
Frontiers in Immunology

OPEN ACCESS

EDITED AND REVIEWED BY

Ya-Xiong Tao,
Auburn University, United States

*CORRESPONDENCE

Xiaofeng Yang
xfyang@temple.edu

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 02 September 2022
ACCEPTED 20 September 2022

PUBLISHED 04 October 2022

CITATION

Lu Y, Sun Y, Xu K, Shao Y, Saaoud F,
Snyder NW, Yang L, Yu J, Wu S, Hu W,
Sun J, Wang H and Yang X (2022)
Editorial: Endothelial cells as innate
immune cells.
Front. Immunol. 13:1035497.
doi: 10.3389/fimmu.2022.1035497

COPYRIGHT

© 2022 Lu, Sun, Xu, Shao, Saaoud,
Snyder, Yang, Yu, Wu, Hu, Sun, Wang
and Yang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Editorial
PUBLISHED 04 October 2022

DOI 10.3389/fimmu.2022.1035497
Editorial: Endothelial cells as
innate immune cells

Yifan Lu1†, Yu Sun1†, Keman Xu1, Ying Shao2, Fatma Saaoud1,
Nathaniel W. Snyder2, Ling Yang3, Jun Yu2, Sheng Wu2,
Wenhui Hu2, Jianxin Sun4, Hong Wang2 and Xiaofeng Yang1,2*

1Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine,
Philadelphia, PA, United States, 2Metabolic Disease Research and Thrombosis Research Center,
Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine,
Philadelphia, PA, United States, 3Department of Medical Genetics and Molecular Biochemistry,
Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States, 4Center for
Translational Medicine, Department of Medicine, Simmel Medical College, Thomas Jefferson
University, Philadelphia, PA, United States

KEYWORDS

endothelial cells as immune cells, aorta as immune organ, secretome, vascular
inflammation, trained immunity
Editorial on the Research Topic:

Endothelial cells are innate immune cells, and aorta is an immune
organ in pathologies
Introduction

With the great effort and support from the authors and editorial team, our Research

Topic entitled “Endothelial cells as innate immune cells” in Frontiers in Immunology,

Molecular Innate Immunity Section has achieved a great success and have attracted so far

6,775 views and numerous submissions. Endothelial cells are the innermost cell type

lined along vessels in all the organs and tissues through hosts, indicating their anatomic

and physiological roles in regulating vascular tone, preventing blood components from

leaking and maintaining vascular functions (1). The traditional concept emphasized that

innate immune cells are non-T cells and non-B cells, which migrate from blood

circulation to inflammatory/injury/tumor sites. Our new concept states that immune

responses and inflammation and tumorigenesis are highly coordinated processes.

Regardless of migration and structural cell types, any cell types can be defined as

innate immune cells, which are capable in autonomously sensing danger/pathogen

associated molecular patterns (DAMPs/PAMPs) and providing signaling supports to

these processes via cell membrane proteins (for example, clusters of differentiation, CDs)

and secretomes/cytokines/chemokines/growth factors (2, 3). The pathological roles of

endothelial cells in participating in various inflammations and immune responses were

reported (3). However, immunological characters of endothelial cells have been poorly

characterized due to the fact that endothelial cells have not been recognized as innate

immune cells in the field. To fill in this significant knowledge gap, ten years ago based on
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more than ten major innate immune functional aspects that are

shared by the prototypic innate immune cell type - macrophages

and endothelial cells, we proposed a new concept that

endothelial cells are innate immune cells (2, 4), which was

further supported by our experimental data (5–13) analyses

(Shao et al., 15). The Molecular Innate Immunity field is

continuously evolving, and we greatly appreciate the Molecular

Innate Immunity section editors gave us this opportunity to

organize this Research Topic and work with other investigators

to explore this important topic further. Here, we are excited to

see nearly five publications collected in our topic since

2021 (Table 1).
Trained immunity is a novel
mechanism for persistent
hyperactivation and synergies
between DAMPs/PAMPs

