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Targeted drug delivery
system for ovarian cancer
microenvironment: Improving
the effects of immunotherapy

Hongling Peng, Xiang He and Qiao Wang*

Department of Gynecology and Obstetrics, Development and Related Diseases of Women and
Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases
of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University,
Chengdu, Sichuan, China
Immunotherapies have shown modest benefits in the current clinical trials for

ovarian cancer. The tumor microenvironment (TME) in an immunosuppressive

phenotype contributes to this “failure” of immunotherapy in ovarian cancer.

Many stromal cell types in the TME (e.g., tumor-associated macrophages and

fibroblasts) have been identified as having plasticity in pro- and antitumor

activities and are responsible for suppressing the antitumor immune response.

Thus, the TME is an extremely valuable target for adjuvant interventions to

improve the effects of immunotherapy. The current strategies targeting the

TME include: 1) eliminating immunosuppressive cells or transforming them into

immunostimulatory phenotypes and 2) inhibiting their immunosuppressive or

pro-tumor production. Most of the effective agents used in the above

strategies are genetic materials (e.g., cDNA, mRNA, or miRNA), proteins, or

other small molecules (e.g., peptides), which are limited in their target and

instability. Various formulations of drug delivery system (DDS) have been

designed to realize the controlled release and targeting delivery of these

agents to the tumor sites. Nanoparticles and liposomes are the most

frequently exploited materials. Based on current evidence from preclinical

and clinical studies, the future of the DDS is promising in cancer

immunotherapy since the combination of agents with a DDS has shown

increased efficacy and decreased toxicities compared with free agents. In the

future, more efforts are needed to further identify the hallmarks and biomarkers

in the ovarian TME, which is crucial for the development of more effective, safe,

and personalized DDSs.

KEYWORDS

ovarian cancer, TME (tumor microenvironment), drug delivery system (DDS),
immunotherapy, chemotherapy
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1035997/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1035997/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1035997/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1035997/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1035997&domain=pdf&date_stamp=2022-11-03
mailto:599029823@qq.com
https://doi.org/10.3389/fimmu.2022.1035997
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1035997
https://www.frontiersin.org/journals/immunology


Peng et al. 10.3389/fimmu.2022.1035997
Introduction

Ovarian cancer is the leading cause of gynecological cancer-

associated death (1). Epithelial ovarian cancer, especially high-grade

serous ovarian carcinoma, is the most common histologic subtype.

Most patients newly diagnosed with ovarian cancer can benefit

from the conventional first-line treatment that mainly consists of

debulking surgery and platinum-based chemotherapy. However,

due to difficulties in the early detection of this disease, the majority

of patients with ovarian cancer are initially diagnosed at the

advanced stage (most frequently with extrapelvic peritoneal

metastasis), which is known for its high recurrence rate and poor

prognosis. Although first recurrences are frequently sensitive to

chemotherapy, patients with recurrent disease will eventually face

the problem of chemotherapy resistance. Thus, novel adjuvant

therapies, such as targeted therapy and immunotherapy, are

needed in order to provide new therapeutic opportunities for

these patients. The use of certain targeted therapies, such as anti-

angiogenic agents and poly(ADP-ribose) polymerase inhibitors

(PARPi), have been approved by the US Food and Drug

Administration (FDA) for patients with advanced-stage or

recurrent ovarian cancer either in combination with

chemotherapy or in maintenance monotherapy. In contrast, no

immunotherapeutic agents have been approved by the FDA in

ovarian cancer.

The immunotherapeutic strategies currently investigated in

clinical trials for ovarian cancer include: 1) immune modulators,

such as immune checkpoint inhibitors (ICIs) and immune

regulatory cytokines; 2) cancer vaccines (e.g., dendritic cell

vaccination); and 3) chimeric antigen receptor-modified T

(CAR-T) cell therapy, as a representative variant of adoptive

cell therapies (ACTs) (2–9). Data from important clinical trials

on these therapies were reviewed (Table 1). Despite the rapid

development of immunotherapies in basic research, the

immunotherapy response rates among ovarian cancer patients

remain modest, as shown by these clinical trials. The tumor

microenvironment (TME) is considered a vital factor in the

antitumor efficacy of immunotherapies (10). The TME refers to

an intricate ecosystem of different immune cells, endothelial cells
Abbreviations: ICIs, immune checkpoint inhibitors; ACTs, adoptive cell

therapies; TME, tumor microenvironment; DDS, delivery systems; PARPi,

poly(ADP-ribose) polymerase inhibitor; FDA, Food and Drug

Administration; CAR-T, chimeric antigen receptor-modified T; NKs,

natural killer cells; DCs, dendritic cells; TGF-b, transforming growth factor

beta; TAMs, tumor-associated macrophages; MDSCs, myeloid-derived

suppressor cells; APCs, antigen-presenting cells; MHC, major

histocompatibility complex; CTLs, cytotoxic lymphocytes; CAFs, cancer-

associated fibroblasts; CTLA-4, cytotoxic T lymphocyte antigen-4; PD-1,

programmed cell death protein-1; TAAs, tumor-associated antigens; ECM,

extracellular matrix; EPR, enhanced permeability and retention; PEG,

polyethylene glycol; PLD, pegylated liposomal doxorubicin; TLR, Toll-like

receptor; IL, interleukin.
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(ECs), stromal cells, and the extracellular matrix (ECM), as well

