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Human papillomaviruses (HPVs) have been recognized as the etiologic agents

of various cancers and are called HPV-driven cancers. Concerning HPV-

mediated carcinogenic action, gene therapy can cure cancer at the

molecular level by means of the correction of specific genes or sites.

CRISPR-Cas9, as a novel genetic editing technique, can correct errors in the

genome and change the gene expression and function in cells efficiently,

quickly, and with relative ease. Herein, we overviewed studies of CRISPR-

mediated gene remedies for HPV-driven cancers and summarized the

potential applications of CRISPR-Cas9 in gene therapy for cancer.
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Introduction

Human papillomaviruses (HPVs) are nonenveloped epitheliotropic viruses with

eight coding genes and a circular double-stranded DNA genome (1). HPVs are

important human pathogens, and many viral diseases, such as cervical cancer caused

by HPVs, have received immense attention as a result of their high transmission rates and

difficulty in curing (2). During HPV-driven cancer development, viral DNA is frequently

integrated into host cell chromosomes, and the proteins encoded by viral genes play a

critical role in carcinogenesis (3, 4).

Collectively, HPV-driven cancers include cervical cancer, anal cancer, oral cancer,

oropharyngeal cancer, and other cancers. In recent decades, many studies have reported

various breakthroughs in the field of cervical cancer, with the earliest and deepest

progress on the HPV-relevant mechanism. A further study explored the prevention and
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treatment of cervical cancer and used it as the breach point of

other HPV-driven cancers (5).

The CRISPR-Cas9 system is an adaptive defense network in

microorganisms and has become the leading technology for

genome editing (6). Compared with other genome editing

technologies, such as ZFNs and TALENs, it has the advantage

of being programmable with short RNAs, which makes it easier

to use (7). There is already a study indicating that CRISPR-Cas9

has a role in targeting DNA (8) and was subsequently proven to

be able to edit human chromosomal DNA (9). Building on these

studies, in 2020, a phase I clinical trial of CRISPR-Cas9 was

completed in patients with advanced non-small cell lung cancer

(10), which opened the beginning of the technology for the

clinical treatment of oncology. In recent years, CRISPR-Cas9 has

been increasingly used to target the HPV gene that induces most

cervical cancer tumors. In 2014, the E6 and E7 genes of the HPV

virus were targeted by using CRISPR-Cas9, leading to the death

of tumor cells (11). This study provides a theoretical basis for the

treatment of HPV-induced cancers. Studies on the stability and

safety of CRISPR-Cas9 are still ongoing, as preclinical and

clinical studies have been conducted.

In this review, we discuss the current state of development of

CRISPR-Cas9 for HPV clinical treatment based on a summary

of the theoretical rationale and relevant trials. We also highlight

the potential application of this technology for HPV

clinical treatment.
Mechanism of CRISPR-
Cas9 technology

CRISPR-Cas9 systems are divided into two primary

classes. CRISPR-Cas9 belongs to type II in Class 2 (12). It

consists of a CRISPR array in the middle and several Cas genes

on both sides, including the specific cas9 gene. The CRISPR RNA

transcribed by the CRISPR array (gRNA) acts to direct the
Frontiers in Immunology 02
nuclease Cas9 to generate a double-strand break (DSB) at the

target site (13). (Figure 1)

First, after invading the host, exogenous DNA is cleaved into

several DNA fragments called protospacers. Protospacers will

then be inserted between the high-frequency repeat fragments to

form the CRISPR array. The proteins Cas1 and Cas2 play an

important role in this process (12, 14, 15). The Cas1 protein has

been proven to have endonuclease activity and directs

protospacer insertion between repetitive fragments (16).

However, how the Cas2 protein works remains unclear.

