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skin diseases
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The skin is the outermost layer and largest organ in the human body. Since the

skin interfaces with the environment, it has a variety of roles, including

providing a protective barrier against external factors, regulating body

temperature, and retaining water in the body. It is also involved in the

immune system, interacting with immune cells residing in the dermis.

Caveolin-1 (CAV-1) is essential for caveolae formation and has multiple

functions including endocytosis, lipid homeostasis, and signal transduction.

CAV-1 is known to interact with a variety of signaling molecules and receptors

and may influence cell proliferation and migration. Several skin-related

disorders, especially those of the inflammatory or hyperproliferative type

such as skin cancers, psoriasis, fibrosis, and wound healing, are reported to

be associated with aberrant CAV-1 expression. In this review, we have explored

CAV-1 involvement in skin physiology and skin diseases.
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1 Introduction

The skin is the outermost layer and the largest organ in the human body. It consists of

three layers: the epidermis, dermis, and skin-associated adipose tissue (1). The skin-

associated adipose tissue includes dermal and subcutaneous adipocytes. Moreover,

although these two layers are not physically distinguished in humans, they are likely

functionally different. The epidermis is the outermost of the three layers, primarily

consisting of keratinocytes, melanocytes, immune cells, and Merkel cells (2). The dermis

is the layer beneath the epidermis, and its main components are non-cellular connective

tissue collagen, elastic fibers, and the extracellular matrix (ECM), as well as cellular

components, fibroblasts, macrophages, and mast cells (3). The dermis also contains skin

appendages, such as hair follicles, sebaceous glands, and sweat glands, which are

important components of the skin (3). Adipocytes are the prominent cells in the

adipose tissue and are derived from mesenchymal fibroblast precursor cells known as

preadipocytes. Immune cells are the second most common cell type (4).

Since the skin interfaces with the environment, it plays a variety of roles, which

include providing a protective barrier against environmental factors such as bacteria or
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mechanical stress, regulating body temperature, and retaining

water in the body (5). In addition, the skin plays a role in

immunity by interacting with the immune cells within the

dermis (1). Subcutaneous fat infiltrates the dermis and

increased adipocytes affect the proliferation of dermal

fibroblasts in obese mice (6, 7). Additionally, dermal

adipocytes reportedly modulate dermal structure by regulating

extracellular matrix production in dermal fibroblasts (8).

Caveolin-1 (CAV-1) is a 22 kDa membrane protein

necessary for caveola formation. Caveola regulates a variety of

signaling molecules and receptors that interact with the CAV-1

scaffolding domain (CSD), which corresponds to amino acid 82-

101 of CAV-1 (9). CAV-1 has multiple functions, such as

endocytosis, lipid homeostasis, and signal transduction; it is

involved in cell proliferation and migration by associating

with interacting molecules and receptors, such as Src family

tyrosine kinases, integrins, epidermal growth factor receptor

(EGFR), and transforming growth factor (TGF) receptors

(10). Thus, numerous researchers have hypothesized the

involvement of CAV-1 in the pathogenesis of inflammatory or

hyperproliferative skin disorders, such as skin cancers, psoriasis,

fibrosis, and wound healing. Although the contribution of CAV-

1 in cell migration remains controversial depending on the cell

type and the environment (11–14), CAV-1-regulated cell

migration has also been reported to play a key role in skin

diseases (15–19). CAV-1 involvement in skin diseases have

garnered substantial attention (20–24). In this study, we

focused on the latest findings on the role of CAV-1 in various

skin diseases. The expression of CAV-1 in skin disorders has

been investigated using several techniques (Table 1).
2 Distribution of CAV-1 in the skin

CAV-1 is expressed in most components of the skin,

including keratinocytes (46), melanocytes (47), dermal

fibroblasts (28), subcutaneous white adipocytes (48) and

immune cells (49). CAV-1 expression in the epidermis is most

prominent in the basal and granular layers (50). CAV-1 has been

suggested to regulate keratinocyte differentiation (46, 50).

