55–57).

The balance between Tconv/Treg MHC-self peptide recognition

can also be tilted by protein/peptide post-translational

modifications. It has long been recognized that in conditions

associated with chronic inflammation or in dysmetabolic

conditions an increase in oxidative stress, hyperglycemia and

hyperlipidemia contribute to non-enzymatic protein oxidation,

glycation, and lipoxidation (58–66). The protein post-

translational modifications (PTMs) are carried over during

endosomal/proteasomal processing and MHC-loading,

generating an immunopeptidome where some of the amino acids

are modified by the bulky oxidative residues (29, 63). Since these

peptides are not presented in the thymus, theymay not engageTreg.

At the sameTconv couldbe activated by the PTM-modified peptides

(67, 68). This mechanism has been extensively reported for

citrullinated peptides in RA (69, 70), oxidized ApoB peptide in

atherosclerosis, and cardiovascular diseases (71), nitrosylated

peptides in degenerative brain disorders (72), acetylated and

citrullinated peptides in lupus (73) and deamidated peptides in

melanoma-associated immunogenicity (74).

Albeit the majority of MHC-self peptides are cognate ligands

for both Tconv and Treg, during the last decade few studies have

pinpointed MHC-restricted epitopes within the human/mouse

self-proteome which strongly induce nTreg. Among those, the

best characterized have been epitopes processed from histones,

albumin(s), and immunoglobulins; likely, due to their high

abundance, differently from most tissue specific self-antigens,

they are presented in the thymus, at high copy number, during

nTreg development.
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Histone epitopes are mostly generated from the processing

of nucleosomes of apoptotic cells; as known apoptotic cells are

physiologically cleared by the immune system without activating

an immune response (75). Indeed, cellular apoptosis is a daily

occurrence in different organs, particularly in primary lymphoid

organs such as the thymus and bone marrow. Peptides derived

from apoptotic cells are presented in MHC I and MHC II

restriction to educate maturing T and B cells and, histone

peptides have been shown to generate CD4+ and CD8+ Treg

(56, 76–80).

The yin/yang balance between immunogenic and

tolerogenic responses to the self-peptidome can be best

visualized in lupus where several immunogenic self-peptides,

derived from nucleosomal histones, inducing effector T cells in

lupus nephritis have been mapped (78, 81, 82). The same

peptides, when administered in low doses (1 µg, sub-cutaneous

every 2 weeks) induced a low-dose tolerance which effectively

lowered autoantibody levels, blocked nephritis progression, and

markedly diminished inflammatory cell infiltration in the

kidneys (77). The low dose antigen therapy was shown to

induce regulatory T cell subsets with a CD8+ CD25high, and

CD4+CD25high phenotype, which both lowered IFN-g
production by autoreactive pro-inflammatory T cells and

induced TGF-b secretion in response to the histone epitopes.

Importantly, the Treg-induced suppression was maintained in

vivo following passive cell transfer where even low dose tolerance

with one self peptide epitope could halt the lupus progression

(56). Splenic dendritic cells (DC), but not B cells or macrophages

were the antigen presenting cells (APC) responsible for the

antigen presentation to Treg and for the expansion of epitope-

specific and cross-reactive Treg, that suppressed lupus effector T

helper (Th)1 and Th17 cells (56). The peptide-induced Treg in

PBMC from patients with lupus depended on TGFb/ALK-5/
pSmad 2/3 signaling. Interestingly the DC pulsed with the

tolerogenic histone peptide showed a decreased inflammatory

phenotype with down-regulation of CD80, CD86, and CD40 co-

stimulatory molecules and decreased MHC class II surface

expression, as compared to non-peptide pulsed DC (55, 56).

In a murine model of lupus, immune tolerance could be

induced by nasal administration of very low amounts of

pathogenic self-peptides leading to the expansion of T cells

that secrete TGF-b and low amounts of pro-inflammatory

cytokines (55, 83). Histone-based therapy also induced CD8+

Treg cells to stably express FOXP3 and increased levels of CTLA-

4, CD103, PD-1, PD-L1, and LAP, when compared to CD8+ T

cells from the same patients before undergoing kidney transplant

(84). These cells were considerably more potent in their

suppressive activity as compared to the CD4+CD25high Treg

that appeared during clinical “remission” in lupus patients

(84–86). Similar responses were observed upon administration

of other known lupus autoantigens such as small nuclear

ribonucleoproteins and nuclear ribonucleoproteins (87). To

summarize, the Treg cells induced by the histone epitopes
Frontiers in Immunology 04
directly and indirectly suppressed innate immune cells (DC),

T cells, and B cells involved in the pathogenic autoimmune

response.