Subsequently, the CRISPR array will be transcribed to

generate precrRNAs that match the target gene. The CRISPR

site located upstream of the CRISPR array is transcribed to

generate tracrRNA. TracrRNA has a fragment homologous to

precrRNA and therefore can bind to it to form a precrRNA/

tracrRNA complex. This complex is further processed to form

the mature tracrRNA-crRNA complex known as gRNA. The

gRNA will then bind to Cas9 and direct Cas9 to the target site for

DNA cleavage to generate DSBs. Every single strand is cleaved

by a different structural domain of Cas (17). Whether the

intended site can be targeted depends on a short sequence

called the Protospacer Adjacent Motif (PAM) located

downstream of the intended target site. PAM which controls

the targeting specification is recognized by Cas9 and is specific to

each subgroup of the CRISPR-Cas9 system (18, 19).

Finally, cutting target DNA to produce DSBs by the nuclease

Cas9 initiates the host self-repair machinery, including

nonhomologous end joining (NHEJ) and homology-directed

repair (HDR) (20). These two restoration mechanisms mediate

mutations such as substitutions, deletions, and insertions in the

target DNA (17, 21, 22).

Off-target effects are one of the biggest problems facing

CRISPR-Cas9 in clinical applications. A study demonstrated

that Cas9 nucleic acid endonuclease has high activity even in the

presence of gRNA bootstrap mismatch, which would greatly

reduce the safety of its clinical application (23). But it has been
FIGURE 1

The main working procedure of CRISPR-Cas9.
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demonstrated that CRISPR-Cas9 has higher cleavage efficiency

and lower off-target rates than TALEN and ZFN gene therapy

technologies in the treatment of HPV infection (24). On the

other hand, it has been reported that off-target can be minimized

by optimizing gRNA sequences as well as Cas9, among other

ways (25). For example, Komor et al. significantly improved

targeting rates using Cas9-nickase, a D10 mutant of Cas9 (26).

And many CRIPSR-Cas9-based editors such as cytosine base-

editors (CBEs), adenine base-editors (ABEs) and Prime-editors

(PEs) have also been designed to achieve smaller insertion or

deletion of mutations (27). More variants of CRISPR and Cas9

are being investigated to optimize this technique. Therefore,

although the clinical application of CRISPR-Cas9 still needs to

overcome many difficulties, it is still the optimal choice for gene

therapy of HPV virus infection.

To apply CRISPR-Cas9 to tumor therapy, in 2012, a single-

guide RNA (gRNA) was first designed to contain all the

components needed for prerRNA/tracrRNA to guide the Cas9

nuclease (8). Soon after, in 2014, Zhen et al. reported for the first

time that targeting the HPV E6/E7 gene using CRISPR-Cas

could inhibit tumor cell growth. Researches on CRISPR-Cas for

HPV-associated cancers have increased rapidly since then (28).
Major targets of CRISPR-Cas9
application in HPV cancer

Studies have proven that over 99% of cervical cancers are

directly related to high-risk HPV infection (29). Two subtypes,

HPV16 and HPV18, are predominant. The genome of the HPV

virus consists of two main parts. The first part is the early region
Frontiers in Immunology 03
(E), whose main function is to participate in the regulation of

virus replication and life cycle; the other part is the late region

(L), whose main function is to encode the capsid protein that

forms the virus (30). In the genome of HPV, the E6 and E7 genes

are the major oncogenes. The E6 oncogene functions by

inhibiting the p53 cancer suppressor pathway and blocking the

RIG-I signaling pathway (immune escape mechanism), and the

E7 oncogene suppresses retinoblastoma protein (Rb) and affects

p21 and other pathways (31–33). (Figure 2) A growing number

of studies have demonstrated that the E6 and E7 genes play a

critical role in enabling the induction of apoptosis and cell cycle

arrest (34). Therefore, the E6 and E7 genes have also been widely

studied by many scholars as to the main target loci (Table 1).