Decreased CAV-1 levels in keratinocytes and fibroblasts result

in enhanced cell proliferation (27, 28). In melanocytes, skin

pigmentation induced by UV irradiation may be modulated by

CAV-1 through regulation of cyclic adenosine monophosphate

(cAMP) levels (47). In adipocytes, caveolae have been reported

to regulate insulin signaling (51), fatty acid transportation (52),

triacylglycerol synthesis (53) and adiponectin secretion (48),

indicating the involvement of CAV-1 in metabolic dysfunction.

CAV-1 is also expressed in immune cells; notably, aberrant

CAV-1 expression was found in the monocytes of patients with

systemic sclerosis and psoriasis and CAV-1 deficient monocytes

are hypermigratory towards disease sites (15, 31).
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Moreover, CAV-1 is expressed in the hair follicles (54). In

C57B6 mice, CAV-1 was found in the bulge area, in which cells

are multipotent and have high proliferative potential, and CAV-

1 was expressed during all stages of the hair growth cycle: anagen

(growing phase), catagen (transition phase), and telogen (resting

phase) (54). CAV-1 expression is upregulated in the bulge area

of patients with frontal fibrosing alopecia compared to healthy

controls, and it is speculated that CAV-1 upregulation may

contribute to the pathogenesis of alopecia (45).

While there have been no studies investigating the

expression of CAV-1 in other skin appendages, sweat glands,

and sebaceous glands, Kruglikov et al. speculated that CAV-1

may be involved in sebocyte function because CAV-1 interacts

with TGF-b signaling and adiponectin, which regulate lipid

production (55, 56).
3 Role of CAV-1 in skin aging

Skin aging is characterized by functional and regenerative

potential losses (57). Chronologically-aged skin typically shows

decreased numbers of keratinocytes, fibroblasts, and mast cells,

resulting in epidermal and dermal atrophy. A significant

expansion of the dermal white adipose tissue is also observed

in aged skin (58, 59). During skin aging, senescent fibroblasts

have impaired growth factor production and activated matrix

metalloproteinases (MMPs), leading to decreased cell

proliferation and enhanced degradation of the ECM, including

collagen (60). Increased production of reactive oxygen species

(ROS) (61), mitochondrial dysfunction (62), and DNA and

oxidative damage caused by external factors (63) may

contribute to age-related skin changes and pathologies.

CAV-1 contributes to cellular senescence, and its

upregulation has been observed in senescent cells of several

types, such as epithelial cells, fibroblasts, mesenchymal stem

cells, and bone marrow stromal cells (64–66). Additionally,

CAV-1 knock-out mice showed aging-related phenotypes

along with mitochondrial dysfunction (67). The role of CAV-1

in cellular senescence is not fully understood and remains

disputed. One study suggested that upregulation of CAV-1 by

oxidative stress promotes G1 arrest and activation of the p53/

p21 dependent pathway, which induces premature senescence in

dermal fibroblasts (68), whereas another study showed that

CAV-1 upregulation in human diploid fibroblasts inhibits cell

proliferation by directly binding to growth factor receptors,

causing senescence-associated growth arrest (69). Furthermore,

CAV-1 silencing in senescent human diploid fibroblasts resulted

in morphological changes to a young cell-like small spindle

shape, probably by altering focal adhesion and actin stress fiber

formation due to focal adhesion kinase and Rho family GTPase

regulation (70). In contrast, CAV-1 deficiency induces cellular

senescence via the p53/p21-dependent pathway along with
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mitochondrial dysfunction in several cell lines, including human

diploid fibroblasts (71, 72).

The expression of CAV-1 is higher in the skin and

macrophages from older mice (24 months of age) compared to

that of younger mice (8-10 weeks) (73), and aged human skin

(70–80 years old) has higher CAV-1 expression levels than those

of teenagers (74). A negative correlation was observed between

the expression levels of CAV-1 and collagen I in chronologically

aged human and mouse skin, and CAV-1 silencing or depletion

facilitated collagen production in dermal fibroblast (74).
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Senescent dermal fibroblasts induced by diabetes show CAV-1

upregulation, which may be due to oxidative stress, while

inhibition of CAV-1 prevents diabetes- and oxidative stress-

induced premature senescence and enhances wound

healing (68).

