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Background: The emergence of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) variants and the persistence of the pandemic,

even with mass coronavirus disease 2019 (COVID-19) vaccination, have raised

questions about the durability of immunity and extent of cross-reactive

immunity after vaccination. This study aimed to characterize the humoral

and cellular immune response to the mRNA-1273 vaccine using a

prospective longitudinal cohort.

Methods: We recruited 177 young SARS-CoV-2 infection-naive adults. Two

doses of mRNA-1273 vaccine were administered at 28-day intervals, and blood

samples were collected at five time points: pre-vaccination (T0), 4 weeks after

the first (T1) and second dose (T2), and 3 months (T3) and 6 months (T4) after

the first dose. Anti-SARS-CoV-2 spike protein (anti-S) IgG antibody,

neutralizing antibody, and T-cell immune responses were evaluated.

Results: The two-dose mRNA-1273 vaccination induced robust anti-SARS-

CoV-2 antibody responses, which remained higher than the titers at T1 until T4.

A higher peak anti-S antibody titer at T2 was associated with better cross-

reactive immunity against Delta and Omicron variants and long-lasting (anti-S

IgG and neutralizing antibody) humoral immunity up to T4. The overall T-cell
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immune response was not correlated with peak antibody titers (T-lymphocyte

subpopulation analysis was not performed).

Conclusion: This study showed that an early strong antibody response is

predictive of longer humoral immunity and better cross-reactive neutralizing

immunity against Delta and Omicron variants.
KEYWORDS

SARS-CoV-2 infection, mRNA-1273 vaccine, COVID-19, cellular immunity,
humoral immunity
1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic

continues with more than 600 million confirmed cases and 6.4

million deaths reported worldwide as of August 31, 2022. The

administered vaccine dose has reached 12.5 billion as of August

31, 2022 (1), with 67.7% of the world population having received

at least one dose of COVID-19 vaccine. In South Korea, 86% of

the total population is fully vaccinated with primary series,

ranking among the top ten countries worldwide (2).

Nevertheless, cases of COVID-19 resurged across countries,

particularly in South Korea (2), raising concerns about the

longevity of vaccine immunogenicity and immune escape due

to the widespread circulation of variants.

The mRNA-1273 vaccine, which displayed a clinical efficacy

of 94.5% against confirmed COVID-19 cases in an initial study

(3), is the second most commonly used vaccine in South Korea,

despite its delayed approval (4, 5). However, there are limited

data on cellular immunity and long-term humoral immunity of

more than 6 months after mRNA-1273 vaccination (6–11).

Booster vaccination (third dose) has been recommended

mostly based on the BNT162b2 vaccine data, which showed

waning effectiveness and reduced cross-reactive immune

responses against severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) variants (12). However, the

mRNA-1273 vaccine demonstrated a stronger immune

response in an early study and slower waning of effectiveness
f variance; anti-S, anti-

I, confidence interval;

ot, enzyme-linked

MT, geometric mean

uclear capsid; PRNT,

vere acute respiratory

spot forming unit; T0,

first dose; T2, 4 weeks

T4, 6 months after the

02
compared with that of BNT162b2 (12–14). These results call for

long-term follow-up data on immune responses after mRNA-

1273 vaccination, particularly in infection-naive individuals.

We previously reported short-term anti-SARS-CoV-2

humoral immunity up to 4 weeks after the second dose of

mRNA-1273 vaccination (15). This study aimed to evaluate

the longitudinal kinetics of humoral and cellular immunity

against SARS-CoV-2 following mRNA-1273 vaccination in

young adults. In addition, cross-reactive immunity against

variants of concern (VOCs) was also analyzed in a subset

of participants.
2 Methods

2.1 Study design and participants

This multicenter, prospective cohort study was initiated in

June 2021, at four university hospitals, near the time that the

mRNA-1273 vaccine was approved in South Korea. Healthy

adults, aged ≥19-years-old, who were scheduled to receive a two-

dose mRNA-1273 vaccination (100 µg/dose) were recruited.

Individuals were excluded from the study if they had a prior

SARS-CoV-2 in f e c t i on , au to immune d i s e a s e , o r

immunocompromising conditions. We confirmed that none of

the participants were SARS-CoV-2 infected during the study

period using nuclear capsid (N) protein antibody testing; the

anti-N antibody was measured using the SARS-CoV-2 IgG assay

(Abbott Laboratories, Chicago, IL, USA), according to the

manufacturer’s protocol.