In 2014, HPV16-E7 was first recognized as a goal of motion of

the CRISPR-Cas9 machine for gene remedying HPV virus-

positive cervical cancer (31). In the same year, another study

also demonstrated that the CRISPR-Cas9 system targeting the E6

and E7 loci led to a significant accumulation of p53 and p21, which

significantly reduced the proliferation of cervical cancer cells in

vitro, and this finding was also demonstrated in vivo in a mouse

model (28). In subsequent studies, it was found that knocking out

the E6 and E7 genes could inhibit cervical cancer cell proliferation,

in addition to several other effects. In 2016, a study confirmed that

focused inactivation of the HPV16 E6/E7 gene might also be a

high-quality sensitizer of CDDP chemotherapy in cervical cancer

(36), providing new ideas for additional gene therapy strategies.

The same research team again found that blocking the PD-1

pathway and the HPV16 E6/E7 gene may have a synergistic effect

and together enhance the antitumor effect in 2019 (46).

In addition to the treatment targeting the E6/E7 gene, some

scholars have also turned their attention to investigating other

HPV oncogenic mechanisms using the CRISPR-Cas9 system.
FIGURE 2

The target genomes in the HPV and host cell.
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In 2017, the SIRT1 gene was knocked out by CRISPR-Cas9,

demonstrating the important regulatory role of the cytosolic

enzyme SIRT1 in HPV16 replication (37). Subsequently, in 2020,

the same research team continued to investigate the regulatory role

of the SIRT1-WRN axis using CRISPR-Cas9 technology and noted

the dependence of the viral replication cycle on WRN (47). Some

scholars have also started to study the host proteins that interact

with the transcription products of E6/E7 genes. For example, in

2020, a study found that binding of the E7 oncoprotein of HPV16

and HPV18 to the host tumor suppressor PTPN14 would inhibit

the expression of differentiation genes and demonstrated

experimentally that mutating the PTPN14 gene in cervical cancer

cells by CRISPR-Cas9 would significantly reduce the oncogenic

activity of HPV viruses (50). Many studies on CRISPR-Cas9

system-targeted gene therapy are underway.
Application of CRISPR-Cas9 in HPV
cancer therapy

As a therapeutic technique, gene therapy can work by

replacing specific molecular defects of genes that contribute to
Frontiers in Immunology 04
the development or progression of cancer. This therapy has been

widely applied, including in cardiovascular diseases, vaccination,

and cancers in which conventional therapies have failed. For

HPV-driven cancer, various gene therapy approaches have been

developed and verified. CRISPR-Cas9, unlike traditional gene-

editing technology, can provide an easy way to edit specific sites

in the genome and thus offers tremendous opportunities for

more diseases. We briefly summarized the CRISPR-Cas9 in

various potential applications in HPV (Table 2). Detailed

information will be introduced below.
CRISPR-Cas9 technology applications
for HPV

There is a common etiologic feature in HPV-driven cancer

that the emergence and function of viral oncogene expression

(E6/E7) are related to the tumor cells, far away from

stromal cells. Relevant research confirmed that most HPV-

driven cancers can classify the oncogenic proteins E6/E7 to

inactivate the host tumor suppressors p53 and RB, respectively.

In the process of cell oncogenesis, E6 and E7 promote the
TABLE 1 Summary of studies of CRISPR-Cas9 targeting HPV genes.

Editing system &
genotype

Target
gene

Cell/Animal model Author/
year

CRISPR-Cas9 HPV16 E7 SiHa and Caski cells (31)

CRISPR-Cas9 HPV16 E6 E7 SiHa and C33A cells (28)

CRISPR-Cas9 HPV6/
11

E7 Human keratinocytes (35)

CRISPR-Cas9 HPV16 E6 E7 SiHa and C33A cells (36)

CRISPR-Cas9 HPV16 SIRT1 C33A cells (37)

CRISPR-Cas9 DNAJA4 HaCaT cells (38)

CRISPR-Cas9 HPV18 E6 E7 Hela cells (39)

CRISPR-Cas9 HPV18 E6 HeLa, HCS-2, SKG cells and human immortal cell line 293 (40)