Impaired cell proliferation is a characteristic of aged tissues.

CAV-1 regulates cell proliferation in the epidermis and dermis

(18, 25, 75). Keratinocyte proliferation is regulated by CAV-1,

likely through the EGFR signaling pathway and Janus kinase

(JAK)-signal transducer and activator of transcription (STAT)
TABLE 1 Aberrant expressions of CAV-1 in human skin diseases.

Type of skin disease Samples Method Results

Psoriasis Epidermis IHC (25–27)
RT-PCR and WB (27)

Downregulated
Downregulated

Whole skin tissue WB (26) Downregulated

Human PBMC RT-PCR and WB (15) Downregulated

Human Monocytes RT-PCR, WB and IF (15) Downregulated

Systemic sclerosis
(Dermal fibrosis)

Dermis IF (28), IHC (29) Downregulated

Subcutaneous adipose tissue IF (30) Downregulated

Human dermal fibroblasts WB (28, 29) Downregulated

Human Monocytes WB (31) and IF (30–32) Downregulated

Human PMNs WB and IF (31) Downregulated

Human AT-MSCs WB and IF (33) Downregulated

Wound
healing

Acute wound (Human ex vivo
wound model)

Skin tissue RT-PCR, IHC (34) Downregulated

Chronic wound
(Diabetic foot ulcer)

Diabetic foot ulcer tissue RT-PCR (34) Upregulated

plasma ELISA (35) Upregulated

Hypertrophic scar Human dermal fibroblasts RT-PCR, WB and IF (36) Downregulated

Keloid Human dermal fibroblasts RT-PCR (37), WB (37,
38) and IF (38)

Downregulated

Basal cell carcinoma (BCC) Human BCC tissue
(Nodular and sclerosing type)

cDNA micro array (39) Upregulated

Human BCC tissue
(Nodular type and infiltrative type)

IHC (40) Downregulated

Human BCC tissue
(No pathologic type information)

IF (41) Downregulated

Squamous cell carcinoma (SCC) Human SCC tissue
(Poorly differentiated type)

IHC (40) Downregulated

Human SCC tissue
(No pathologic type information)

IF (41) Downregulated

Melanoma Serum ELISA (42) Upregulated

Primary melanoma cell lines
(WM-115, WM-35, MM200, WM35, WM1650, ME1402,
ME10538, WM1341, WM239A)

WB (43, 44) Upregulated (Compared to
primary melanocyte)

Metastatic melanoma cell lines
(SK-MEL-28, SK-MEL-5, A-375)

WB (43) Downregulated (compared to
primary MM cell lines)

Metastatic melanoma cell lines
(WM1158, COLO793 and DX3)

WB (44) Upregulated (compared to
melanocyte)

Tissue (primary lesions) IHC, RT-PCR (43) Downregulated

Tissue (metastatic lesions) IHC, RT-PCR (43) Downregulated

Tissue (vertical growth phase) IHC (44) Upregulated

Tissue (metastatic lesions) IHC (44) Upregulated

Frontal fibrosing alopecia Hair follicle (basal layer of outer root sheath cells) IF (45) Upregulated
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pathway (25, 75), and fibroblast cell proliferation is regulated by

CAV-1, likely through phosphatidylinositol 3-kinase (PI3K)/Akt

and Rho-associated kinase (ROCK) (18). Interestingly, the

EGFR signaling, JAK/STAT, ROCK, and PI3K/Akt pathways

possibly interact with p53-dependent pathways in other

cell types (76–79), suggesting that CAV-1 may regulate

cell proliferation in senescent keratinocytes and fibroblasts

through these signaling pathways by interacting with p53-

dependent pathways.

CAV-1 also affects the differentiation of keratinocytes,

fibroblasts, and adipocytes. Sando et al. showed that CAV-1

expression is increased during the differentiation of human

keratinocytes, possibly associated with protein kinase C (50).