Demographic information, including age, sex, body mass

index (BMI), comorbidities, and history of SARS-CoV-2

infection, was collected from each participant. Blood samples

were collected at each scheduled visit as follows: T0 (day of the

first dose vaccination), 4 weeks after the first dose (T1), 4 weeks

after the second dose (T2), and 3 months (T3) and 6 months

(T4) after the first dose. When collecting blood samples at each

time point, all participants were checked for SARS-CoV-2
frontiersin.org
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infection since their last visit. In addition, 7 days after each dose

of vaccine was administered, the participants were requested to

record the presence of solicited adverse events (AEs) through a

standardized electronic questionnaire. This study was approved

by the ethics committees of the Korea University Guro Hospital

(2021GR0099), Ajou University Hospital (AJIRB-BMR-SMP-

21-267), Kangnam Sacred Hallym University Hospital (HKS

2021-05-023), and International St. Mary ’s Hospital

(S21MIME0045). All participants provided written informed

consent (Clinical Trial Number - NCT05258708). The trial

was conducted under current Good Clinical Practices.
2.2 Measurement of immunogenicity

Anti-SARS-CoV-2 spike protein (anti-S) IgG antibodies

were assayed using an electrochemiluminescence immunoassay

(Elecsys anti-SARS-CoV-2 spike ECLIA, Roche Diagnostics,

Pleasanton, CA, USA), according to the manufacturer’s

protocol. For the analysis of factors influencing humoral

immune responses, a strong antibody response was defined as

anti-S IgG antibody titers > 5400 U/mL at the peak period (T2),

which is four-fold higher than the IgG titer correlated with a

viral neutralization titer ≥160 (16). When we applied the same

criteria (>5400 U/mL) in a previous short-term immunogenicity

study, only the top third had an anti-S IgG antibody titer > 5400

U/mL (15). The plaque reduction neutralization test (PRNT)

was performed using the wild-type (WT) SARS-CoV-2 virus

(hCoV/Korea/KCDC03/2020), as described previously (15). The

median neutralizing titer (ND50) was defined as the

concentration of antibodies that reduced the number of

viruses by 50%; a threshold ≥ 1:20 was considered positive.

The PRNT assay was performed only on samples from the

participants at two hospitals. Using age-stratified sampling, we

randomly selected a subset of participants. In this subset of

participants, we also analyzed cross-neutralizing activity against

VOCs, including Delta (B.1.617.2 lineage, hCoV-19/Korea/

KDCA229079/2021) and Omicron (lineage B.1.1.529, hCoV-

19/Korea/KDCA447321/2021).

In addition, an IFN-g enzyme-linked immunosorbent spot

(ELISpot) assay was performed to quantify SARS-CoV-2-

specific cellular immune responses in peripheral blood

mononuclear cells (PBMCs) from 45 randomly selected

participants at T2 and T3. ELISpot plates (Human IFN-g
ELISpotPRO kit, Mabtech AB, Nacka Strand, Sweden) were

blocked with RPMI medium 1640 (Gibco, Grand Island, NY,

USA) containing 10% fetal bovine serum (Gibco) and 1%

penicillin/streptomycin (Gibco). After washing, the plates were

incubated with 2 mg/well of SARS-CoV-2 spike (ID: P0DTC2)

peptide pools (GenScript, Piscataway, NJ, USA) and 3 × 105

PBMCs/well. Stimulation with DMSO or PMA/ionomycin was

used as negative and positive controls, respectively. The plates

were then processed according to the manufacturer’s protocol,
Frontiers in Immunology 03
and the median spot forming units (SFUs) were counted using

the ELISpot reader. The results are presented as SFUs per million

input PBMC (SFUs/106 PBMC). The ELISpot assay was also

performed only on participants from two hospitals, and some

samples were not tested due to the poor PBMC quality.
2.3 Statistical analysis

A repeated-measures analysis of variance (ANOVA) was

used to evaluate the changes in antibody titers at time points T0–

T4 within the group of participants. Log-transformed data were

used to calculate the geometric mean titers (GMTs) with 95%

confidence intervals (CI). The geometric mean ratio (GMR) was

calculated as the mean difference of the measurements on a log

scale. The c2 test or Fisher’s exact test was used for categorical

variables, whereas the Student’s t-test or one-way ANOVA was

used to compare continuous variables, followed by Scheffé’s test

for multiple comparisons. Correlations were calculated using

Pearson’s correlation coefficient. The results were considered

statistically significant at p-value < 0.05.