CRISPR-Cas9 HPV16/
18

E6 E7 HeLa, CasKi, HEK293T, Jurkat cell lines and HeLa FLAG16E7MYC44 (41)

CRISPR-Cas9 HPV16 SAMHD1 N/Tert-1 cells (42)

CRISPR-Cas9 HPV16/
18

THZ1 HeLa, SiHa, C33A cells and human embryonic kidney cells 293T (43)

CRISPR-Cas9 CIB1 Human keratinocyte line NKc2115 and the mouse fibroblast line 3T316 (44)

CRISPR-Cas9 HPV16 PIM1 Human HNSCC cell lines FaDu, SCC-4, SCC-9, SCC-15, CAL 27, Detroit 562, SCC-25, UM-SCC-47 and UM-
SCC-104

(45)

CRISPR-Cas9 HPV16 E6 E7 SiHa cells (46)

CRISPR-Cas9 HPV16 WRN N/Tert-1 and HPV16 cells (47)

CRISPR-Cas9 HPV18 E6 HeLa and Hek-293 cell lines (48)

CRISPR-Cas9 HPV16/
18

E6 E7 SiHa cells (49)

CRISPR-Cas9 HPV18 E7 Human foreskin keratinocytes (HFKs) (50)

CRISPR-Cas9 HPV16 E7 HeLa, UDSCC2 (SCC2),UMSCC104 (SCC104),UMSCC1 (SCC1),FaDu and Detroit 562 cells (51)

CRISPR-Cas9 HPV18 E6 E7 HeLa cells (1)

CRISPR-Cas9 HPV16 E7 SiHa, HeLa, CaSki and the HEK cell line HEK293 (52)
f
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replication of the viral genome and induce malignant biological

properties, including uncontrolled cellular proliferation,

angiogenesis, invasion, and metastasis (75) (Figure 3). A

previous study showed that E6/E7-inactivated HeLa cells

displayed distinctive senescence markers, such as an enlarged

cell surface area (1).

E6/E7 and their complex have deserved as specific targets in

gene therapy. Several strategies targeting E6/E7 have been

reported, including cytotoxic drugs and zinc-ejecting inhibitors

of the viral E6 oncoprotein (76–78), E7 antagonist peptide (79),
Frontiers in Immunology 05
and HSP90 and GRP78 inhibitors targeting E6 and E7 (80).

Recently, CRISPR-Cas9 has entered into clinical trials as a novel

therapeutic strategy. The therapeutic mechanism of CRISPR-

Cas9-mediated downregulation of E6 and E7 normally attributes

to the inactivation of p53 and RB to set off apoptosis and

mobile senescence.

High-risk HPVs (such as HPV-16 and HPV-18) can encode

viral oncoproteins E6 and E7 in tumor cells, most common in

cervical and penile cancers. The targeted gene by CRISPR-Cas9

performed well in a large number of studies. In 2014, the first
TABLE 2 Summary of application of CRISPR-Cas9 in HPV-driven cancer.

Category Description of CRISPR-Cas9
function

Model of CRISPR-Cas9 medication Author/
year

Interference in HPV HPV16-E7 HPV16-infected cervical cancer cell lines and HPV16 transgenic mice; (31, 52-54)

HPV16-E6 HPV16-infected cervical cancer cell lines (55)

HPV16-E6/E7 HPV16-infected cervical cell line and mouse tumor model; HPV16 transgenic mice (28, 56)

HPV6/11-E7 E7-transfromed keratinocytes (35)

HPV18-E6/E7 E6- or E7- transfected Hela cell; HPV18-infected cervical cancer cell lines (HeLa,
HCS−2, SKG−I, CaSki, and SiHa)

(39, 40, 57)

HPV18-E6 HPV18-E6-infectied HeLa cell (58)

Manipulate cancer
genome

JunB HNSCC cell lines and lung metastatic mouse model of HNSCC (59)

CD55 Cervical cancer cell lines (C33A, C4-1, CaSki, ME180, MS-751 and SiHa) (60)