as their networking interactions with tumor cells (11). The TME

plays an important role in cancer development, progression, and

metastasis (12). A drug delivery system (DDS), defined as a

formulation or a device that enables a therapeutic substance to

selectively reach its site of action, can enhance the efficacy and

reduce the side effects of drugs, which makes it a promising

strategy to improve the effects of cancer immunotherapy by

targeting the TME (13). In this review, we discussed the

strategies to improve the efficacy of immunotherapy in ovarian

cancer with DDS, especially for those targeting the TME.
Role of the TME in immunotherapy

In the TME, tumor cells coexist and interact with immune cells

[e.g., macrophages, neutrophils, dendritic cells (DCs), natural killer

(NK) cells, and lymphocytes] and non-immune cells (e.g.,

fibroblasts and ECs) (14). The TME is shaped by tumor cells to

promote tumor development and to respond to stress, stimulation,

and treatment. The total TME cannot be simply explained as a

unitary “antitumor” or “pro-tumor” environment, but rather a

dynamic and plastic system with characteristics such as hypoxia,

nutrient deficiency, inflammation, immunosuppression, and

angiogenesis. The patterns of the TME in solid tumors are tightly

associated with the clinical outcomes of cancer patients (15, 16).
Immune cells

Most solid tumors are infiltrated by myeloid and lymphoid

lineage-derived immune cells within the TME playing significant

roles in the antitumor response or tumor progression.

Tumor-associated macrophages (TAMs) are a major

subpopulation of the myeloid lineage-derived cells in the ovarian

TME playing critical roles in the crosstalk between the TME and

tumor cells. TAMs are highly plastic, with two functional

phenotypes. Depending on the TME, TAMs can differentiate into

either the pro-inflammatory M1 macrophages with antitumor

activity or the anti-inflammatory M2 macrophages with pro-

tumor activity. M1 macrophages possess cytotoxicity and

stimulate immunity. In ovarian cancer, TAMs are predominantly

M2 macrophages, secreting immunosuppressive cytokines and

taking part in regulating T cells, remodeling the ECM, and

angiogenesis (17).

Neutrophils are of the myeloid lineage cells and comprise the

major subpopulation among polymorphonuclear leukocytes,

representing the first line of innate immunity against

pathogens. The detection of neutrophils within the TME is an

indirect parameter of cancer-related inflammation. Tumor-

associated neutrophils can exert antitumor (N1 phenotype) or

pro-tumor (N2 phenotype) functions, depending on the related

stimulating factors and cytokines within the TME.
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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of immature myeloid cells that differ in morphology and

function from terminally differentiated mature myeloid cells (e.g.,

macrophages, neutrophils, and DCs). When activated and

accumulating in peripheral lymphoid tissues and the tumors, they

are implicated in suppressing immunity and promoting tumor

progression. The different function and differentiation of MDSCs

are related to the different phenotype of the TME (18).

DCs, well known as the most powerful or professional

antigen-presenting cells (APCs), are crucial in immune

responses and represent the “bridge” between the innate and

adaptive immune systems (19). There are both myeloid and

lymphoid DCs. After capturing antigens, DCs process them and

present peptides to T cells via the major histocompatibility

complex (MHC), subsequently initiating a series of T-cell

activity. Analogous to TAMs, tumor-infiltrating DCs are of

plasticity. They can be immunogenic or tolerogenic depending

on the TME. DEC205+CD11c+MHC-IIlow immature DCs act on

tumor vascularization and immunosuppression. The

performance of DCs varies at different stages of tumor
Frontiers in Immunology 03
development (20). As shown in mouse models of ovarian

cancer, tumor growth was prevented by infiltrating DCs at the

early stage. However, at the advanced stage, immunosuppressive

phenotypes of DCs were found in the TME (21).

NK cells are innate lymphoid cells and effector cells of the

innate immune system. These cells do not rely on human

leukocyte antigen (HLA)-mediated recognition of neoantigens.

The expressed receptors (such as CD16, NKG2D, and natural

cytotoxicity receptor) on NK cells mediate the killing of tumor

cells (22). NK cells also exert effects on the adaptive immune

response to cancer through secreting inflammatory cytokines.

Defects in NK cell function, such as aberrant receptor expression

or inability to effectively secrete cytotoxic molecules, are possible

mechanisms of tumor immune escape (23).