Antibody decay rates and half-life were calculated using an

exponential decay model fit to data starting on the study day

corresponding to the T2 time point and beyond. Participants

who missed even one blood sample collection after the T2 time

point were excluded from the decay rate analysis. The

exponential model after log10 transformation of titers took the

following form (17): log10 (titerij) = a + b*(study dayij) + ui + eij.

Where a and b are the intercept and decay rate, respectively; ui is
the random intercept for each participant i (considering

repeated measures per participant) and eij is the model error

for participant i on study day j. The mixed-effects model was

constructed to fit repeated measures with the “proc mixed”

procedure. The half-life was computed using the delta method:

t1/2 = log10 (0.5)/b'. Where t1/2 is the day on which the titer has

decayed to half of its starting value, and b’ is the estimated model

decay rate. To compare the half-life between strong and normal

responders, a responder variable was included in the model

considering repeated measure.

Statistical analyses were performed using SPSS Statistics for

Windows, version 24.0 (IBM Corp., Armonk, NY, USA) and

SAS for Windows 9.4 software platform (SAS Institute Inc.,

NC, USA).
3 Results

3.1 Characteristics of the
study population

A total of 177 participants were included in this study.

However, owing to missed visits, blood samples were obtained

from 162 (91.5%) participants at all time points, 167 (94.4%) at
frontiersin.org
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four time points, 171 (96.6%) at three time points, and 177

(100%) at two time points (Figure 1). The baseline characteristics

of the study participants are presented in Supplementary

Table 1. The mean age of all participants was 25.4 ± 3.9

(standard deviation, SD) years, with 70% being women. The

BMI (mean ± SD) at baseline was 21.6 ± 2.9 kg/m2. All of the

participants were healthy and had no comorbidities. The interval

(mean ± SD) between vaccine doses 1 and 2 was 28.9 ± 2.3 days.

The intervals (mean ± SD) from dose 1 to follow-up time points

were as follows: 23.7 ± 3.3 days to T1, 56.8 ± 1.8 days to T2, 78.3

± 4.3 days to T3, and 172.0 ± 9.2 days to T4. The interval (mean

± SD) from dose 2 to T2 was 27.9 ± 3.0 days. None of the

participants tested positive for SARS-CoV-2 infection during the

study period.
3.2 Anti-S IgG and neutralizing antibody
responses over time

The anti-S IgG antibody kinetics revealed peak responses at

4 weeks after dose 2 (T2) and progressively decreased over the

subsequent 4 months, with a decelerating rate of decline between

T2 and T4 (Figure 2; Supplementary Table 2). However, 6
Frontiers in Immunology 04
months after dose 1 (T4), anti-S IgG antibody titers were still

significantly higher than those measured 4 weeks after dose 1

(T1). Anti-S IgG antibody titers changed significantly at all study

time points (p < 0.001). There was a 58% decrease in the average

anti-S IgG antibody titer from the peak period (T2) to T4. The

half-life of anti-S IgG antibodies was 35 days, 154 days, and 105

days at T2–T3, T3–T4, and T2–T4, respectively.

The neutralizing antibody responses among 100 participants

showed kinetics similar to anti-S IgG antibodies; GMTs declined

from 2851.8 (2481.9–3276.7) at T2 to 1090.4 (929.5–1279.3) at

T4 (Figure 2; Supplementary Table 2). The neutralizing antibody

half-life was 77 days at T2 and beyond.
3.3 Cross-reactive neutralizing
immunogenicity against variants
of concern

In a subset of 20 randomly selected participants, PRNT was

performed against the WT, Delta variant, and Omicron variant

to evaluate cross-reactive immunogenicity. At the peak period

(T2) of the humoral immune response, the GMTs were 3324.1

for the WT, 1249.4 for the Delta variant, and 83.4 for the
FIGURE 1

Study diagram. NAT, neutralizing antibody assay.
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FIGURE 3