CAV-1 is also involved in human adipocyte differentiation, and

was upregulated in mature adipocytes derived from human

mesenchymal stem cells (hMSC) isolated from subcutaneous

adipose tissue along with polymerase I and transcript release

factor (PTRF). PTRF is essential for caveolae formation and is

highly expressed in adipose tissue. PTRF and CAV-1

upregulation disrupted adipogenesis in a mouse adipocyte cell

line (3T3-L1 cells) (80). PTRF upregulation in hMSC resulted in

impaired cell proliferation and differentiation into adipocytes,

and PTRF silencing promoted new adipocyte formation along

with decreased p53 expression levels (81). Taken together,

these results suggest that CAV-1 upregulation may play an

important role in skin aging by modulating cell proliferation,

differentiation, and abnormal regulation of ECM deposition

through various pathways via crosstalk with the p53/p21

dependent pathway.
4 Role of CAV-1 in skin diseases

4.1 Role of CAV-1 in psoriasis

Psoriasis is a chronic immune-mediated inflammatory skin

disease characterized by scaly skin plaques (82). Its pathogenesis

is thought to be by inflammatory cytokines (e.g., tumor necrosis

factor [TNF]-a, interleukin [IL]-17, IL-22, and IL-23) produced

by immune cells infiltrating the dermis, leading to epidermal

hyperproliferation (83). Psoriasis not only affects the skin but is

also systemic, which results in an increased risk of comorbidities,

such as psoriatic arthritis, cardiovascular disease, diabetes

mellitus, obesity, and atherosclerosis, compared with the

general population (84, 85).

We and others have reported that CAV-1 expression is

decreased in the epidermis of patients with psoriasis (25–27).

We found that psoriasis-related cytokines, namely IL-17, IL-22,

IL-1b, and TNF-a, reduced CAV-1 expression in human

keratinocytes. Reduced CAV-1 expression in keratinocytes

showed enhanced cell proliferation via increased STAT-3

activation and enhanced cytokine production, including C-X-

C chemokine ligand 8 (CXCL8), CXCL9, C-C chemokine ligand
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20 (CCL20), and IL-6 (27). In patients with psoriasis, CAV-1

expression is also reduced in monocytes, and CAV-1 silencing in

healthy monocytes enhances the production of cytokines such as

IL-1 and IL-6 and migration towards CCL2 (15). Decreased

CAV-1 expression in monocytes was reversed when patients

were treated with anti-TNF-a antibodies, suggesting that

psoriasis-related inflammatory cytokines also reduce CAV-1

expression in monocytes (15). Moreover, circulating

monocytes in patients with psoriasis are innately polarized to

the M1 phenotype, which contributes to the development of

atherosclerosis (86). Silencing of CAV-1 expression in healthy

monocytes prompts the polarization of macrophages to the M1

phenotype and might increase the risk of atherosclerosis by

increasing macrophage oxidized low-density lipoprotein uptake

(86). Leptin, an adipocyte-derived hormone, is correlated with

obesity and psoriasis severity (87, 88). CAV-1 and the leptin

receptor are co-localized in keratinocytes, and CAV-1 silenced

human keratinocytes produce more IL-6 by co-stimulation with

leptin and IL-17, suggesting that obesity deteriorates psoriasis by

enhancing cytokine production in CAV-1 deficient psoriasis

keratinocytes (89).

An in vivomodel also revealed the contribution of CAV-1 to

the pathogenesis of psoriasis. Imiquimod (IMQ)-induced

psoriasis-like inflammation in mice showed reduced CAV-1

expression in the epidermis and monocytes, and restoration of

CAV-1 function improved the severity of skin inflammation and

monocyte migration into the dermis (15, 27).

This evidence suggests that CAV-1 plays an important role

in the development of psoriatic skin inflammation and its

comorbidities, and may accelerate chronic inflammation.
4.2 Role of CAV-1 in fibrotic disorders

4.2.1 Systemic sclerosis
Systemic sclerosis (SSc) is an autoimmune-triggered disease

characterized by vasculopathy and excessive collagen

accumulation in the skin and internal organs with a high

mortality (90). The ECM of the skin and internal organs

promotes fibrosis (91, 92), and fibroblasts are considered

effector cells (93). Several growth factors, such as TGF-b,
connective tissue growth factor, and platelet-derived growth

factor, can activate the pro-fibrotic response of fibroblasts (94,

95). A reduction of the thickness of dermal adipose layer is

observed in SSc (96, 97), and dWAT is also reportedly involved

in the development of skin fibrosis through adipocyte-

myofibroblast transition (98).