Lymphocytes are important components of the TME. B

lymphocytes can mediate innate immunity, secrete antibodies,

and act as professional APCs. Within the TME, both the pro-

and antitumor activities of B lymphocytes have been identified in

solid tumors as different subsets playing diverse roles. T

lymphocytes are pivotal in adaptive immunity. CD4+ and
TABLE 1 Clinical trials of immunotherapy in ovarian cancer.

Immunotherapy ID Phase N Drugs Conclusion Reference

ICI NCT02580058
JAVELIN 200

III 361 1) Avelumab; 2) Avelumab + PLD; 3) PLD No benefit (2)

NCT03038100
IMagyn050

III 1,300 1) Atezolizumab + PC + bevacizumab; 2) Placebo + PC + bevacizumab No benefit (3)

NCT02718417
JAVELIN 100

III 988 1) PC; 2) PC + avelumab, avelumab maintenance; 3) PC, avelumab
maintenance

Terminated –

NCT02608684
PemCiGem

II 24 Pembrolizumab + standard treatment No benefit (4)

NCT02811497 II 28 Durvalumab + DNA hypomethylating agent No benefit (5)

NCT02865811 II 26 Pembrolizumab + PLD Clinical benefit (7)

NCT02431559 II 40 Durvalumab + PLD Clinical benefit (6)

NCT03899610 II 23 Durvalumab + tremelimumab + chemotherapy Clinical benefit (8)

ICI+PARPi+VEGFi NCT03740165
KEYLYNK-
001

III 1,086 1) Pembrolizumab + olaparib; 2) Pembrolizumab + placebo; 3) Placebo
+ PC + bevacizumab

Recruiting –

ICI+PARPi+VEGFi NCT03737643
DUO-O

III 1,056 1) Durvalumab + olaparib; 2) Durvalumab + placebo; 3) Placebo + PC
+ bevacizumab

Recruiting –

CAR-T NCT02498912 I 18 MUC16-CAR-T cells Recruiting –

NCT02159716 I 19 MSLN CAR-T cells Patients showed stable
disease

–

NCT03585764 I 18 FRaCAR-T cells Recruiting –

NCT05225363 I 33 Tumor-associated glycoprotein 72 (TAG72) antigen CAR-T cells Recruiting –

NCT03907527 I 71 PRGN-3005 UltraCAR-T cells (co-express a CAR-targeting MUC16
and IL-15)

Recruiting –

Vaccine NCT02764333 II 27 FRa vaccine (TPIV 200) + durvalumab Clinical benefit –

NCT02346747 II 91 Gemogenovatucel-T vaccine (Vigil) + chemotherapy Clinical benefit (9)

NCT00001827 II 21 P53 vaccine + IL2 Terminated –
fro
ICI, immune checkpoint inhibitor; PARPi, poly(ADP-ribose) polymerase inhibitors; VEGFi, vascular endothelial growth factor inhibitors; CAR-T, chimeric antigen receptor-modified T;
PLD, pegylated liposomal doxorubicin; MSLN, mesothelin; PC, paclitaxel+carboplatin.
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CD8+ T cells are mature T cells in the TME (24). After antigen

presentation, T cells are activated and start to differentiate into

various effector subsets. CD4+ T cells perform a wide variety of

functions and are best known as T helper (Th) cells, including

Th1, Th2, and Th17, and regulatory T cells (Tregs). Tregs inhibit

the activation of immune response and are crucial in the

mechanism of tumor immune escape. CD8+ T cells, known as

cytotoxic T lymphocytes (CTLs), work by specifically

recognizing and killing tumor cells (25). Besides CTLs,

gamma-delta (gd) T lymphocytes can kill ovarian cancer cells

when activated by positive signals. There are several activating

receptors (e.g., NKG2D) and inhibitory receptors that regulate

gd T-cell killing. The presence of tumor-infiltrating lymphocytes

(TILs) has been reported as a positive prognostic factor in a

number of solid cancers, including ovarian cancer (26–29).
Non-immune cells

Cancer-associated fibroblasts (CAFs) are an important type

of stromal cells in the TME and produce various components in

the ECM. Normal fibroblasts can prevent the emergence of

neoplastic lesions and inhibit tumorigenesis. CAFs, on the

contrary, play a role in immune suppression and angiogenesis,

showing pro-tumor function (30). Malfunctioning blood vessels

and excessive ECM within the TME impair blood flow and limit

the delivery of oxygen, nutrients, and antibodies and immune

cells. This results in hypoxia and low pH and induces the

production of molecules with immunosuppressive activities,

such as vascular endothelial growth factor (VEGF).

Angiogenesis, which refers to the formation of new blood

capillaries from preexisting vasculature, generating the tumor-

associated neovasculature, addresses the need to transport

nutrients and oxygen, as well as metabolic wastes and carbon

dioxide, in the TME (31). This creates a vicious cycle in which

angiogenesis can induce immunosuppression in the TME, while

certain suppressive immune cells can induce angiogenesis (32).