Neutralizing antibody response against variants of concern at two
time points (T2 and T4). WT, wild-type. *** denotes p < 0.001. T2,
4 weeks after the second dose; T4, 6 months after the first dose.
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Omicron variant. These values represented a 2.7-fold and 39.9-

fold reduction for the Delta and Omicron variants, respectively,

compared with the WT (Figure 3). At T4, the GMTs were 1353.9

for theWT, 272.1 for the Delta variant, and 34.9 for the Omicron

variant, representing a 5.0-fold and 38.8-fold reduction,

respectively, compared with the WT. Neutralizing antibodies

waned over time; the decline rate was faster in the order of the

Delta variant (78%, 70–84%), WT (62%, 52–69%), and Omicron

variant (58%, 33–74%) (Supplementary Figure 1). Nevertheless,

most sera from T4 (6 months after dose 1, average 176 days) still

neutralized Delta and Omicron variants in the PRNT (100% and

85%, respectively).

Correlation analysis of neutralization titers between the WT

strain and each variant strain revealed a significant correlation

for all variants, although the significance disappeared for the

Omicron variant at T4 (Pearson’s r = 0.34, p = 0.149)

(Supplementary Figure 2).
B

A

FIGURE 2

Dynamics of anti-S IgG (A) and neutralizing antibody (B) responses. Two-tailed p-value resulting from repeated-measures ANOVA with post-
hoc test (*p < 0.05, **p < 0.01, ***p < 0.001). Error bar depicts mean with 95% confidence interval. Inverted triangle indicates vaccine
administration. T0, day of the first dose of vaccine; T1, 4 weeks after the first dose; T2, 4 weeks after the second dose; T3, 3 months after the
first dose; T4, 6 months after the first dose.
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3.4 SARS-CoV-2-specific T-cell
immune response

Supplementary Figure 3 shows the IFN-g ELISpot assay

results regarding T-cell responses to the SARS-CoV-2 S

protein in 45 participants. After the second vaccination dose at

T2 and T3, 41 (91%) and 40 (89%) participants showed a

positive IFN-g ELISpot response, with median numbers of

SFUs of 66.89 (95% CI, 37.68–118.76) and 24.85 (95% CI,

14.74–41.90), respectively. Unlike the humoral immune

response, the temporal trend of individual plots of cellular

response was substantially variable, with no significant

difference between T2 and T3.
3.5 Significance of higher peak anti-S IgG
antibody levels on long-term humoral
immunity, cross-reactive immunity, and
cellular immunity

A steeper decline in antibodies was observed in the strong

responders (peak anti-S IgG titers >5400 U/mL) than in the

normal responders (Supplementary Table 2). Between T2 and

T4, strong responders showed a 63% and 66% decrease in anti-S

IgG and neutralizing antibody titers, respectively, whereas

normal responders showed a 54% and 62% decrease,

respectively. The half-life of anti-S IgG at T2-T4 was

significantly shorter in strong responders compared to normal

responders (89 days versus 116 days, p<0.001). In comparison,

although statistically insignificant, the half-life of neutralizing

antibodies at T2-T4 was longer in strong responders compared

to normal responders (85 days versus 70 days, p=0.18).

Nevertheless, strong responders still presented higher anti-S

IgG antibody titers than normal responders up to 6 months

after the first dose (1.78-fold, 1.53–2.08). Regarding the

neutralizing antibodies, strong responders showed higher titers

than that of normal responders at most time points, although the

significance disappeared at T4 (1.35-fold, 0.99–1.85) (Figure 4;

Table 1; and Supplementary Table 2). The neutralization activity

against Delta or Omicron variants at the peak period was higher

in strong responders than in normal responders, but this

difference was attenuated at T4. A strong anti-S IgG response

was not associated with the magnitude of cel lular

immunity (Table 1).
3.6 Correlation between anti-S IgG and
neutralizing antibody titers

Notably, a correlation was observed between the anti-S IgG

and neutralizing antibody values obtained on a per-sample basis

(Supplementary Figure 4). However, the variability in anti-S IgG
Frontiers in Immunology 06
responsiveness was unrelated to the cellular response at each

time point (Supplementary Figure 5).
4 Discussion

In this multicenter prospective study of young SARS-CoV-2

infection-naive adults, mRNA-1273 primary series vaccination

induced peak antibody responses approximately 4 weeks after

the second dose and declined progressively thereafter. However,

even 6 months after the first dose (T4), antibody titers remained

higher than those measured 4 weeks after the first dose (T1).