CD71 Cervical cancer cell lines (C33A, C4-1, CaSki, and SiHa) (61)

CDK7 Cervical cancer cell lines (HeLa, SiHa, and C33A) and subcutaneous xenograft
mouse model

(43)

PIM1 Human HNSCC cell lines and mouse xenograft model (62)

p53 HPV16-transformed human keratinocytes (HKc/DR) (63)

Enhance
immunotherapy

The immune checkpoint PD1 HPV16-infected cervical cancer cell lines and HPV16 transgenic mice (46)

Combinatorial therapy of GSK126, an EZH2
inhibitor, and anti–PD-1

Human HNSCC cell lines and mice model (64)

Effects on the other
therapies

An effective sensitizer of CDDP chemotherapy SiHa cells and xenograft mouse models of cervical cancer (36)

Optimal radiosensitization approaches Virous cell lines and xenograft models (65)

MLL5 genes on chemotherapy HeLa and Hek-293 cells (48)

Delivery system of
CRISPR-Cas9

Plasmid Cells (CasKi, HPV16 positive; HeLa, HPV18 positive); xenograft mouse model (41, 66)

AAV vector. HPV18-infected cervical cancer cell lines (HeLa, HCS−2, SKG−I); HPV18-positive
HeLa cell line

(40, 58)

Nanoparticle (NPs) Cervical cancer cells lines; xenograft tumors in mice model (52, 67, 49)

High-capacity adenoviral (HCAdV) Cervical carcinoma cell lines (HeLa, CaSki, and SiHa) (57, 68)

HPV pseudotype virus Cervical cancer SiHa cells and nude mice model (69)

Endogenous exosomes-mediated delivery Hela cell (70)

Liposome HPV16-infected cervical cell line and HPV16 transgenic mice; cervical cancer cell
lines (Hela and SiHa) mouse tumor model

(46, 49, 54)

Detection CRISPR- or Cas9/gRNAs-associated reverse
PCR(CARP)

HPV-positive cervical carcinoma cells (HeLa and SiHa) (71)

CRISPR-typing PCR(ctPCR) Human cervical carcinoma cells (SiHa, HeLa and C-33a) (72, 73)

CRISPR-Cas9-assisted DNA detection
(CADD)

Human cervical carcinoma cells (SiHa, HeLa and C-33a) (74)
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CRISPR-Cas9 system featuring HPV16-E7 single-guide RNA

(gRNA) showed disruption of HPV16-E7 DNA at specific

sites induced apoptosis and growth inhibition of HPV-driven

cancer cells (31). Further study conducted gene therapy in the

K14-HPV16 transgenic mouse model, which had a favorable

effect on cervical precancer (53). In 2015, the HPV16-E6

oncogene was cleaved by the customized CRISPR gRNA/Cas9,

which demonstrated for the first time that it could be a

therapeutic approach to reverse the malignant phenotype and

increase the expression of p53 (55). Both viral oncoproteins are

therefore regarded as promising targets for gene therapy. The

knockdown of E6/E7 has been pronounced in in vivo and vitro

trials alongside an accumulation of p53 and p21 protein and

should result in remarkably issue of the proliferation of HPV-

driven most cancers cells (36, 56).

In addition, other HPV types were also studied for their

biological properties and use in genetic therapy with CRISPR-

Cas9. As an HR-HPV, HPV-18 has been targeted and tested in

vitro and in vivo. Previous studies showed that oncogenes E6 and

E7 of HPV18 could be successfully inhibited by the CRISPR-

Cas9 system (39, 40, 57, 58). However, HPV-6/11, which are

low-risk HPV types most common in anogenital warts and

laryngeal papillomatosis, also encode the oncoproteins E6/E7.

Thus, a CRISPR−Cas9 system centered on HPV6/11 has been

stated as a novel and fairly effective molecular purpose for the

treatment and prevention of low-risk HPV-driven diseases (35).