ECs are the cells lining the vessels within the TME, which play an

important role in angiogenesis.
Immunosuppressive modulators

Transforming growth factor-beta (TGF-b) is one of the most

important immunosuppressive cytokines. TGF-b proteins are

produced by many cell types, including all white blood cell

lineages, in a latent form. Activated TGF-b complexes with other

factors and binds to TGF-b receptors, physiologically

maintaining immunological self-tolerance and suppressing

cancer. However, within the TME, aberrant TGF-b activation

and signaling promote tumor progression by stimulating

epithelial–mesenchymal transition, angiogenesis, CAF

activation, and immunosuppression (33). TGF-b also regulates
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the generation and functions of many immune cell types,

including promoting the expansion of Tregs and inducing the

polarization of the pro-tumor N2 phenotype of neutrophils (34).

Immune checkpoint molecules are inhibitory receptors that

are expressed on immune cells, negatively regulating immune

response in the TME. Cytotoxic T lymphocyte antigen-4

(CTLA-4) and programmed cell death protein-1 (PD-1) are

the two checkpoint inhibitors garnering the most attention.

CTLA-4 is a negative regulator of T cells that counteracts with

the co-stimulatory molecule CD28. PD-1 is expressed by T cells

and binds to one of the two ligands [programmed death-ligand 1

(PD-L1) and PD-L2] that are expressed on tumor and immune

cells (16, 35). The PD-1/PD-L1 pathway is an important axis for

restricting tumor immunity.
Phenotype of cancer-immune TME

The cancer–immunity cycle mainly consists of the following

processes: 1) release and presentation of tumor-associated antigens

(TAAs); 2) priming and activation of T cells; 3) trafficking of T cells

to tumors; 4) infiltration of T cells into tumors; and 5) recognition

and killing of tumor cells by T cells (36). The cancer-immune TME

in solid tumors has been categorized as “hot” (high

immunogenicity) or “cold” (low immunogenicity), which mainly

depends on the status of immune cell infiltration within the tumor

space. This difference in the cancer-immune phenotype of the TME

suggests that hot tumors exhibit stronger responses to

immunotherapy than do “cold” tumors (37). The cancer-immune

TME can be categorized into threemain phenotypes (Figure 1) (13):

1) immune-desert type, which shows low immunoactivity due to

immunological ignorance (lack of neoantigens), the induction of

tolerance, or a lack of appropriate T-cell priming or activation.

Tumors of this phenotype are the least responsive to ICIs; 2)

immune-excluded type, which is characterized by immune cell

trafficking in the tumor periphery due to a limited chemokine state

or the barriers of vessels, stroma, and ECM. Tumors of this

phenotype are potentially more sensitive to ICIs than those of the

immune-desert phenotype; 3) inflamed type, which refers to a

dysfunctional antitumor immune response with the infiltration of a

number of immune cells (including Tregs, MDSCs, suppressive B

cells, and CAFs). CD8+ CTLs are dysfunctional and exhausted.

Tumors of this phenotype have the most sensitivity to ICIs.

In most cases, ovarian cancer is considered as a cold tumor

and has an immune-desert TME with a low immune cell density

either inside or outside of the tumor (38), which is not likely to

tr igger a s trong immune response or respond to

immunotherapy. Thus, in order to improve the effects of

immunotherapy in ovarian cancer, new strategies are needed

to “normalize” the antitumor immunity within the ovarian

TME, for example, strategies that target the tumor vasculature,

the extravascular barriers, the immunosuppressive status, and

the cancer–immunity cycle (13).
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Role of the DDS in immunotherapy

A DDS is a carrier of a therapeutic substance designed to

control its release, improve its solubility and stability, overcome the

biological barriers, and target the site. The processes of a DDS

include the administration of the therapeutic substance, the release

of the active ingredients, and the subsequent transport of the active

ingredients to the site of action (39–41). Various materials (organic

or inorganic) such as lipids, glycans, and proteins, as well as

synthetic polymers, have been utilized for the development and

improvement of the DDS (42). According to the particle size, the

DDS can be further categorized into nano-, micro-, or macroscale

(43). Here, we focused on the DDS at the nanoscale (nanocarrier),

which is designed and developed based on the application of

nanotechnology (44). Nanocarriers, acknowledged to have

enhanced permeability and retention (EPR) effect, help deliver

chemotherapeutic or immunotherapeutic drugs selectively to

tumors, which results in increased efficacy and reduced systemic

toxicity of drugs (45, 46). A wide variety of platforms have been

investigated as nanocarriers in preclinical and clinical research,

including lipid-based (liposomes), polymer-based (polymeric

micelles, dendrimers, and polymeric nanoparticles), drug-

conjugated (antibody–drug conjugates), and viral and inorganic

nanoparticles (47, 48).
Frontiers in Immunology 05
As described above, the clinical use of immunotherapy in many