Notably, compared with normal responders, strong responders

at the peak period (T2) showed rather higher cross-immunity

against Delta and Omicron variants at each time point, and

sustained higher antibody responses up to 6 months after

vaccination. In comparison, the T-cell immune response was

not correlated with peak antibody titers. Approximately 90% of

the participants showed a positive SARS-CoV-2-specific T-cell

immune response after the second dose of vaccine.

Our post-vaccination antibody kinetics were similar to those

of SARS-CoV-2 infection with respect to the peak, plateau, and

waning patterns: an initial rapid decline followed by a slower

decrease (18, 19). The half-lives of anti-S IgG antibodies and

neutralizing antibodies calculated in this study are similar to the

antibody reduction rate and biphasic decay pattern seen in

individuals who recovered from SARS-CoV-2 infection (19–

21). The half-life of IgG is approximately 3 weeks; therefore, to

maintain detectable circulating antibodies for extended periods,

continuous production by plasma cells is needed (22). The

biphasic decay curve, also shown in our study, is considered

evidence of long-lived plasma cell generation after two-dose

vaccination. Long-lived plasma cells have recently been reported

in patients who recovered from SARS-CoV-2 infection (23). In

an experimental mouse model, mRNA vaccination also induced

long-lived plasma and memory B cell responses (24). Clinically,

a few studies have reported antibody persistence after mRNA-

1273 vaccination (6–10), but only a small number of participants

were included (6, 7, 9, 10), and neutralizing antibody assays were

not conducted (8, 10). Using a large-scale longitudinal cohort,

we added meaningful evidence regarding the durability of

antibodies up to 6 months after mRNA-1273 vaccination.

Several SARS-CoV-2 VOCs with multiple spike protein

mutations have emerged. This study showed a prominent

decline in neutralizing activity against these variants, especially

the Omicron variant, which surged in early 2022, and spread

worldwide. In agreement with our study, a number of studies

have reported a 2- to 4-fold reduction in neutralizing activity

against the Delta variant and a 30-fold reduction against the

Omicron variant compared with that of the WT SARS-CoV-2

strain at the peak point of antibody response (11, 21, 25).

Compared with previous studies (11, 26), mRNA-1273

vaccination in this study demonstrated a less pronounced
frontiersin.org
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reduction in cross-reactive neutralization against the variants;

most individuals showed detectable neutralizing antibodies

against the Delta and Omicron variants within 6 months

(100% and 85%, respectively) after vaccination, which could be

partly explained by differences in the vaccine composition or

formulation and ethnicity (genetic variation) between study

populations (11, 26, 27).

Notably, this study showed that a strong anti-S IgG response

during the peak period is a predictor of both long-term and
Frontiers in Immunology 07
cross-reactive immunity against SARS-CoV-2 variants. Strong

responders tended to have a faster waning of humoral immunity,

as shown in a previous study (28). Nevertheless, strong

responders in this study induced higher antibody titers than

normal responders, even at 6 months after vaccination. In this

study, the half-life of the anti-S IgG antibody titer was shorter in

strong responders than in normal responders, but the half-life of

the neutralizing antibody titer in strong responders was longer

than that in normal responders. In individuals in whom the
B

A

FIGURE 4

Temporal trend of anti-S IgG antibody titers (A) and neutralizing antibody titers (B) after vaccination, stratified by the peak anti-S IgG response.
NS = p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. T0, day of the first dose of vaccine; T1, 4 weeks after the first dose; T2, 4 weeks after the
second dose; T3, 3 months after the first dose; T4, 6 months after the first dose.
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initial antibody immune response is stronger, neutralizing

antibodies are likely to persist for longer, even though the

anti-S IgG antibody titer declines rapidly. The higher the peak

antibody titers after a two-dose primary series of vaccine, the

more likely it is that B cells differentiate into high-quality long-

lived plasma cells, which would contribute to maintaining the

circulating antibody for a longer time.