With the deepening look up on HPV, more gene sequences

will flip out to be ambitions of gene treatment for HPV illness or

remedy of HPV-driven cancer. CRISPR-Cas9 can additionally

be used in the preparation of vaccines to prevent HPV infection

(81). Nonetheless, the pleasant transport of developed Cas9

plasmids in vivo remains a challenge. Further look up should

be carried out to transport Cas9 and gRNA into the intention cell

of the human physique and to make positive the biosafety need.
Frontiers in Immunology 06
Manipulation of the cancer genome
by CRISPR-Cas9

As a promising progressive technological know-how in gene

editing, CRISPR-Cas9 provides scientists with a number of

alternatives to manipulate the genome of cancers and trade the

DNA structure.

Oncogenes are a group of mutated genes that may cause

cancer, such as JunB and PIM1. JunB is a unique factor of

activator protein-1 transcription factors, appearing both as a

tumor suppressor or as an oncogene relying on the cell context

(82). JunB knockdown and knockout limited the progression of

tumor migration and invasion, suggesting that the

downregulation of JunB expression might be a potential

therapeutic strategy for inhibiting distant metastasis in patients

with HPV-driven cancer (59). Another oncogene, PIM1, encoding

a constitutively active serine/threonine protein kinase, was

investigated for its functional roles in the viability and growth of

HPV-driven cancer cells (83). CRISPR-Cas9-mediated exchange

of PIM1 resulted in cell cycle arrest and apoptosis in HPV-driven

most cancers (62). In addition, the genetic depletion of CDK7

using the CRISPR−Cas9 system exhibited great cell growth

inhibition in cervical cancer cell lines (43). Additionally,

HPV16-transformed cells with CRISPR−Cas9-mediated loss of

p53 were inclined to lose dependence on the continuous

expression of HPV oncogenes for proliferation (63).

The identification of cell surface markers in cancer can

establish differentiation to target specific sites. Some research

confirmed a novel affiliation between HPV-E6 oncoprotein

expression and the increase in the CD55 and CD71 floor

markers in most cervical cancer cells (60, 61). The HPV-E6

oncoprotein enriched the CD55 and CD71 populations, which

increased cell proliferation, cell self-renewal ability, cell

migration, radioresistance, and tumorigenicity. The knockdown
FIGURE 3

The pathways of HPV for immune-evasion mechanisms.
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or knockout of CD55 and CD71 expression in HPV-E6-

expressing cells should reverse the tumorigenic phenotypes of

most cervical cancer cells.

HPV plays a role in the pathologic process of HPV-driven

cancers. This finding suggests that HPV prophylactic vaccines

will have a wider range of protection, making us far from a series

of HPV-driven cancers, especially in head and neck cancer and

cervical cancer, where the expression of HPV is relatively high.
Enhanced immunotherapy with
CRISPR-Cas9

With the advent of immune checkpoint inhibitors (ICIs),

immunotherapy has emerged as one of the most promising

therapeutic strategies for cancer. CRISPR−Cas9, as a versatile

and easily used genetic enhancing technology, is frightening a

progressive change in most cancer immunotherapies. Recently,

CRISPR−Cas9 has been carried out to incite the improvement of

therapeutic immune agents, such as chimeric antigen receptor T

(CAR-T) cells and the programmed cell dying protein-1 (PD-1)

or its ligand (PD-L1) (84).

PD-1 and PD-L1 are negative regulators of the immune

responses of T cells (85). Expressed on cervical T cells and DCs.

PD-1 and PD-L1 have been lately pronounced to be related to

excessive risk-HPV positivity and to be increased along with

growing cervical intraepithelial neoplasia (CIN) grade (86).

Furthermore, the researcher established a C33 cell line stably

expressing HPV16 E6/E7 (SiHa-E6/E7) to verify the promotive

association between HPV16 E6 and the expression of PD-1.