solid cancers is confronted with difficulties related to efficacy and

challenges related to safety. With regard to safety, serious adverse

effects such as autoimmunity and nonspecific inflammation limit

the broad implementation of immunotherapy. For example,

systemically administered pro-inflammatory cytokines can lead to

autoimmune toxicities and even result in a “cytokine storm.” Thus,

a DDS can be utilized to provide safer and more effective cancer

immunotherapies (49).
DDS for immune modulators

When it comes to the immunemodulatory agents, the DDS can

improve the pharmacokinetics and biodistributions of the cytokines

and ICIs. Conjugating polyethylene glycol (PEG) has been clinically

tried to improve the half-life and stability of pro-inflammatory

cytokines (50). In order to reduce the toxicity associated with the

systemic administration of drugs, binding cytokines to liposomes or

collagen-binding domains can enable the selective delivery of drugs

to tumors and draining lymph nodes (51, 52). Matrix-binding

molecular conjugates were designed to bind the ICIs to the tumor

(53). With this intratumoral and peritumoral delivery, these

conjugates remain more localized in the TME than the

unmodified ICIs.
A B

C D

FIGURE 1

Three phenotypes of cancer immunity in the tumor microenvironment (TME). (A) Immune-desert type: characterized by a lack of antitumor
immune cells due to low immunogenicity. (B) Immune-excluded type: characterized by immune cells restricted at the tumor periphery due to
tumor vascular barriers and stromal-based inhibition. (C) Inflamed type: characterized by immune cells infiltrating the tumor parenchyma and
expressing pro-inflammatory cytokines, but a failed antitumor immune response. (D) Normalized TME by reversing immunosuppressive
signaling, improving tumor perfusion, and reducing barriers.
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DDS for cancer vaccines

With regard to cancer vaccines, a DDS can protect tumor

antigens from degradation and enable intracellular delivery (49,

54). For example, lipid-based formulations were designed to

improve the instability and inefficient delivery of messenger

RNA (mRNA), which were shown to be efficacious in preclinical

animal models and in initial clinical studies (55, 56).

Furthermore, drug conjugates are utilized to improve the effect

of subunit vaccines (such as peptides) in combination with

molecular adjuvants by targeting DCs in the lymph nodes. The

accumulation of these conjugates in the lymph nodes resulted in

increased T-cell priming, improved antitumor efficacy, and

reduced systemic toxicity in animal models (57). Other

platforms such nanoparticles and dendrimers are also being

investigated as carriers in cancer vaccines (58, 59).
DDS for ACTs

Amajor challenge for ACTs in solid cancers is the localization

of T cells at disease sites. Biomaterial-based DDSs, such as

polymeric scaffolds, have been investigated to solve this issue

(60). Polymeric scaffolds coated with collagen-mimetic peptides

bind antigen-specific T cells and deliver them locally within the

TME (61). Another challenge for ACTs is that the viability and

function of the transplanted cells rapidly decline after

administration. High dosages of adjuvant drugs are required to

maximize the efficacy of ACTs. T-cell-conjugated nanoparticles,

in which an immune-stimulating DDS is conjugated directly to

the surface of T cells, were designed to improve the efficacy (62,

63). DDSs activating T cells in vivo were also designed, which

offered another alternative to conventional ACTs (62). As an

example, synthetic/artificial APCs composed of lipids or polymers

and functionalized with antigens and surface ligands were

designed to mimic APCs in order to activate T cells (64, 65).
DDS for combination therapy

Cancer combination therapy is a promising approach to

improving antitumor efficiency and has been investigated in

preclinical and clinical studies (66). DDSs can also be exploited in

cancer combination treatments and in modulating the

immunogenicity in the TME, especially for immunotherapeutic

strategies for cold tumors. Tumor cells undergoing selective

chemotherapy and radiation can release signals that enhance

immunogenicity and induce the activation of T cells locally or

systematically, which has been reported to induce immunogenic cell

death (ICD) (67). Apart from ICD, chemotherapy is also helpful in
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normalizing the TME by increasing perfusion and alleviating