Vaccine effectiveness against SARS-CoV-2 infection seemed to

decrease more slowly than expected through humoral

immunogenicity studies, showing a reduction of less than 30% of

the peak level in the first 6 months (29, 30), whereas protection

against hospitalization and death appeared to be muchmore robust,

with no evidence of waning for several months after the second dose

(29). T-cell immunity may contribute to prolonged effectiveness in

preventing severe diseases. Regarding T-cell immunity, compared

with the rapid decline in specific IgG titers, long-lasting memory T-

cells were detected up to 17 years after SARS-CoV infection (31). A

previous study on cellular immunity after mRNA-1273 vaccination

showed a similar cellular immune response (86% positivity at 3

months after the second dose) with our results; however, they

presented a close relationship between humoral and cellular

immune responses, contrary to our study (28). Another study

revealed that T-cell responses after the first dose, which was not

measured in our study, correlated with antibodies at 6 months,

highlighting a key role for early CD4 T-cell responses (9). In this

study, cellular immunity was not correlated with humoral

immunity at any time point, which might be related to the

differences in the study population with respect to age and pre-

existing cross-reactive T-cell immunity from seasonal coronavirus

infections (32). Alternatively, it might be because a T-lymphocyte

subpopulation analysis was not conducted, and T-cell immunity

was not measured at an early time point.

This study has several limitations. First, it was conducted on

healthy young adults, excluding older adults and chronically ill
Frontiers in Immunology 08
patients. Second, neutralization titers and cellular immunity

were measured only in a subset of participants; the small

sample size might cause a statistically insignificant results in

our analyses. Third, T-cell immunity at the beginning of

vaccination might play an important role in the subsequent

immune response after vaccination, but the immune response

was not measured during the early stage (within 7 days after

vaccination). Finally, due to the wide intervals between blood

sampling points, the formula for estimating half-life might be

somewhat imprecise, so caution is needed in interpretation.

In conclusion, this study showed that an early strong

antibody response is predictive of longer humoral immunity

and better cross-reactive neutralizing immunity against Delta

and Omicron variants. A positive SARS-CoV-2 specific T-cell

immune response was induced in most mRNA-1273

vaccine recipients.
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TABLE 1 Correlation of peak anti-S IgG antibody response with long-term humoral immunity, cross-reactive immunity, and cellular immunity.

Normal responder Strong responder p-value Ratio of mean titer (95% CI)

Anti-S IgG antibody (T2) 3332.23 (3101.11–3580.57) 7403.23 (6960.30–7874.35) < 0.001 2.22 (2.02–2.44)

Anti-S IgG antibody (T4) 1521.03 (1394.21–1659.37) 2709.35 (2367.16–3101.01) < 0.001 1.78 (1.53–2.08)

Neutralizing antibody against WT (T2) 2500.86 (2116.84–2954.54) 3769.64 (2982.86–4763.93) 0.006 1.51 (1.13–2.01)

Neutralizing antibody against WT (T4) 949.18 (767.20–1174.34) 1283.30 (1008.81–1632.47) 0.058 1.35 (0.99–1.85)

Neutralizing antibody against Delta (T2) 826.64 (18.02–37930.79) 1308.09 (1058.90–1615.92) 0.165 1.58 (0.81–3.08)

Neutralizing antibody against Delta (T4) 256.12 (59.76–1097.74) 273.94 (202.12–371.28) 0.728 1.07 (0.68–1.68)

Neutralizing antibody against Omicron (T2) 22.89 (9.17–57.16) 96.30 (66.55–139.35) 0.016 4.21 (1.36–13.04)

Neutralizing antibody against Omicron (T4) 18.17 (0.16–2099.28) 37.50 (27.43–51.27) 0.137 2.06 (0.78–5.48)

Cellular immunity (T2) 58.98 (26.65–117.30) 91.22 (27.910–298.17) 0.803 1.55 (0.43–5.53)

Cellular immunity (T3) 28.38 (14.980–53.76) 17.93 (6.52–49.32) 0.716 0.63 (0.20–2.01)

T0, day of the first dose of vaccine; T1, 4 weeks after the first dose; T2, 4 weeks after the second dose; T3, 3 months after the first dose; T4, 6 months after the first dose.
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