Reduced CAV-1 expression has been reported in SSc-

affected skin and dermal fibroblasts isolated from patients with

SSc (28). TGF-b1 decreases CAV-1 expression in human skin

fibroblasts in a time and dose-dependent manner (37). Restoring

CAV-1 function in these fibroblasts suppresses TGF-b1-induced
alpha-smooth muscle actin (a-SMA) by inhibiting the
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phosphorylation of Smad3, indicating that CAV-1 reduction

enhances TGF-b signaling in the fibrotic response. In addition,

TGF-b receptors may be directly inhibited by caveolae-mediated

internalization (99).

Fibroblasts differentiated from monocytes that migrate into

the dermis are also involved in SSc pathogenesis (16). Monocytes

from patients with SSc have reduced CAV-1 expression,

increased C-X-C chemokine receptor 4 expression, and are

hypermigratory towards its receptor in lung tissue (31, 100).

Circulating and dermal monocytes in patients with SSc

expressing C-C chemokine receptor type 5 (CCR5) and its

ligands are highly expressed in fibrotic skin tissue.

Additionally, complementary CAV-1 inhibit CCR5 expressing

monocyte migration, indicating that CAV-1 is involved in

dermal fibrosis by modulating monocyte and fibrocyte

recruitment (16).

The functional role of CAV-1 in the pathogenesis of SSc was

confirmed in an in vivomodel. CAV-1 knock-out mice showed a

fibrotic skin phenotype (28, 101), and skin fibroblasts from these

mice showed significantly increased expression of collagen, a-
SMA, and IL-6, and decreased MMP-3 expression compared to

those of wild-type mice. Restoring CAV-1 function decreased

TGF-b1-induced fibrotic markers and inflammatory cytokines

in fibroblasts from CAV-1 knock-out mice, and reduced fibrotic

responses in a bleomycin (BLM) -induced skin fibrosis mouse

model (16, 28).

4.2.2 Wound healing
Wound healing is the process of skin regeneration in

damaged tissue and includes increased cell proliferation, cell

adhesion, and cell migration. Optimal wound healing occurs

through the following processes (1): coagulation and hemostasis

(2); inflammation (3); proliferation; and (4) wound remodeling

with scar tissue formation (102, 103). CAV-1 contributes to this

process by regulating cell proliferation and migration (34).

CAV-1 overexpression in the corneal epithelium of elderly

individuals is associated with delayed wound healing (64). Jozic

et al. reported an upregulation of CAV-1 in skin biopsy samples

from non-healing chronic wound edges, and downregulation of

CAV-1 was observed in acutely healing wounds, especially

during the first 48 h of wound healing (34). They also showed

that CAV-1 negatively regulates both the proliferation and

migration of keratinocytes by associating with the

glucocorticoid receptor and EGFR. The same authors also

showed that depleting caveolae using a cholesterol-removing

agent (methyl-b-cyclodextrin or mevastatin) restored EGF

signaling, facilitated keratinocyte migration, and accelerated

wound closure (34, 75). Further, they revealed the mechanisms

of CAV-1-associated keratinocyte migration in wound healing.

Increased cortisol production at wound site leads upregulation

of CAV-1, which inhibit a glucocorticoid receptor repressor

ArhGAP35, resulting in increased activation of Ras homolog
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family member A (RhoA) and diminished activation of Cell

Division Cycle 42 (Cdc42) promoting keratinocyte migration

and wound closure (17).