Based on this, they tested whether combined targeted therapy

with immunotherapy can 1 + 1 equal more than 2 in the SiHa

cervical cancer mouse model. Synergistic effects have been

reported for combination therapy targeting HPV16 E6/E7 and

PD-1 blockade using CRISPR-Cas9 (46).

EZH2, a catalytic subunit of polycomb repressive complex 2

(PRC2), was reported to block PD-1/PD-L1 axis downregulation.

High expression of EZH2 was also associated with tumor cell

proliferation, invasion, and metastasis and has important

clinicopathologic significance (87). EZH2 knockdown or

inhibition has been tested in mice with induced endometriosis

and prompted EZH2-induced epithelial-mesenchymal transition

(EMT) in cancers (88). Further research identified EZH2 as a

potential therapeutic target for encouraging antigen presentation

and antitumor immunity in head and neck squamous cell

carcinoma (HNSCC) (64). The combination of EZH2 inhibition

and anti-PD-1 therapy may be beneficial for patients with

HNSCC, which requires further preclinical studies.

Academic clinical trials have investigated T cells with PD-1

knocked out by CRISPR-Cas9 for the treatment of multiple types

of cancer. Among the trials, it has recently attained a significant

therapeutic effect on NSCLC (10). However, we have not found

any research directly exploring novel and promising cancer
Frontiers in Immunology 07
immunotherapy with the knockout of CAR-T or PD-1 by

CRISPR−Cas9 in HPV-driven cancers.
Effects of CRISPR-Cas9 on
other therapies

For patients with HPV-driven cancers, conventional therapy

includes chemotherapy, radiotherapy, or subsequent

chemoradiotherapy (CCRT). One of the major issues in

clinical oncology is the ability of cancer cells to resist

chemotherapy drugs, which leads to chemotherapy failure.

In 2016, the first record of HPV16 E6/E7 focused on CRISPR-

Cas9 was published, in which the method was once described as a

nice sensitizer for bettering CDDP chemotherapy in cervical

cancer (36). It ought to efficiently and especially coordinate

with CDDP for HPV16 fantastic cervical cancer. This further

indicated the position of the blended lineage leukemia 5 (MLL5)

in the carcinogenesis of most HPV-positive cervical cancer cells

(48). Knockout of MLL5 greatly impacted the chemotherapeutic

effectivity of cisplatin in HPV-18-positive cells. Additionally, the

finding that MLL5 has a higher anticancer effect than E6 by

means of CRISPR-Cas9 has an impact on the disruption ofMLL5.

For head and neck squamous cell carcinoma (HNSCC),

radiotherapy is one of the most commonly used and effective

treatments. However, different HPV genotypes of HPV-driven

cancers, such as cervical cancer patients with HPV-18 DNA,

have significantly different responses to radiotherapy (89).

Recently, a novel screen based on a targeted CRISPR−Cas9

system was applied to identify optimal radiosensitization

approaches for HPV-positive/negative HNSCC (90). The

combination of radiotherapy and CRISPR−Cas9-mediated

inhibition of genetic repair pathways could improve the

therapeutic response in patients with HNSCC.
HPV detection with CRISPR-Cas9

Nucleic acid detection techniques are always crucial to

diagnosis, especially in the background of the present

coronavirus disease 2019 pandemic. Despite a wide range of

applications of genetic testing tools, the CRISPR-Cas9 system

has advantages in the detection field and has been applied in

gene editing and regulation. We know that polymerase chain

reaction (PCR) is widely applied due to the high sensitivity of the

exponential amplification of target DNA. Therefore, PCR has

been the most popular DNA detection and genotyping

technique, such as detecting SARS-CoV-2 and diagnosing the

current COVID-19 pandemic. To date, the combination of PCR

and CRISPR techniques provides a new chance for developing

new nucleic acid detection and typing techniques.