hypoxia (68). Thus, the combination of chemotherapy and

immunotherapy can provide a synergistic effect in antitumor

treatment. In this combination therapy, DDS helps achieve the

delivery of sustained drug concentrations to enhance the

therapeutic effects and reduce the side effects (69). As an example

of this combination effect, liposomal DDSs were complexed with

PD-L1-blocking signals to form nanoparticles that are targeted to

tumor tissue (70). Mice bearing colorectal tumors were injected

with both these nanoparticles and the chemotherapy drug

(oxaliplatin). The results suggested that oxaliplatin may induce

cold tumors to turn into hot tumors, subsequently making them

susceptible to immunotherapy, exhibiting reduced toxicity. As

another example, twin-like core–shell nanoparticles were

developed for synchronous biodistribution and a separate cell

targeting delivery of sorafenib (an antiangiogenic agent) and

IMD-0354 (a TAM re-polarization agent) to cancer cells and

TAMs, respectively, to promote superior synergistic antitumor

efficacy and M2 macrophage polarization ability (71). Liposome-

and micelle-based chemoimmunotherapies were also designed and

studied in animal models (72–74).
DDS targeting the TME in
ovarian cancer

A lot of effort has been made to develop new strategies for

improving the antitumor efficacy of immunotherapy for ovarian

cancer. As described above, the TME in ovarian cancer shows low

immunogenicity, which is an obstacle to immunotherapy. The

application of a DDS targeting the TME in ovarian cancer has

been explored in preclinical and early clinical studies

(Table 2, Figure 2).
DDS targeting immune cells

Generally, an increased immune cell infiltration is associated

with better prognosis in ovarian cancer. TAMs, as major

components within the ovarian TME and playing critical roles in

various stages of tumor progression, represent a promising target

for cancer drug delivery (88, 89). Signal regulatory protein a
(SIRPa) is the surface ligand of CD47 on TAMs. CD47/SIRPa
signaling plays an important role in tumor immune escape (75). In

a previous study, a virus was used to carry therapeutic genes that

blocked the CD47/SIRPa signaling pathway in ovarian cancer. This

effectively increased macrophage infiltration into the tumor and

enhanced tumor cell killing. Similar to CD47, the CD24 in tumor

cells binds the inhibitory receptor on the surface of TAMs to

promote the immune escape of ovarian cancer cells. Ovarian cancer
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with a decreased CD24 expression was found to bemore sensitive to

CD47 blockers, indicating co-targeting CD24 and CD47 as a

candidate for cancer immunotherapy (76).

In particular, in line with the distinct functions of the two

different phenotypes, a high number of classically activated

macrophages (M1 macrophages) in the ovarian TME is closely

correlated with better prognosis, while increased M2 macrophage

infiltration is correlated with poor prognosis (90, 91). Clodronate-

loaded liposomes are effective tools for macrophage ablation.

Long-term usage of thymoquinone was reported to increase the

infiltration of M2 macrophages in the ascites in models of ovarian

cancer. When clodronate liposomes were used in combination

with thymoquinone, the number of TAMs was significantly

reduced while the proportion of M2 macrophages was

increased, resulting in the promotion of tumor growth. Toll-like

receptor (TLR) 7/TLR8 agonists are potent immunostimulatory

molecules that repolarize TAMs. However, these small molecules

have poor pharmacokinetic profiles and carry the risk of inducing

severe systemic toxicity, which limits their administration via

intratumoral injection. Anionic liposomes were used to deliver

TLR agonists (e.g., resiquimod) administered intraperitoneally in

ovarian cancer-bearing mice (77). The results showed the

promotion of M1 macrophage polarization and T-cell

infiltration in the TME. In addition, the percentage of Tregs was

reduced in the TME. These liposome-formulated TLR agonists

could also enhance the efficacy of PD-1 blockade. Furthermore,

other DDSs were also designed to be administered

intraperitoneally. Certain relatively large anionic nanoparticles

(>100 nm) have been shown to be able to selectively accumulate in

TAMs in a mouse model of metastatic ovarian cancer, while other

particles that were smaller than 100 nm, or cationic, or

administered intravenously did not show TAM targeting (92).

This ability of these nanoparticles opens the possibility of targeting
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the TAMs in ovarian cancer. Another hyaluronic acid-based

nanocarrier encapsulating MiR-125b, a microRNA affecting the

phenotype polarization of TAMs, was designed. These

nanoparticles specifically targeted TAMs in the peritoneal cavity

and repolarized them to the immune-activating phenotype in an

ovarian cancer mouse model. Furthermore, these nanoparticles,

when combined with intraperitoneal paclitaxel, enhanced the

antitumor efficacy of paclitaxel without inducing systemic

toxicity (78). Another study using a mouse model of ovarian

cancer explored a nanocarrier that could deliver in vitro-

transcribed mRNA encoding M1-polarizing transcription factors

to reprogram TAMs. The infusion of IRF5mRNA and IkB kinase

beta (IKKb) nanoparticles reversed the immunosuppressive state

of the TAMs by reprograming M2 macrophages into M1

macrophages (79).

Macrophages can also act as carriers themselves. In a mouse

model of intraperitoneally metastatic ovarian cancer, engineered

doxorubicin-loaded M1 macrophages were designed to transfer

drug cargoes into tumor cells via a tunneling nanotube pathway.

These engineered macrophages were found to penetrate into and

accumulate deep within disseminated tumor lesions, resulting in

the elimination of metastatic tumors and increase in survival (80).

Immature DCs and MDSCs have been identified as responsible

for suppressing the antitumor immune response. These cancer-

associated immune cells within the ovarian TME emerge as

alternative therapeutic targets complementing current

immunotherapies (49). DDSs carrying gene materials or small

molecules were engineered to eliminate these cancer-associated

immune cells and to transform them into an immunostimulatory

phenotype. For instance, linear polyethylenimine-based

nanoparticles encapsulating small interfering RNA (siRNA) were

described and could be selectively engulfed by tumor-resident DCs

when injected into the peritoneal cavity of ovarian cancer-bearing
TABLE 2 Drug delivery systems (DDSs) currently developed to target the tumor microenvironment (TME) in ovarian cancer.