4.2.3 Scarring (hypertrophic scars and keloids)
Hypertrophic scars (HTS) and keloids are thick raised scars

commonly observed during the wound healing process as a

result of an abnormal tissue response to injury. HTS and keloids

have excess ECM components such as collagen, in the dermis

and subcutaneous skin tissue and are sometimes considered to

be fibroproliferative skin disorders. Both scar types have a

similar disease spectrum, but HTS tends to be milder and does

not expand beyond the boundaries of the original skin injury

compared with keloids (104, 105). Some proinflammatory

factors such as TGF-b, IL-1a, IL-1b, IL-6, and TNF-a, are
upregulated in HTS and keloid tissues, making the skin more

susceptible to trauma or injury (106, 107). CAV-1 expression

was markedly decreased in HTS and keloid-derived human

fibroblasts, and reduced CAV-1 expression mediates fibrotic

responses by modulating TGF-b signaling, similar to SSc

(36, 37).

Microarray results from seven Japanese patients with keloids

revealed that Runt-related transcription factor 2 (RUNX2) is an

upstream regulator of ECM (38). RUNX2 is a transcription

factor (108) known to mediate ECM remodeling and induce

aortic fibrosis (109). It regulates cell proliferation, migration, and

the expression levels of ECM-related proteins and promotes

apoptosis, possibly by suppressing the PI3K/Akt signaling

pathway in keloid fibroblasts (18). RUNX2 expression is

upregulated in keloid fibroblasts, and silencing of CAV-1 in

keloid fibroblasts results in increased RUNX2 expression, which

suggests that CAV1 plays a critical role in keloid formation by

suppressing RUNX2 (38).

Phosphorylated CAV-1 and ROCK are upregulated in the

peripheral skin tissue surrounding keloids, but not in normal

skin and keloid sites, and CAV-1/ROCK expression correlates

with a high inflammatory and proliferative status (110). The

ROCK pathway is associated with phosphorylated CAV-1 (14),

and this pathway is reported to contribute to cell proliferation

(111), suggesting that the CAV-1/ROCK pathway may

contribute to keloid expansion (110).
4.3 Role of CAV-1 in skin cancer

The function of CAV-1 as an oncogene or tumor suppressor in

cancer progression remains controversial. Aberrant CAV-1

expression has been reported in several types of cancers and

CAV-1 expression level sometimes depends on the tumor’s

pathological subtype or clinical staging. For example,

downregulation of Cav-1 has been reported in pancreatic cancer

cell lines (112), primary and metastatic ovarian cancers (113),
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metastatic breast cancer cell lines (114), primary laryngeal

squamous cell carcinoma cell lines (115), low-grade lung

adenocarcinomas (116) and Barrett esophageal adenocarcinoma

correlating with poor survival rates (117). In contrast, increased

CAV-1 expression has been reported in moderate to severe prostate

cancer (118), bladder cancer correlating with tumor grade and

metastasis (119), metastatic renal cancer (120), and moderate to

severe SCC of the oral cavity (moderate to severe), larynx,

oropharynx, hypopharynx, esophagus (metastatic), and cervix

(low grade) (121–124). Here in under, we explore the role of

CAV-1 in cutaneous cancer.

4.3.1 BCC
Basal cell carcinoma (BCC) is the most common skin cancer

and frequently develops in areas of the skin exposed to the sun,

such as the face. BCC typically grows slowly and rarely

metastasizes (125).

CAV-1 expression in BCC remains controversial.

Microarray profiles of 50 BCC samples in one study showed

that CAV-1 gene expression was upregulated; they proposed that

CAV-1 may play a dynamic role in controlling the slow

progression of BCC by decreasing cellular motility since CAV-

1 is known to inhibit epidermal growth factor-induced

migration in other cell types (11, 39). In contrast, Gheida et al.

showed a significant downregulation of CAV-1 in BCC

pathological samples compared to healthy controls.

Furthermore, CAV-1 expression was significantly reduced in

aggressive types (micronodular, infiltrative, and metatypical

BCC) compared to non-aggressive types (nodular and

superficial BCC) of BCC, suggesting that CAV-1 expression

levels could reflect the biological behavior of BCC and aid in the

detection of high-risk patients with poor prognosis (40).

4.3.2 SCC
Cutaneous SCC (cSCC) is the second most common type of

non-melanoma skin cancer, after BCC. It is characterized by an

abnormal, accelerated growth of squamous cells, requires

surgical excision in most cases, and may lead to recurrence,

metastasis, and death (126).