In 2018, Qiao and Beibei first developed CRISPR-Cas9-

associated reverse PCR (CARP), in which Cas9-cut target
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DNA was cyclized and detected by reverse PCR amplification

(71). Due to the reverse PCR amplification of the DNA of

interest that was performed in detection, this method had high

sensitivity. Based on the technique, they then developed a new

method for detecting and typing target DNA based on Cas9

nuclease, which was named ctPCR (72). By using qPCR

machines, the whole ctPCR detection process can be finished

in as little as 3 to 4 hours. Thus, ctPCR should be useful in DNA

detection and genotyping. However, the target DNA was

detected and genotyped based on comparing the Ct values and

DNA copies of two qPCRs. Afterward, a new version of ctPCR

was developed to avoid this comparison step, which symbolized

one-pot detection (73). The whole detection process can be

finished on PCR instruments without further tube opening.

Outside of the PCR technique, another CRISPR-Cas9-

mediated DNA detection method called CRISPR−Cas9-

assisted DNA detection (CADD) was developed (74). The

detection of target DNA could be completed in less than 30

min, according to the unique advantages over current methods,

such as being simple, rapid, and free of preamplification and the

application of fluorescent hybridization chain reaction (HCR).
Delivery system of CRISPR-Cas9 for HPV

The delivery system of CRISPR-Cas9 applied in the human

body remains a challenge. Even when many specific molecular

targets are available to select for tumor cells, it is quite

controversial to identify an effective and safe transport system.

To overcome this issue, researchers have exploited several kinds

of carriers, from viral delivery systems to liposomes and from

plasmids to nanoparticles. We discussed the pros and cons of

each delivery system based on current research reports.

Among the viral shipping vectors, high-capacity adenoviral

vectors (HCAdV) have the potential for packaging up to 35 kb,

permitting handing over the entire CRISPR-Cas9 equipment

inclusive of numerous gRNAs (68). In contrast to adenoviral

vectors (AdV), they had no threat of expressing AdV genes with

much less immunogenic properties (91). The proof-of-concept for

the use of CRISPR-Cas9 delivered by the most superior adenoviral

vector (HCAdV) has a considerable impact in treating HPV-

derived tumors (57). Nevertheless, manufacturing of HCAdV is

intensive in time and work when compared with AAV-vector

platforms, hampering their exploration for unique applications.

Different from the normal viral shipping system, AAV-based

shipping structures have shown predominant benefits (92),

which have attracted much attention, especially for therapeutic

purposes. Additionally, AAV can have stable transgene expression

with long-term existence as a concatemer in nondividing cells

(93). The AAV-based CRISPR-Cas9 machine has been used for

disruption of the E6 gene in HeLa, which emphasized AAV-based

viral vectors as one of the most sensitive viral vectors for gene

remedy and gene switch in vivo (40, 58).
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However, the viable cytotoxicity, immunogenic response, and

long-term expression of viral vectors continue to be issues of

scientific application (94). Several nonviral transport techniques

have been reported. In 2019, a study indicated the viability of

endogenous exosomes as a protected and fantastic transport carrier

of the purposeful gRNA and Cas9 protein (70).Scientific hobby in

nanoparticles (NPs) is on the rise due to their versatility and, in

particular, their large applicability (95). A study has developed NPs

consisting of PBAE546 and CRISPR-Cas9 for the treatment of

HPV infection, which provides new hope for the clinical

transformation of nanomedicine to treat cervical lesions, thereby

preventing cervical cancer (52). Other research also confirmed this

genetic strategy effectively (49, 67, 96).
Conclusion

CRISPR-Cas9 technology presents a new device for the genetic

detection and remedy of most HPV-driven cancers from a specific

aspect. With numerous benefits over traditional methods, such as

being simple to design, easy to use, and efficient to edit, the remedy

affords a promising method for medical applications. However,

nearly complete gene treatment plans associated with CRISPR-

Cas9 continue to be in the experimental phase, with current off-

target consequences and other safety perils. Collectively, the novel

genetic cure of HPV-driven most cancers can be anticipated with

the leap forward of CRISPR-Cas9 technology.
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