Target in the TME Delivery technology Effective agents Combined therapy Study design Reference

TAMs (CD47/SIRPa signaling pathway) Virus Therapeutic genes None Preclinical study (75, 76)

TAMs (Toll-like receptor) Liposomes Resiquimod PD-1 blockade Preclinical study (77)

TAMs (repolarization) Nanoparticles MicroRNA-125b Intraperitoneal paclitaxel Preclinical study (78)

TAMs (repolarization) Nanoparticles IRF5 mRNA None Preclinical study (79)

M1 macrophages Nanotubes Doxorubicin None Preclinical study (80)

DCs Nanoparticles Small interfering RNA None Preclinical study (81, 82)

gd T cells Liposomes Aminobisphosphonates ACTs Preclinical study (83)

CAFs and MDSCs Nanoparticles Therapeutic genes None Preclinical study (84, 85)

Low immunogenicity Virus Peptides PD-1 blockade Preclinical study (86)

Low immunogenicity Nanoparticles IL-6 PD-1 blockade Preclinical study (87)

Low immunogenicity Liposomes Doxorubicin PD-1 blockade Early-phase clinical study (6, 7)
fro
TAMs, tumor-associated macrophages; DCs, dendritic cells; CAFs, cancer-associated fibroblasts; MDSCs, myeloid-derived suppressor cells; ACTs, adoptive cell therapies.
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mice (81). These nanoparticles induced the activation of DCs.

Another basic research indicated that ovarian cancer-associated

DCs are also capable of engulfing liposomes carrying plasmid

DNA-encoding cytokines in order to support the activities of

CTLs (82).

The DDS was also exploited in targeting and modulating

lymphocytes. The efficacy of ACT using gd T cells could be

enhanced by aminobisphosphonates such as alendronic acid, the

clinical exploitation of which was limited by the inefficient and

nonselective uptake of these agents in tumor cells.

Aminobisphosphonates were encapsulated within liposomes and

investigated in a preclinical study. The results showed that the

liposomal alendronic acid rendered advanced tumors susceptible to

gd T-cell-mediated shrinkage and was proven markedly superior

when compared with free drug delivered intravenously (83).
DDS targeting non-immune cells

The biological mechanism of CAFs suggests that CAFs

represent a therapeutic target in cancer immunotherapy. The

current interventions on CAFs mainly include: 1) inhibiting the

pro-tumor signaling pathway between CAFs and other stromal cells
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to reverse tumorigenesis, angiogenesis, and immunosuppression in

the TME and 2) inhibiting the production of ECM by CAFs to

reduce solid pressure in the TME. For example, fibroblast activation

protein (FAP) is a specific marker for CAFs. In a preclinical study of

ovarian cancer, upon delivering FAP siRNA to CAFs, the growth of

tumor cells was inhibited, with a decreased level of CAFs (84, 85).

Many other therapeutic agents such as mRNA and small molecules

are good mediators for CAF modulation. Other DDSs, such as a

lipid-coated calcium phosphate and lipid–protamine–DNA

nanoparticles, were developed as delivery platforms targeting

CAFs and have been studied in animal models of pancreatic and

bladder cancer (93).
DDS targeting immune modulators

There are various pieces of preclinical evidence that the

DDS could exhibit prolonged tumor residence and favorable

intratumoral distribution of immune modulators. As one

example, cowpea mosaic virus (CPMV) combined with an

anti-PD-1 peptide (SNTSESF) was examined as an alternative

to the expensive antibody therapies using ICIs. This

combination resulted in the increased efficacy of anti-PD-1
FIGURE 2

Drug delivery systems (DDSs) targeting the ovarian tumor microenvironment (TME). DDSs carry effective agents such as gene materials (e.g.,
cDNA, mRNA, or miRNA), proteins, or other small molecules (e.g., peptides) into the tumor sites. These agents are expected to work on: 1)
eliminating the immunosuppressive cells or transforming them into immunostimulatory phenotypes and 2) inhibiting the immunosuppressive or
pro-tumor production of the stromal cell. This combination of agents with DDS not only improves the solubility and stability of the agents but
also fulfills the target delivery with reduced toxicities. There are various DDS platforms, such as liposomes and nanoparticles.
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peptides in a mouse model of intraperitoneal ovarian cancer.