CAV-1 is significantly decreased in poorly differentiated types

of cSCC, compared with moderately and well-differentiated types

(40, 41). Trimer et al. showed that CAV-1 overexpression reduced

cell growth in mouse and human SCC cell lines (127). In the same

report, silencing CAV-1 in a mouse SCC cell line resulted in

hyperactivation of the ERK1/2 and mitogen-activated protein

kinase (MAPK) signaling pathways and increased activator

protein (AP)-1 transcription factor activation. CAV-1

colocalizes and interacts with connexin 43, a known tumor

suppressor (41), and it has been speculated that loss of CAV-1

affects the localization of connexin 43 and increases the activation

of Ras/AP-1 signaling (40). Taken together, these findings indicate

that aberrant CAV-1 expression in cSCC results in uncontrolled
Frontiers in Immunology 06
cell proliferation, survival, and invasion by altering multiple

transduction pathways.

4.3.3 Malignant melanoma
Cutaneous malignant melanoma (cMM) is a skin cancer

that develops from melanocytes and melanin-producing

cells. cMM is a life-threatening cancer because its proliferative

and metastatic status is highly potentiated, and causes

approximately 55500 deaths (0.7% of all cancer deaths)

worldwide annually (128).

Nakashima et al. reported that CAV-1 overexpression in a

human melanoma cell line resulted in decreased cell growth

and motility (129), and other groups reported that high CAV-1

expression in stromal cells and melanoma cells was associated

with longer survival in cMM patients with lymph

node metastasis (130), and CAV-1 overexpression suppressed

subcutaneous tumor growth (131). In contrast, some

studies have reported that CAV-1 expression enhances

metastasis in murine and human melanoma cell lines along

with reduced E-cadherin and Rac-1 activation (131, 132). The

same group reported that CAV1-enhanced melanoma cell

migration, invasion, and metastasis in vivo via tyrosine-14

phosphorylation of CAV-1 by Src family kinases. Moreover, a

transient decrease in CAV-1 phosphorylation by these kinase

inhibitors prevented the early steps of lung metastasis in a

murine melanoma cell line promoted by CAV-1 (132, 133).

The same authors also revealed that CAV-1expressing murine

melanoma cell lines showed decreased oxygen consumption, and

CAV-1 expressing cells had enhanced intracellular ROS, leading

to increased cell migration and invasion (19). ROS are reported

to be highly expressed in cMM cells and are thought to induce

DNA damage, leading to genetic alterations (134).

Aberrant CAV-1 expression has been implicated in

chemotherapy efficacy. The MAPK signaling pathway plays a

key role in cMM, and several BRAF and MEK inhibitors (BRAFi

and MEKi, respectively) have been approved for patients with

cMM harboring BRAFV600 mutations. In BRAF-mutated cMM,

the efficacy of treatments targeting the MAPK pathway is high,

but can decline because of the development of resistance (135).

Das et al. reported the involvement of CAV-1 in BRAF inhibitor-

resistant cMM cells, in which the upregulation of CAV-1 in

BRAF inhibitor-resistant cMM cells led to overactivation of

MAPK signaling and resulting in the suppression of BRAF

inhibitors (136).
4.4 Role of CAV-1 in skin infection

Since caveolae directly interact with outer pathogens, such as

viruses and bacteria, by modulating endocytosis (137, 138) and

CAV-1 is expressed in all types of immune cells (49), CAV-1 is

thought to be involved in skin infection. However, only a few
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studies have reported on CAV-1 and skin infections. Spaan et al.

showed that CAV-1 involvement is associated with ovarian

tumor deubiquitinase with linear linkage specificity (OTULIN)

in severe skin necrosis after S. aureus infection (139). OTULIN is

a linear deubiquitinase and a negative regulator of nuclear factor

kB (NF-kB) signaling in the context of immunity and

inflammation (140, 141), and patients with OTULIN

mutations are known to be susceptible to bacterial or viral

infections (139, 142). In OTULIN-deficient patients, CAV-1

accumulated in dermal fibroblasts and retained ADAM10, a

cell surface receptor of a-toxin, suggesting that CAV-1

accumulation enhances the cytotoxicity of staphylococcal a-
toxin (139). These results might explain why staphylococcal