One of the significant progresses in the innate immunity field is

the identification of innate immune memory or trained immunity

(15–18). Ever since investigators found memory adaptive immune

cells such as memory T cells and memory B cells, we have always

been puzzled by two questions whether innate immune cells have

memory functional status for challenged stimuli and whether innate

immune cells have memory cell subtypes similar to that of adaptive

immune cells. In response to danger/pathogen associated molecular

patterns (DAMPs/PAMPs) and conditional DAMPs (19) derived

from injury, lipid peroxidation (15), chronic kidney disease-related

uremic toxins stimulation (20–22), hyperlipidemia, hyperglycemia

(23), hyperhomocysteinemia (24–26), metabolic syndrome,

hypertension, cigarette smoke, bacterial infections, and virus

infections, inflammations take place in vasculature (27). However,

two significant questions remain whether vascular innate immune

cell types including endothelial cells and vascular smooth muscle

cells (VSMCs) have any innate immune memory function to

remember risk factor challenges; and whether innate immune

cells response differently to the second stimulation after exposed
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to the first stimulation. Benefit from immunological, metabolic and

epigenetic research progresses, new innate immune memory

function or trained immunity has been identified. The

inflammatory microenvironment and DAMPs/PAMPs can keep

aortic endothelial cells, VSMCs, monocytes, macrophages and other

innate immune cells persistent hyperactivation and will develop

exacerbated immunologic response to the second stimulation

(trained immunity) (16, 28, Zhong et al.). For current

understanding, trained immunity (15, 16, Zhong et al.) is formed

viametabolic reprogramming (29) and epigenetic memory (10, 30,

31). All the cell types in aorta participate in this process including

but not limited to endothelial cells, VSMCs (21, 32), monocytes,

macrophages, neutrophils, T cells, CD4+ regulatory T cells (Treg)

(33–37) (Ni et al.; Shao et al.; Xu et al., Zhang et al.) and B cells. In

this editorial we will discuss the most recent research and novel

insight in endothelial cells (Shao et al.), macrophages (Barhoumi

et al.; Dominguez et al.; Lai et al.; Li et al.; Zhang et al.) and

neutrophil (Domer et al.; Perez-Figueroa et al.; Rydzynska et al.),

which may contribute to the formation of trained immunity

in aorta.

It has been reported that endothelial cell is an innate

immune cell and can upregulated three major metabolic

pathways including glycolysis pathway, mevalonate pathway

and acetyl-Co-A synthesis to build immunologic memory

by stimulations of various DAMPs/PAMPs such as

lysophosphatidylcholine (LPC) (17). Shao et al. paper further

reported that the expressions of 1311 innate immune

regulators are modulated in 21 human endothelial cell

transcriptomic datasets by various DAMPs/PAMPs including

Middle East Respiratory Syndrome Coronavirus (COVID-19

homologous virus), lipopolysaccharide (LPS), LPC, shear

stress, hyperlipidemia and oxidized low-density lipoprotein

(oxLDL) (Shao et al.). In addition, another major cell type in

the aortic wall, VSMCs can also undergo metabolic

reprogramming to build this immunologic memory by

oxidized low-density lipoprotein (oxLDL) stimulation

(Schnack et al.). Last but not least, it was a well-documented

concept that monocytes and macrophages as prototypic innate

immune cell types can establish trained immunity (38). Recent
TABLE 1 Summary for 5 highlighted studies in Frontiers in Immunology: 2022.

Cell type/mouse
model

Stimulation/condition Finding Reference

Endothelial cell PAMPs/DAMPs Endothelial cells and VSMCs have novel trained immunity via 6 types of secretomes PMID:
35320939

Endothelial cell ox-LDL,TNFa, IL1b PHACTR1 mediates endothelial inflammation Ma et al.