Additionally, histone peptides have also been shown to have

immunosuppressive activity by activating a subtype of Treg,

named follicular regulatory T cells (Tfrs) (CXCR5
high PD-1high

and FoxP3+), which are located in B cell follicles of secondary

lymphoid organs. Tfrs play pivotal roles in regulating B cell

responses and inhibiting the development of auto-Ab (88–91).

Histones and nuclear proteins have been shown to induce Tfrs

expansion and up-regulation of immunosuppressive genes (92).

Once activated Tfrs promote inhibition of germinal center B cells,

in particular B cells with a BCR specificity towards nuclear

proteins, indicative of antigen-specific Treg suppression (93).

However, the histone epitopes can induce Treg that suppresses

both antigen specific as well as bystander T and B cells,

altogether regulating pathogenic immune responses (93).

The second set of well-characterized Treg epitopes that

induced both thymic and peripheral Treg (94–98) were IgG

peptides, deriving from the processing of the Fc heavy chain

constant region (99–101). Ex vivo elegant studies have shown

that in children with Kawasaki disease (KD), an acute pediatric

vasculitis of the coronary arteries, IgG administered

intravenously (IVIG) were mostly internalized by receptor-

mediated phagocytosis, Fcg receptor (R) II and to a lesser

extent FcgRIII, by two myeloid tolerogenic DC populations,

CD14+ CDC2 and ILT-4+ CD4+ tmDC. Fc processed peptides

induced Treg expansion and IL-10 production by both Treg and

the presenting DC, indicating the role of both innate and

adaptive tolerogenic responses following Fc heavy chain

constant region presentation (97–99, 101, 102).

In a different set of studies, IgG peptides, when administered

prior to diabetes insurgence in NODmice, completely abrogated

the development of the disease and, when administered after

diabetes insurgence suppressed the disease progression (103),

even when injected together with insulin immunogenic peptides

(103, 104). Finally, IgG+ B cells have been shown to present

immunodominant Fc peptides to nTreg via a unique antigen

processing of the surface IgG that differs from the exogenous up-

take of IgG by tolerogenic DC. Of interest, the most tolerogenic

Fc peptides recognized by Treg bind multiple MHC class II

alleles, including DR, DP, and DQ, and share the same sequences

in healthy donors and RA subjects (101).
Conclusions

Analyses of the MHC-ligandome recognized by Treg and

Tconv are an important endeavor, due to the pivotal role of both

cells in immune responses. Even though there is not yet

extensive literature on the subject, it appears, as expected, that

no MHC-peptide is uniquely recognized by either Treg or Tconv.

Indeed, for the peptides analyzed in depth so far, it appears that
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in the thymus the presented MHC-immunopeptidome generates

a T cell repertoire that comprises both Treg and Tconv. At steady

states, it is likely that Treg exercise control over Tconv responses

due to their thymically-selected high affinity TCR, which

requires a lower peptide concentration for Treg activation (1).

This low-dose tolerance is likely how tolerance to tissue-specific

antigens, notoriously present in low amounts, is generated (50,

52, 56). The same mechanism is exploited by “low-dose” peptide

therapies used to activate Treg in many autoimmune diseases.

However, Treg also recognizes several MHC-epitopes normally

presented at high MHC-copy numbers, such as nuclear proteins,

immunoglobulins, and albumins. All these antigens have also

been shown to effectively activate Treg and strongly down-

modulate inflammation and autoimmunity, as seen in several

clinical trials. It has been postulated that this “high-dose

tolerance” may be important in maintaining a pool of Treg,

easily activated by abundant antigens, which down-regulate

immune responses through by-standard suppression and

secretion of anti-inflammatory cytokines (97, 102).

Further work is necessary to determine the Treg/Tconv

antigen specificity and degeneracy, the role of low dose vs high

dose tolerance in relationship to Treg/Tconv generation, TCR

affinity avidity, and signaling, as well as the contribution of
Frontiers in Immunology 05
MHC-epitope copy number to the activation of either T cells and

finally, the role of tissue microenvironment in keeping or tilting

the Treg/Tconv balance.
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