scalded skin syndrome (SSSS) is more severe in adults. SSSS is

caused by the a -toxin produced by S. aureus, with blisters that

spread to a large part of the body. Most patients with SSSS are

infants and children, and the mortality rate is approximately 4%;

however, when adults develop SSSS, the mortality rate increases

to 60% (143). High CAV-1 expression in adult skin (74) may

promote sensitivity to staphylococcal a-toxins. For other skin-
resident bacteria, such as cutibacterium acnes and

staphylococcus epidermidis, no study has reported the

involvement of CAV-1 in the diseases caused by these

bacteria. However, CAV-1 can possibly play some roles in

infection with C. acnes or S. epidermidis since CAV-1 can be

involved in the endocytosis pathway of some types of bacteria

(144–146). Kruglikov et al. speculated that CAV-1 is involved in

C. acnes infection (55).

(blank)For viral infections, several studies have reported on

the internalization of the human papilloma virus (HPV) and

herpes simplex virus 1 (HSV-1) (147–149). High-risk HPV

infections, including HPV types 16, 18, and 31, are linked to

Bowen’s disease (epidermal SCC in situ) (150). HPV type 31

enters keratinocytes via caveolae-dependent endocytosis (149,

151), suggesting that CAV-1 may affect tumor development by

controlling HPV infection in keratinocytes. In contrast, HPV

type 16 and HSV-1 internalization are not CAV-1 dependent

(147–149).
5 CAV-1 as a therapeutic target in
skin diseases

Various studies have suggested that the loss or gain of CAV-1

function may improve disease phenotype. The depletion of

caveola accelerates wound closure by facilitating keratinocyte

proliferation and migration (34, 75), and downregulation of

CAV-1 in cMM enhances the efficacy of BRAF inhibitor

treatment (136). Additionally, restoration of CAV-1 function

may improve disorders associated with CAV-1 deficiency. To

compensate for CAV-1 function, the CSD peptide (CSD, amino
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acids 82–101 of CAV-1) was used in several experimental settings.

The CSD peptide has a sequence equivalent to CSD and is

synthesized as a fusion peptide on the carboxyl-terminus of the

antennapedia internalization sequence, which can cross the

plasma membrane and functionally complement CAV-1 (152).

To observe the effect of the CSD peptide in psoriasis locally

or systemically, we treated mice with IMQ-induced psoriasis-

like inflammation by subcutaneous or intraperitoneal injections.

Both CSD peptide administration routes in mice with IMQ-

induced psoriasis-like inflammation showed a significantly

improved phenotype and fewer infiltrating cells in the dermis

compared to control mice, suggesting that CSD peptide likely

improved inflammation through keratinocytes or monocytes

(15, 27).

In SSc, intraperitoneal administration of CSD peptide in

mice improved BLM-induced dermal fibrosis and lipodystrophy

and attenuated monocyte migration into the dermis (16). In

addition, CSD treatment of wild-type mice, which did not

receive BLM, promoted thickening of the adipose cell layer (16).

In HTS and keloid-derived fibroblasts, CSD peptide was

found to decrease ECM production in a mitogen-activated

protein kinase-dependent manner and decrease TGF-b
receptor I, suggesting that CSD peptide possibly ameliorates

fibrosis in HTS and keloids (36, 37).

CSD subdomains (corresponding to amino acids 82-89, 88-

95, and 94-101 of CSD) have also been reported to improve the

skin and lung fibrosis phenotypes in BLM-treated mice. Bone

marrow monocytes isolated from BLM-treated mice showed

greatly enhanced migration in vitro towards CXCL12, and

treatment with CSD and its subregions in these mice

suppressed enhanced migration (153).

In conclusion, in this review, we have explored the role of

CAV-1 in skin diseases. CAV-1 is involved in various skin

diseases by regulating cell proliferation, migration, and

enhancing proinflammatory cytokine production. Depletion or

complementation of CAV-1 may improve hyperproliferative or

inflammatory status, indicating that CAV-1 is a good

therapeutic target in skin-related diseases.
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