Endothelial cell LPS, Ang II, virus Upregulated RIG-I pathway mediates endothelial cell inflammatory response PMID:
35865527

Endothelial cell PAMPs/DAMPs Endothelial cells should be considered macrophage-like gatekeepers PMID:
35619719

Endothelial cell SARS-CoV-2 Endothelial activation associated with COVID-19 is likely a result of inflammatory responses
initiated by other cells.

PMID:
35837388
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studies further confirmed that the macrophages can be

polarized into pro-inflammatory macrophages (M1), anti-

inflammatory macrophages (M2), tumor-associated

macrophages, adipose tissue macrophages and many other

macrophage subsets (Lai et al.) in different conditions (Zhang

et al.). The LPS/interferon-g or SARS-CoV-2 Coronavirus

spike protein treatment can push pro-inflammatory

macrophage (M1) formation and upregulate ATP-citrate

lyase (ACLY), which is the key enzymes catalyzing metabolic

reprogramming. The M1 macrophages then switch their

metabolism from oxidative phosphorylation (OXPHOS) to

glycolysis (Barhoumi et al.; Dominguez et al.). Finally, in a

recent paper found after transcriptomic and epigenetic

rewiring of granulopoiesis, the trained granulopoiesis

promotes an anti-tumor immune phenotype in neutrophils

(39). In the inflammatory conditions, the secretion of

neutrophil extracellular traps can further stimulate

neutrophils to amplify inflammatory response (Domer et al.;

Perez-Figueroa et al.). All the evidences indicate that aorta can

build the immunologic memory and amplify the immunologic

responses in pathological conditions.
A new concept: Aorta may serve as
an immune organ in pathologies

Because of the ability to provide a niche for immune cell

maturation, differentiation, and activation, lymph nodes and

spleen were defined as a peripheral immune organ (40). Current

understanding in this field indicated that the aorta may have

similar abilities to provide a microenvironment/niche for

endothelial cell phenotype switch to mesenchymal cells (4, 16,

41), vascular smooth muscle cells (VSMCs) phenotype switch to

macrophages (21, 42) and other five different plastic cell types

(43), monocyte differentiation (26, 44, 45), macrophage

differentiation (Zhang et al.; 46, 47), neutrophil activation

(Domer et al.) as well as T cell and B cell differentiation (44,

48, 49). Based on the principle the same as immunologists

previously defined lymph nodes and spleen as immune organs,

in terms of function, the aorta can serve as an immune organ in

pathological conditions. However, the key knowledge gaps are a)

how immune cell differentiation, trans-differentiation, activation

take place in aorta and what are the molecular mechanisms

underlying the processes. A recent paper found the secretomes

(18, 50) (Ni et al.) in aorta play a significant role in providing the

microenvironment for immune cell maturation, differentiation

and activation. In this paper, author found that approximately

53.7% out of 21,306 human protein-encoding genes are classified

into six secretomes including canonical secretome (secretory

proteins with signal peptide), caspase 1-GSDMD secretome,

caspase 4-GSDMD secretome, exosome secretomes, Weibel–

Palade bodies, and autophagy secretome. Those six types of
Frontiers in Immunology 03
secretomes were significantly modulated in the aorta of

pathological condition, including aorta in atherosclerosis,

chronic kidney disease, abdominal aortic aneurysm or

endothelial cell treated with Middle East Respiratory

Syndrome Coronavirus, vascular smooth muscle cell treated

with Angiotensin II (Lu et al.). This finding not only filled the

knowledge gap by providing us a novel insight that aorta may

serve as an immune organ and regulate the immunological

response via six types of secretomes in pathological conditions,

but also raise the potential targets for future therapeutic

interventions for inflammation, cardiovascular disease and

autoimmune disease.

In this editorial, we summarized five significant papers

(Ellen et al.; Lu et al.; Stolarz et al.; Xu et al.) published on our

Research Topic in Frontiers in Immunology, Molecular Innate

Immunity Section to illustrate the most recent understanding on

molecular innate immunity.
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