Moreover, an increased potency against metastatic ovarian

cancer was only observed when SNTSESF was conjugated to

CPMV, but not when given as a free peptide (86). As another

example, the hyperactivation of interleukin 6 (IL-6) is a

hallmark in the TME of ovarian cancer progression. The

effect of IL-6 is achieved via activating several signaling

pathways such as the RAS–RAF–MAPK and AKT–PI3K–

mTORC1 pathways. Dual inhibitor-loaded nanotherapeutics

(DiLNs) that can co-deliver PI3K and MAPK inhibitors were

also developed. In in vitro studies, DiLNs were shown to be

stable for over a month and released the drugs in a sustained

manner. In vivo studies showed that the combination of DiLNs

with an anti PD-L1 antibody resulted in superior antitumor

effect and longer survival (87).

Pegylated liposomal doxorubicin (PLD) is the first FDA-

approved cancer nanomedicine and a paradigm of DDS utilized in

ovarian cancer. Besides its use in chemotherapy, PLD can also

contribute positive immunomodulatory efforts due to the

anthracyline-induced translocation of calreticulin to the cell surface,

the upregulation ofMHC-I and Fas surface expression, and ICD (94).

The efficacy of anti-PD-1 therapy plus PLDhas been demonstrated in

the early stages of clinical studies. A single-arm, multicenter phase II

trial of ovarian cancer indicated that the combination of

pembrolizumab (an anti-PD-1 antibody) and PLD was

manageable, without unexpected toxicities, and showed preliminary

evidence of a clinical benefit. The response rate and survival in this

study were both higher than historical comparisons of PLD alone or

anti-PD-1 agents alone (7). A similar result was shown in a phase I/II

study of durvalumab (an anti-PD-LI antibody) combined with PLD

for platinum-resistant recurrent ovarian cancer (6). More clinical

trials (e.g., NCT02839707) are ongoing.

Controlled neoantigen release is a major challenge for

successful immunotherapy, especially in tumors of the immune-

desert phenotype such as ovarian cancer. Many TAAs in solid

tumors are not confined to tumor tissues but can also be found in

normal somatic tissues, which results in off-target toxicities. Tumor-

specific antigens are good candidates for targeting and localizing to

the tumor sites in immunotherapy, such as NY-ESO-1 (a cancer–

testis antigen). The expression of NY-ESO-1 is restricted in normal

somatic tissues, concomitant with a re-expression in solid epithelial

cancers (95, 96). NY-ESO-1 vaccines have been designed and

investigated in preclinical studies and early phase trials. In

ovarian cancer, combination therapies of the NY-ESO-1 vaccine,

PLD, and decitabine in 10 patients with recurrent disease showed

promising results. Six of the 10 patients had disease stabilization or
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partial clinical response (97). HLA-A2-restricted peptides presented

by tumor cells are candidate antigens for the development of a

therapeutic cancer vaccine. A novel liposomal platform called

DepoVax™ (DPX; Halifax, NS, Canada) was used to enhance the

potency of the HLA-A2-restricted peptide vaccine (DPX-0907). The

phase I clinical trial of DPX-0907 exhibited a 61% immune response

rate (98). There are many other formulations designed based on the

low immunogenicity of TAAs in ovarian cancer, such as a slow-

release dendrime of cowpea mosaic virus for in situ vaccine

delivery (99).
Conclusions and perspectives

The immunosuppressive TME with low immunogenicity is a

big obstacle in the implementation of immunotherapy for solid

tumors such as ovarian cancer (15, 100, 101). It is believed that a

TME-targeted strategy is a valuable adjuvant therapy for ovarian

cancer. Given the complexity of the interaction network in the

TME, there remains the challenging task of developing drugs or

therapies simultaneously targeting multiple pathways. The

combined administration of two or more targeted therapeutics, or

even the addition of immunotherapeutics and chemotherapeutics,

is expected to exhibit a synergistic antitumor effect and improve

each other’s efficacy. However, toxicity is a major concern.

The application of DDSs in immunotherapy is mainly based on

the advantage of selective accumulation in tumor sites relative to

normal tissues, which greatly reduces the risk of toxicities. In

addition, the peritoneal metastasis and ascites in ovarian cancer

make the DDS a potentially valuable approach to carry the load

since abundant peritoneal phagocytes can engulf the carriers and

accumulate the load inside the tumors, acting as Trojan horses.

Various DDS-based strategies have been designed and examined in

preclinical studies. Based on the evidence from previous research

works, we consider the future of DDSs, especially for nanocarriers,

as promising in the immunotherapy for ovarian cancer, not only as

a direct delivery platform of immunotherapeutic agents but also as a

carrier of genes or functional molecules that can transform the

immunosuppressive TME into an immunostimulatory TME.

However, not all basic research can result in clinical treatment for

patients. In addition to the manufacturing technique and costs,

there will be many more concerns when it comes to clinical

translation. Furthermore, there is limited information on the

long-term biosafety and bioeffect of the component materials

themselves in these carriers.
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More efforts are needed to further understand the TME in

ovarian cancer in order to identify more specific hallmarks and

biomarkers that will help in the design and development of more

DDSs with better effectivity and biosafety, or even for

personalized therapy.
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